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Abstract: In order to overcome the difficulty of extracting features from data and improve the accuracy of anomaly detec-
tion system, this paper proposes a novel anomaly detection method based on deep learning. We build a deep neural net-
work model with multiple hidden layers to automatically learn features of data before detecting anomaly behaviors. The 
learned features from this network can enhance the discrimination of different behaviors. Moreover, an exactly sparse au-
to-encoder (ESAE) is proposed to achieve the pre-training of this network. This method does not require manual extrac-
tion of features, and is unsupervised, avoiding the difficulty of providing labeled data. Experimental results show that the 
proposed method could significantly improve the detection accuracy.  
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1. INTRODUCTION  

Intrusion detection technology [1] is to prevent or re-
duce the threat of cyber-attacks, under the condition that 
the network performance is not affected. It can be divided 
into misuse detection and anomaly detection technology. 
Compared to misuse detection, anomaly detection can de-
tect unknown attacks, so researches get more attentions on 
that. At present, most anomaly detection methods can be 
summarized as follows: all the instances are represented as 
data points according to their features (attributes), and then 
the classic pattern classification algorithms such as neural 
network, decision tree, cluster analysis and Bayesian theo-
ry, support vector machine (SVM), K nearest neighbor 
algorithm (KNN) are used to classify these points [2-4]. 
We can see that these features are the raw materials of the 
classification system. Good features play a key role for 
improving the accuracy of various anomaly detection algo-
rithms.  

Geoffrey Hinton, professor of university of Toronto, 
and a leader in the field of machine learning, has published 
a paper in science [5] about deep learning, which points out 
that deep model has outstanding advantages on learning 
good features. The features learned by this model can rep-
resent data with richer information. The basic idea of this 
model [6] is to stack multiple nonlinear functions, combin-
ing low-level features to form more abstract and more use-
ful high-level features. It maps all the samples from their 
original data space into a new feature space which can fa-
cilitate the classification.  

Therefore, in order to improve the performance of vari-
ous anomaly detection algorithms, we proposed to use deep 
model to learn better and richer features of data before in-
putting them into anomaly detection system. By building 
deep neural network model with more hidden layers, the 
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features of original data are extracted automatically from 
the bottom to the top layer. And then these features are 
used as the input of any existing anomaly detection algo-
rithms. Good feature representation of original data will 
help improve the performance of most algorithms. Moreo-
ver, these representations are learned completely unsuper-
vised, overcoming the difficulty of lack of labeled data. In 
order to validate the effectiveness of our method, two 
anomaly detection algorithms based on this method were 
given. Experimental results show that the features learned 
by deep model can significantly improve the detection ac-
curacy compared to original anomaly detection algorithms. 

2. ANOMALY DETECTION ARCHITECUTRE 
BASED ON DEEP LEARNING 

In this paper, we propose to learn the features of data 
based on deep neural networks. Instead of the attributes 
designed artificially, these features learned from these net-
works will be input into the classification model to detect 
abnormal behaviors. 

As shown in Fig. (1), this anomaly detection method 
includes two stages. One is the training phase (Fig. 1A), 
which includes the training tasks for feature learning model 
and classification model. The training of feature learning 
model is carried out by unsupervised method, while classi-
fication model is trained with labeled data. Well trained 
feature learning model can be directly applied to learn fea-
ture of new data. The classification model here can be any 
anomaly detection algorithm that can be used for the classi-
fication, such as KNN, neural network and SVM, and so 
on. Data preprocessing in this phase is to execute standard-
ization and normalization of input data, as well as data type 
conversion. Another phase is anomaly detection using the 
well trained models before. As shown in Fig. (1B), when 
we detect abnormal behaviors, we first preprocess the input 
data, and then the trained feature learning model in first 
stage is used to learn the features of data. Finally, these 
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features are input to the classifier to predict normal or ab-
normal information. 
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(A) Model training phase 
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(B) Anomaly detection phase 

Fig. (1). Anomaly detection process based on deep learning 

3. RESEARCH METHOD 

From the section 2, we can see that the main task of our 
model is how to train a good feature learning model. How-
ever, it is well known that, the training of deep neural net-
work has been very difficult before 2006. The objective 
function, which has many local optimal values [5], is very 
hard to optimize. Whether or not the network can achieve 
the optimal solution, the initial parameter has a pivotal 
role. If the initial value is not good, neural network is easy 
to fall into local optimum. Until 2006, Geoffrey Hinton put 
forward that the difficulty of training neural network can 
be effectively overcome by "layer-wise training" [4]. Ini-
tialize network one layer after one layer, and finally form 
the initial value of the entire network. This initialization 
will help the gradient descent begin at a better initial search 
point, so as to converge to better local optima. The process 
to get this initialization is the pre-training of the network.  

Therefore, most important task of our work is to pre-
train our deep neural network, so as to get one better ini-
tialization. In this section, we will first introduce the whole 
process of network training. Then we will focus on one 

frequently-used pre-training method and our improvement 
on it. 

3.1. Training Process 

The basic rule for training deep neural network is as 
follows: first pre-train network by an unsupervised training 
method (i.e., layer-wise training for initialization); then 
stack multiple layers that has been initialized to form a 
deep network; finally fine-tune this pre-trained deep net-
work to get the feature learning model. This paper follows 
the same principle. The first step, also the most important 
step, is to use unlabeled data (labeled data can also be 
used) for pre-training network. This process of pre-training 
can be described as follows: 

Algorithm 1: 

Starting from the layer 2 (i = 2) 

(1) Use the feature in layer i - 1 (that value of layer 1 is 
the original data) as the input to train present layer i, so 

as to learn the encoding parameters at this layer ( )iW �
( )ib , which are applied to get the features in the layer i 

( ( )ih ). 

(2) Input ( )ih  to the next layer, followed by the training 
of the next layer. 

(3) Repeat (1) and (2) to train each layer in the network, 
until the last layer. 

The data of layer 1 is the input of entire deep network, 
namely the original data. The features obtained for the last 
layer are the output of deep feature learning model, and the 
input of the following classifier. ( )iW and ( )b i  represent 
weight and bias values of layer i respectively. 

3.2. Auto-encoder 

Existing pre-training methods include auto-encoder 
(AE), restricted Boltzmann machine (RBM), sparse coding 
and deep belief network (DBN). In this paper, we use auto-
encoder, which is simple but useful for pre-training our 
deep feature learning model.  

Auto-encoder [8-10] usually consists of two parts: en-
coder and decoder. 

Encoder uses nonlinear mapping function f  to map 

input data ( nx R∈ ) into the representation in hidden layer 
( mh R∈ ). The mapping is represented as follows: 

( ) ( )fh f x s Wx b= = +           (1)  

The parameters of encoder contain a weight matrix (W) 
of size m n× , and a bias vector ( mb R∈ ). 

Decoder applies nonlinear mapping function g  to re-
construct input data from the representation in hidden layer 
( mh R∈ ) to form nr R∈ .  
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' '( ) ( )gr g h s W h b= = +          (2) 

W′  is the weight matrix of decoder with sizem n× , and 
nb R′∈  is its bias vector. The fs , gs  are nonlinear ac-

tivation functions, which usually adopt sigmoid or tanh 
function.  

(1) Network architecture  

Suppose that we have an unlabeled training set 
(1) (2) ( ){ , , , }NX x x x= L  of N examples, ( )k nx R∈  rep-

resents a sample. Fig. (2) gives the structure of conven-
tional auto-encoder neural network. 
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Fig. (2). Network Architecture.  

Here, circle represents neurons. The neuron with “+1” 
is a bias unit. There are three layers in the network: the 
input layer on the left, the output layer on the right and one 
hidden layer. Let n l  denotes the number of layers, for ex-
ample n l =3, as shown in Fig. (2). We label l-th layer as Ll. 
The parameters of the network are 2 2 3 3( , , , )W b W bθ = , 
where l

ijw  denotes the weight associated with the connec-
tion between j-th unit in layer l  and i-th unit in layer l 1+ . 
Also, l

ib  is the bias associated with i-th unit in layer l 1+  .  
The notation ( )( )ir xθ  is the activation of neurons at the 

output layer when ( )ix  is given as input. This network tries 
to learn an approximation of the identity function, in other 
words to make ( )( )ir xθ  similar to ( )ix . The mapping from 
the input of network to the value in hidden layer is to en-
code input data, namely learning feature of that. And then 
the reconstruction process from hidden layer to the output 
is to decode data from the feature. Our goal is to make the 
output after decoding approach, the original input. The 
encoded result (activation vector of hidden layer) is the 
feature expression of the input data.  

(2) Cost function 

Usually, auto-encoder neural network [8-10] is trained 
by unsupervised learning algorithm, which uses the back 
propagation algorithm to make the output (reconstruction 

of input) approach the input. That is to say the training ob-
jective is making ( ) ( )( )i ir x xθ ≈ . The training process is to 
search the best parameters of network to minimize the re-
construction error on the training set ( ND ). Therefore, the 
cost function can be simply represented as: 

2( ) ( ( , ( ( )))) ( )
2

N

l
AE ij

x D ij
J L x g f x Wλθ

∈

= +∑ ∑
  (3) 

The first item is the reconstruction error, which usually 
is squared-error function: 

2( , ) ( )L x r x r= −             (4) 

or the cross entropy cost function  

1
( , ) log( ) (1 ) log(1 )

n

j j j j
j

L x r x r x r
=

= − + − −∑
   (5) 

In this paper, one-half squared-error function is used for 

training. In detail, for a training example ( )ix , we define 
the cost function with respect to this example to be:  

2( ) ( )1( ; ) ( )
2

i i iL x r x xθθ = −
        (6) 

Given a training set of m examples, the overall cost 
function is: 

1 1
( ) 2

1 1 1 1

1( ; ) ( ; ) ( )
2

l l ln s sN
k l

ji
k l i j

J X L x W
N

λθ θ
− +

= = = =

= +∑ ∑∑∑
 

1 12( ) ( ) 2

1 1 1 1

1 1 ( ) ( )
2 2

 
l l ln s sN

k k l
ji

k l i j
r x x W

N θ
λ − +

= = = =

= − +∑ ∑∑∑
   (7)  

The first item is the average squared-errors of all exam-
ples. The second item is weight decay to decrease the mag-
nitude of the weights, so as to help prevent over fitting. λ  
is weight decay parameter used to control the relative im-
portance of the two items.  θ  is the parameters of network, 
including the weights and biases in all the layers.  

3.3. The Improved Pre-training Method  

In this paper, an exactly sparse auto-encoder (ESAE) 
neural network is proposed to pre-train deep neural net-
works. ESAE is similar to conventional sparse auto-
encoder except that ESAE will force the neurons whose 
activation approximates zero to exact zero, achieving exact 
sparsity of learned features.  
3.3.1. Exactly Sparse Auto-encoder 

Based on conventional sparse auto-encoder, in this pa-
per we try to learn exact sparse feature of data. It under-
mines that most of the hidden layer neurons are exact zero, 
which is different from the approximate zero in traditional 
sparse auto-encoder. That makes some of hidden neurons 
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are activated, while the activation of other hidden neurons 
equals zero, so as to make the average activation of hidden 
neurons in a small range. In this paper, the activation func-
tion of neurons is the sigmoid function. 

We use ( )( )(2) i
jh x  to denote the activation of the j-th 

neuron at hidden layer given the input sample ( )ix . The 
average values of that over all the samples in training set is 
defined to be: 

( )( )(2)

1

1ˆ
N

i
j j

i
h

N
ρ

=

= ∑ x
          (8) 

Sparse auto-encoder is to add one sparsity penalty item 
to the overall cost function to help learn more sparse fea-
tures. These sparse features can improve the discrimination 
of different data, so that the accuracy of classifier is in-
creased. This sparsity penalty item is represented as: 

( )
2

1

1log 1 log
ˆ ˆ1j j

s

j

ρ ρρ ρ
ρ ρ=

⎡ ⎤−+ −⎢ ⎥
−⎢ ⎥⎣ ⎦

∑
      (9) 

Where ρ  is a sparsity parameter, usually a small value 

close to zero? The sparsity penalty item makes ˆ jρ  close to
ρ , so as to make the average activation of neurons sparse 
enough. 

Then the overall cost function after adding sparsity 
penalty item is as follows: 

1 12( ) ( ) 2

1 1 1 1

1 1( ; ) ( ) ( )
2 2

 
l l ln s sN

k k l
sparse ji

k l i j
J X r x x W

N θ
λθ

− +

= = = =

= − +∑ ∑∑∑
 

( )
2
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s

j j j

ρ ρβ ρ ρ
ρ ρ=

⎡ ⎤−+ + −⎢ ⎥
−⎢ ⎥⎣ ⎦

∑
   (10)  

This sparsity penalty item results in the activation of 
part of neurons in hidden layer approximating zero, but 
they are still more than zero. In order to achieve exact 
sparsity of learned feature, we set a threshold s  for

( )( )(2) i
jh x . It forces the activation of neurons in hidden 

layer, which approximate zero, to equal to zero. We define 
a threshold function to be: 

( )( )
( )( )
( )( )

(2)

(2)

(2)

0,
( )

1,

i
ji

j i
j

h s
thred h

h s

⎧ <⎪= ⎨
≥⎪⎩

x
x

x
     (11) 

Then, the final activation of hidden neurons is: 

( ) ( )( ) ( ) ( )( ) ( )( )2 2 (2)thred( )i i i
j j jh h h= ×x x x

    (12) 

(2) Learning algorithm  

The learning algorithm is to find the final activation of 
hidden neurons (one feature expression of input) through 
searching the minimal ( ; )sparseJ Xθ . In this paper, we 
adopt the batch gradient descent algorithm as follows: 

Algorithm 2: 

1) Compute the overall cost function ( );sparseJ Xθ  

Step 1: forward propagation. Compute the activations of 
every layer  

( ) ( ) ( )1               l l l lz W a b−= +         (13) 

( ) ( )( )               l la f z=           (14) 

( )la  denotes the activation of layer l . ( )lz  is the net input 
of layer l . 
Step 2: compute the average activation of every hidden 
neuron using formula (8) 

Step 3: apply formula (10) to compute the overall cost 
function ( );sparseJ Xθ  

2) Compute the gradient of ( );sparseJ Xθ  with respect to 

every parameter ( ) ( );l sparseW
J Xθ∇  and ( ) ( );l sparseb

J Xθ∇  

3) Update all the parameters 

( ) ( )
( ) ( )                l

l l
sparseW

W W Jα θ= − ∇     (15) 

( ) ( )
( ) ( )                l

l l
sparseb

b b Jα θ= − ∇      (16) 

Where α  is learning rate. 

4) Repeat 1) - 3) until our cost function ( );sparseJ Xθ  is 
small enough. 

5) Compute the initial activations of hidden neurons 
through forward propagation with the trained parameters 
of network 

6) Compute the final activation of hidden neurons ac-
cording to formula (12) 

Using this algorithm, we can obtain one feature expres-
sion of input. It becomes the input signal of the second 
ESAE. Through minimizing the loss function of second 
ESAE, we can get the second expression of the original 
input information. Repeating the above steps, we obtain 
several ESAR networks. Stacking them will form a multi-
layer network, which is our feature learning model. The 
parameters of each layer are the feature expression extrac-
tors of raw input data at different levels. They can be used 
to obtain the feature of new data. 
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4. EXPERIMENTS AND ANALYSES 

4.1. Dataset 

We use Breast Cancer Wisconsin Data Set (BCW) [11] 
to verify the effectiveness of this method. It includes 699 
instances. Each instance has one of 2 possible classes: be-
nign or malignant, denoted by its class label 2 and 4. There 
are totally 458 and 241 instances for each class respective-
ly. And each instance is described by 9 different attributes. 
Therefore, we represent one instance as a data point in 9-
dimension space, and all the data points belonging to class 
benign as self-set, others as nonself set. This paper focuses 
on improving the detection accuracy for nonself set. So we 
used all the data in self-set and 100 data points in nonself 
as the training set, and the remaining 141 samples in non-
self as test set. 

4.2. Experimental Setup 

In our experiments, the feature learning model in this 
paper contains two feature learning layers. It means that we 
will learn two feature representations at different levels. So 
in our experiments two ESAE neural networks were pre-
trained to initialize parameters of the two feature learning 
layers. Each ESAE neural network contains three layers: 
the input layer, hidden layer and output layer. For the first 
ESAE, the size of input layer (denoted as 1s ) is equal to the 

dimension of the input data, that is 1s 9= . We set its hid-

den layer size 2s 20= . And the output layer size equals the 

number of input layer neurons 3 1s s 9= = , because the 
representation at output layer is the reconstruction of input 
data. The input of second ESAE is the feature learned from 
the first ESAE (namely the representation in hidden layer 
of the first ESAE). Therefore, the input layer size of the 
second network equals hidden layer size of first ESAE 
( '
1 2s s 20= = ). The size of its hidden layer and output 

layer is both set to 20. Other parameters are ⋋ = 0.003,
3β = , 0.5ρ = , and the threshold s=0.001. These param-

eters are chosen because they worked well in our experi-
ments.  

Features learned by well-trained feature learning model 
are input to other regular anomaly detection algorithms. 
We have validated the effectiveness of these features on 
two algorithms: KNN algorithm and multi-layer neural 
network (MLP) algorithm. Set the nearest neighbor size K 
from 1 to 200 for KNN algorithm. MLP network includes 
three layers, the input layer, one hidden layer and the out-
put layer. The size of input and output layer is 9 and 2 re-
spectively. And the hidden layer size changes from 20 to 
40. 

4.3. The Experimental Results Analyses 

All the experimental results are average values of 10 
repeated tests. Fig. (3) gives the variance of detection rates 
for KNN and improved KNN based on DL (DL_KNN) 

with different neighbor sizes. It shows that almost all the 
detection rates using DL_KNN method are higher than that 
of KNN algorithm. The best detection rate of KNN method 
is 90.17 when K equals 16, while that of DL_KNN algo-
rithm is up to 97.16% (K = 10). Moreover, we found that 
when K approached 200, the detection rate declined quick-
ly. That is because, when K is close to 200, the number of 
samples belonging to nonself (only 100 instances of this 
class in training set) is less than or equal to that belonging 
to self-set in the collection of K neighbors. Therefore, most 
of the instances in test set were predicted to be self-set. But 
even in this situation, our method still achieved better re-
sults. For example when K equals 200, KNN detection rate 
is 2.13%, while our detection rate is 13.48%. However, 
when K is larger than 200, samples of self-set are always 
more than nonself samples in nearest neighbors. At this 
time the detection rate of both equals to zero. Fig. (4) 
shows the results of comparison between MLP and 
DL_MLP method. We can see that the detection rates of 
DL_MLP method are all higher than that of MLP method.  

All the experimental results show that the features 
learned by deep learning can improve the detection rates of 
various detection algorithms significantly.  

  
Fig. (3). Comparison between KNN and DL_KNN method. 

 
Fig. (4). Comparison between MLP and DL_MLP method. 
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CONCLUSION 

Aiming at overcoming the problems of learning good 
feature and improving the detection accuracy in anomaly 
detection system, this paper proposed a new anomaly de-
tection algorithm. This method applied an improved deep 
feature learning model based on exactly sparse auto-
encoder to learn more useful features. These features help 
the traditional anomaly detection algorithm to obtain better 
detection accuracy.  

To our knowledge, it is the first time to use the deep 
learning model to extract the features of anomaly detection 
data. This method proposed in this paper overcomes some 
limitations of classical anomaly detection methods. The 
main advantages of this method are: (1) It does not need 
artificial feature extraction. Artificial neural network with 
much more hidden layers has outstanding advantages in 
terms of feature learning. It can automatically learn with 
full use of big data to get useful features; (2) The deep 
model transforms data from one expression to another, 
which implements the mapping of the samples from the 
original data space to the new feature space. This transfor-
mation keeps richer information of the original data, at the 
same time enhances the ability to distinguish different 
samples, and accordingly improves the accuracy of anoma-
ly detection; (3) The feature learning model is a completely 
unsupervised training process, which makes full use of 
huge amounts of unlabeled data that are easy to access, 
overcoming the difficulty to obtain labeled data. 
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