
Send Orders for Reprints to reprints@benthamscience.ae
734 The Open Automation and Control Systems Journal, 2015, 7, 734-739

 1874-4443/15 2015 Bentham Open

Open Access
An Anomaly Detection Method Based On Deep Learning

Hong-li Deng*, Tao yang and Jiang-jin Gao

China West Normal University, NanChong Sichuan, China

Abstract: In order to overcome the difficulty of extracting features from data and improve the accuracy of anomaly detec-
tion system, this paper proposes a novel anomaly detection method based on deep learning. We build a deep neural net-
work model with multiple hidden layers to automatically learn features of data before detecting anomaly behaviors. The
learned features from this network can enhance the discrimination of different behaviors. Moreover, an exactly sparse au-
to-encoder (ESAE) is proposed to achieve the pre-training of this network. This method does not require manual extrac-
tion of features, and is unsupervised, avoiding the difficulty of providing labeled data. Experimental results show that the
proposed method could significantly improve the detection accuracy.

Keywords: Deep learning, Anomaly detection, Feature representation, Sparse auto-encoder.

1. INTRODUCTION

Intrusion detection technology [1] is to prevent or re-
duce the threat of cyber-attacks, under the condition that
the network performance is not affected. It can be divided
into misuse detection and anomaly detection technology.
Compared to misuse detection, anomaly detection can de-
tect unknown attacks, so researches get more attentions on
that. At present, most anomaly detection methods can be
summarized as follows: all the instances are represented as
data points according to their features (attributes), and then
the classic pattern classification algorithms such as neural
network, decision tree, cluster analysis and Bayesian theo-
ry, support vector machine (SVM), K nearest neighbor
algorithm (KNN) are used to classify these points [2-4].
We can see that these features are the raw materials of the
classification system. Good features play a key role for
improving the accuracy of various anomaly detection algo-
rithms.

Geoffrey Hinton, professor of university of Toronto,
and a leader in the field of machine learning, has published
a paper in science [5] about deep learning, which points out
that deep model has outstanding advantages on learning
good features. The features learned by this model can rep-
resent data with richer information. The basic idea of this
model [6] is to stack multiple nonlinear functions, combin-
ing low-level features to form more abstract and more use-
ful high-level features. It maps all the samples from their
original data space into a new feature space which can fa-
cilitate the classification.

Therefore, in order to improve the performance of vari-
ous anomaly detection algorithms, we proposed to use deep
model to learn better and richer features of data before in-
putting them into anomaly detection system. By building
deep neural network model with more hidden layers, the

*Address correspondence to this author at the Shida Road, Nanchong, Chi-
na. Postcard: 637002; Tel: +86 18090574679; E-mail: 93425538@qq.com

features of original data are extracted automatically from
the bottom to the top layer. And then these features are
used as the input of any existing anomaly detection algo-
rithms. Good feature representation of original data will
help improve the performance of most algorithms. Moreo-
ver, these representations are learned completely unsuper-
vised, overcoming the difficulty of lack of labeled data. In
order to validate the effectiveness of our method, two
anomaly detection algorithms based on this method were
given. Experimental results show that the features learned
by deep model can significantly improve the detection ac-
curacy compared to original anomaly detection algorithms.

2. ANOMALY DETECTION ARCHITECUTRE
BASED ON DEEP LEARNING

In this paper, we propose to learn the features of data
based on deep neural networks. Instead of the attributes
designed artificially, these features learned from these net-
works will be input into the classification model to detect
abnormal behaviors.

As shown in Fig. (1), this anomaly detection method
includes two stages. One is the training phase (Fig. 1A),
which includes the training tasks for feature learning model
and classification model. The training of feature learning
model is carried out by unsupervised method, while classi-
fication model is trained with labeled data. Well trained
feature learning model can be directly applied to learn fea-
ture of new data. The classification model here can be any
anomaly detection algorithm that can be used for the classi-
fication, such as KNN, neural network and SVM, and so
on. Data preprocessing in this phase is to execute standard-
ization and normalization of input data, as well as data type
conversion. Another phase is anomaly detection using the
well trained models before. As shown in Fig. (1B), when
we detect abnormal behaviors, we first preprocess the input
data, and then the trained feature learning model in first
stage is used to learn the features of data. Finally, these

An Anomaly Detection Method Based On Deep Learning The Open Automation and Control Systems Journal, 2015, Volume 7 735

features are input to the classifier to predict normal or ab-
normal information.

classification	
 m
odel	
 training

classification	
 m
odel	
 training

Feature	
 learning	
 model	
 trainingFeature	
 learning	
 model	
 training

unlabeled	

data

unlabeled	

data

labelled	

training	
 set	
 and	

test	
 set

labelled	

training	
 set	
 and	

test	
 set

data	

preprocessing

data	

preprocessing

data	

preprocessing

data	

preprocessing

train	
 the	

feature	

learning	

model

train	
 the	

feature	

learning	

model

features	
 of	

training	
 set	
 and	

test	
 set

features	
 of	

training	
 set	
 and	

test	
 set

train	
 and	
 test	

the	
 classification	

model

train	
 and	
 test	

the	
 classification	

model

feature	

learning	

model

feature	

learning	

model

classification	

model

classification	

model

(A) Model training phase

Unlabelled	

data	
 for	

classifying

Unlabelled	

data	
 for	

classifying

data	

preprocessing

data	

preprocessing

featuresfeaturesClassifcation	

result

Classifcation	

result

Feature	

learning	

model

Feature	

learning	

model

Classification	

model

Classification	

model

(B) Anomaly detection phase

Fig. (1). Anomaly detection process based on deep learning

3. RESEARCH METHOD

From the section 2, we can see that the main task of our
model is how to train a good feature learning model. How-
ever, it is well known that, the training of deep neural net-
work has been very difficult before 2006. The objective
function, which has many local optimal values [5], is very
hard to optimize. Whether or not the network can achieve
the optimal solution, the initial parameter has a pivotal
role. If the initial value is not good, neural network is easy
to fall into local optimum. Until 2006, Geoffrey Hinton put
forward that the difficulty of training neural network can
be effectively overcome by "layer-wise training" [4]. Ini-
tialize network one layer after one layer, and finally form
the initial value of the entire network. This initialization
will help the gradient descent begin at a better initial search
point, so as to converge to better local optima. The process
to get this initialization is the pre-training of the network.

Therefore, most important task of our work is to pre-
train our deep neural network, so as to get one better ini-
tialization. In this section, we will first introduce the whole
process of network training. Then we will focus on one

frequently-used pre-training method and our improvement
on it.

3.1. Training Process

The basic rule for training deep neural network is as
follows: first pre-train network by an unsupervised training
method (i.e., layer-wise training for initialization); then
stack multiple layers that has been initialized to form a
deep network; finally fine-tune this pre-trained deep net-
work to get the feature learning model. This paper follows
the same principle. The first step, also the most important
step, is to use unlabeled data (labeled data can also be
used) for pre-training network. This process of pre-training
can be described as follows:

Algorithm 1:

Starting from the layer 2 (i = 2)

(1) Use the feature in layer i - 1 (that value of layer 1 is
the original data) as the input to train present layer i, so

as to learn the encoding parameters at this layer ()iW �
()ib , which are applied to get the features in the layer i

(()ih).

(2) Input ()ih to the next layer, followed by the training
of the next layer.

(3) Repeat (1) and (2) to train each layer in the network,
until the last layer.

The data of layer 1 is the input of entire deep network,
namely the original data. The features obtained for the last
layer are the output of deep feature learning model, and the
input of the following classifier. ()iW and ()b i represent
weight and bias values of layer i respectively.

3.2. Auto-encoder

Existing pre-training methods include auto-encoder
(AE), restricted Boltzmann machine (RBM), sparse coding
and deep belief network (DBN). In this paper, we use auto-
encoder, which is simple but useful for pre-training our
deep feature learning model.

Auto-encoder [8-10] usually consists of two parts: en-
coder and decoder.

Encoder uses nonlinear mapping function f to map

input data (nx R∈) into the representation in hidden layer
(mh R∈). The mapping is represented as follows:

() ()fh f x s Wx b= = + (1)

The parameters of encoder contain a weight matrix (W)
of size m n× , and a bias vector (mb R∈).

Decoder applies nonlinear mapping function g to re-
construct input data from the representation in hidden layer
(mh R∈) to form nr R∈ .

736 The Open Automation and Control Systems Journal, 2015, Volume 7 Deng et al.

' '() ()gr g h s W h b= = + (2)

W′ is the weight matrix of decoder with sizem n× , and
nb R′∈ is its bias vector. The fs , gs are nonlinear ac-

tivation functions, which usually adopt sigmoid or tanh
function.

(1) Network architecture

Suppose that we have an unlabeled training set
(1) (2) (){ , , , }NX x x x= L of N examples, ()k nx R∈ rep-

resents a sample. Fig. (2) gives the structure of conven-
tional auto-encoder neural network.

⋯	

⋯	

⋯	

⋯	

⋯	

⋯	

L1 L2 L3

!!
(")

!$
(")

!%&!
(")

!#
(")

$(")

%!
(")

%$
(")

%%&!
(")

%#
(")

&'($("))

+1

+1

Fig. (2). Network Architecture.

Here, circle represents neurons. The neuron with “+1”
is a bias unit. There are three layers in the network: the
input layer on the left, the output layer on the right and one
hidden layer. Let n l denotes the number of layers, for ex-
ample n l =3, as shown in Fig. (2). We label l-th layer as Ll.
The parameters of the network are 2 2 3 3(, , ,)W b W bθ = ,
where l

ijw denotes the weight associated with the connec-
tion between j-th unit in layer l and i-th unit in layer l 1+ .
Also, l

ib is the bias associated with i-th unit in layer l 1+ .
The notation ()()ir xθ is the activation of neurons at the

output layer when ()ix is given as input. This network tries
to learn an approximation of the identity function, in other
words to make ()()ir xθ similar to ()ix . The mapping from
the input of network to the value in hidden layer is to en-
code input data, namely learning feature of that. And then
the reconstruction process from hidden layer to the output
is to decode data from the feature. Our goal is to make the
output after decoding approach, the original input. The
encoded result (activation vector of hidden layer) is the
feature expression of the input data.

(2) Cost function

Usually, auto-encoder neural network [8-10] is trained
by unsupervised learning algorithm, which uses the back
propagation algorithm to make the output (reconstruction

of input) approach the input. That is to say the training ob-
jective is making () ()()i ir x xθ ≈ . The training process is to
search the best parameters of network to minimize the re-
construction error on the training set (ND). Therefore, the
cost function can be simply represented as:

2() ((, (()))) ()
2

N

l
AE ij

x D ij
J L x g f x Wλθ

∈

= +∑ ∑
 (3)

The first item is the reconstruction error, which usually
is squared-error function:

2(,) ()L x r x r= − (4)

or the cross entropy cost function

1
(,) log() (1) log(1)

n

j j j j
j

L x r x r x r
=

= − + − −∑
 (5)

In this paper, one-half squared-error function is used for

training. In detail, for a training example ()ix , we define
the cost function with respect to this example to be:

2() ()1(;) ()
2

i i iL x r x xθθ = −
 (6)

Given a training set of m examples, the overall cost
function is:

1 1
() 2

1 1 1 1

1(;) (;) ()
2

l l ln s sN
k l

ji
k l i j

J X L x W
N

λθ θ
− +

= = = =

= +∑ ∑∑∑

1 12() () 2

1 1 1 1

1 1 () ()
2 2

l l ln s sN

k k l
ji

k l i j
r x x W

N θ
λ − +

= = = =

= − +∑ ∑∑∑
 (7)

The first item is the average squared-errors of all exam-
ples. The second item is weight decay to decrease the mag-
nitude of the weights, so as to help prevent over fitting. λ
is weight decay parameter used to control the relative im-
portance of the two items. θ is the parameters of network,
including the weights and biases in all the layers.

3.3. The Improved Pre-training Method

In this paper, an exactly sparse auto-encoder (ESAE)
neural network is proposed to pre-train deep neural net-
works. ESAE is similar to conventional sparse auto-
encoder except that ESAE will force the neurons whose
activation approximates zero to exact zero, achieving exact
sparsity of learned features.
3.3.1. Exactly Sparse Auto-encoder

Based on conventional sparse auto-encoder, in this pa-
per we try to learn exact sparse feature of data. It under-
mines that most of the hidden layer neurons are exact zero,
which is different from the approximate zero in traditional
sparse auto-encoder. That makes some of hidden neurons

An Anomaly Detection Method Based On Deep Learning The Open Automation and Control Systems Journal, 2015, Volume 7 737

are activated, while the activation of other hidden neurons
equals zero, so as to make the average activation of hidden
neurons in a small range. In this paper, the activation func-
tion of neurons is the sigmoid function.

We use ()()(2) i
jh x to denote the activation of the j-th

neuron at hidden layer given the input sample ()ix . The
average values of that over all the samples in training set is
defined to be:

()()(2)

1

1ˆ
N

i
j j

i
h

N
ρ

=

= ∑ x
 (8)

Sparse auto-encoder is to add one sparsity penalty item
to the overall cost function to help learn more sparse fea-
tures. These sparse features can improve the discrimination
of different data, so that the accuracy of classifier is in-
creased. This sparsity penalty item is represented as:

()
2

1

1log 1 log
ˆ ˆ1j j

s

j

ρ ρρ ρ
ρ ρ=

⎡ ⎤−+ −⎢ ⎥
−⎢ ⎥⎣ ⎦

∑
 (9)

Where ρ is a sparsity parameter, usually a small value

close to zero? The sparsity penalty item makes ˆ jρ close to
ρ , so as to make the average activation of neurons sparse
enough.

Then the overall cost function after adding sparsity
penalty item is as follows:

1 12() () 2

1 1 1 1

1 1(;) () ()
2 2

l l ln s sN

k k l
sparse ji

k l i j
J X r x x W

N θ
λθ

− +

= = = =

= − +∑ ∑∑∑

()
2

1

1 log 1 log
ˆ ˆ1

s

j j j

ρ ρβ ρ ρ
ρ ρ=

⎡ ⎤−+ + −⎢ ⎥
−⎢ ⎥⎣ ⎦

∑
 (10)

This sparsity penalty item results in the activation of
part of neurons in hidden layer approximating zero, but
they are still more than zero. In order to achieve exact
sparsity of learned feature, we set a threshold s for

()()(2) i
jh x . It forces the activation of neurons in hidden

layer, which approximate zero, to equal to zero. We define
a threshold function to be:

()()
()()
()()

(2)

(2)

(2)

0,
()

1,

i
ji

j i
j

h s
thred h

h s

⎧ <⎪= ⎨
≥⎪⎩

x
x

x
 (11)

Then, the final activation of hidden neurons is:

() ()() () ()() ()()2 2 (2)thred()i i i
j j jh h h= ×x x x

 (12)

(2) Learning algorithm

The learning algorithm is to find the final activation of
hidden neurons (one feature expression of input) through
searching the minimal (;)sparseJ Xθ . In this paper, we
adopt the batch gradient descent algorithm as follows:

Algorithm 2:

1) Compute the overall cost function ();sparseJ Xθ

Step 1: forward propagation. Compute the activations of
every layer

() () ()1 l l l lz W a b−= + (13)

() ()() l la f z= (14)

()la denotes the activation of layer l . ()lz is the net input
of layer l .
Step 2: compute the average activation of every hidden
neuron using formula (8)

Step 3: apply formula (10) to compute the overall cost
function ();sparseJ Xθ

2) Compute the gradient of ();sparseJ Xθ with respect to

every parameter () ();l sparseW
J Xθ∇ and () ();l sparseb

J Xθ∇

3) Update all the parameters

() ()
() () l

l l
sparseW

W W Jα θ= − ∇ (15)

() ()
() () l

l l
sparseb

b b Jα θ= − ∇ (16)

Where α is learning rate.

4) Repeat 1) - 3) until our cost function ();sparseJ Xθ is
small enough.

5) Compute the initial activations of hidden neurons
through forward propagation with the trained parameters
of network

6) Compute the final activation of hidden neurons ac-
cording to formula (12)

Using this algorithm, we can obtain one feature expres-
sion of input. It becomes the input signal of the second
ESAE. Through minimizing the loss function of second
ESAE, we can get the second expression of the original
input information. Repeating the above steps, we obtain
several ESAR networks. Stacking them will form a multi-
layer network, which is our feature learning model. The
parameters of each layer are the feature expression extrac-
tors of raw input data at different levels. They can be used
to obtain the feature of new data.

738 The Open Automation and Control Systems Journal, 2015, Volume 7 Deng et al.

4. EXPERIMENTS AND ANALYSES

4.1. Dataset

We use Breast Cancer Wisconsin Data Set (BCW) [11]
to verify the effectiveness of this method. It includes 699
instances. Each instance has one of 2 possible classes: be-
nign or malignant, denoted by its class label 2 and 4. There
are totally 458 and 241 instances for each class respective-
ly. And each instance is described by 9 different attributes.
Therefore, we represent one instance as a data point in 9-
dimension space, and all the data points belonging to class
benign as self-set, others as nonself set. This paper focuses
on improving the detection accuracy for nonself set. So we
used all the data in self-set and 100 data points in nonself
as the training set, and the remaining 141 samples in non-
self as test set.

4.2. Experimental Setup

In our experiments, the feature learning model in this
paper contains two feature learning layers. It means that we
will learn two feature representations at different levels. So
in our experiments two ESAE neural networks were pre-
trained to initialize parameters of the two feature learning
layers. Each ESAE neural network contains three layers:
the input layer, hidden layer and output layer. For the first
ESAE, the size of input layer (denoted as 1s) is equal to the

dimension of the input data, that is 1s 9= . We set its hid-

den layer size 2s 20= . And the output layer size equals the

number of input layer neurons 3 1s s 9= = , because the
representation at output layer is the reconstruction of input
data. The input of second ESAE is the feature learned from
the first ESAE (namely the representation in hidden layer
of the first ESAE). Therefore, the input layer size of the
second network equals hidden layer size of first ESAE
('
1 2s s 20= =). The size of its hidden layer and output

layer is both set to 20. Other parameters are ⋋ = 0.003,
3β = , 0.5ρ = , and the threshold s=0.001. These param-

eters are chosen because they worked well in our experi-
ments.

Features learned by well-trained feature learning model
are input to other regular anomaly detection algorithms.
We have validated the effectiveness of these features on
two algorithms: KNN algorithm and multi-layer neural
network (MLP) algorithm. Set the nearest neighbor size K
from 1 to 200 for KNN algorithm. MLP network includes
three layers, the input layer, one hidden layer and the out-
put layer. The size of input and output layer is 9 and 2 re-
spectively. And the hidden layer size changes from 20 to
40.

4.3. The Experimental Results Analyses

All the experimental results are average values of 10
repeated tests. Fig. (3) gives the variance of detection rates
for KNN and improved KNN based on DL (DL_KNN)

with different neighbor sizes. It shows that almost all the
detection rates using DL_KNN method are higher than that
of KNN algorithm. The best detection rate of KNN method
is 90.17 when K equals 16, while that of DL_KNN algo-
rithm is up to 97.16% (K = 10). Moreover, we found that
when K approached 200, the detection rate declined quick-
ly. That is because, when K is close to 200, the number of
samples belonging to nonself (only 100 instances of this
class in training set) is less than or equal to that belonging
to self-set in the collection of K neighbors. Therefore, most
of the instances in test set were predicted to be self-set. But
even in this situation, our method still achieved better re-
sults. For example when K equals 200, KNN detection rate
is 2.13%, while our detection rate is 13.48%. However,
when K is larger than 200, samples of self-set are always
more than nonself samples in nearest neighbors. At this
time the detection rate of both equals to zero. Fig. (4)
shows the results of comparison between MLP and
DL_MLP method. We can see that the detection rates of
DL_MLP method are all higher than that of MLP method.

All the experimental results show that the features
learned by deep learning can improve the detection rates of
various detection algorithms significantly.

Fig. (3). Comparison between KNN and DL_KNN method.

Fig. (4). Comparison between MLP and DL_MLP method.

An Anomaly Detection Method Based On Deep Learning The Open Automation and Control Systems Journal, 2015, Volume 7 739

CONCLUSION

Aiming at overcoming the problems of learning good
feature and improving the detection accuracy in anomaly
detection system, this paper proposed a new anomaly de-
tection algorithm. This method applied an improved deep
feature learning model based on exactly sparse auto-
encoder to learn more useful features. These features help
the traditional anomaly detection algorithm to obtain better
detection accuracy.

To our knowledge, it is the first time to use the deep
learning model to extract the features of anomaly detection
data. This method proposed in this paper overcomes some
limitations of classical anomaly detection methods. The
main advantages of this method are: (1) It does not need
artificial feature extraction. Artificial neural network with
much more hidden layers has outstanding advantages in
terms of feature learning. It can automatically learn with
full use of big data to get useful features; (2) The deep
model transforms data from one expression to another,
which implements the mapping of the samples from the
original data space to the new feature space. This transfor-
mation keeps richer information of the original data, at the
same time enhances the ability to distinguish different
samples, and accordingly improves the accuracy of anoma-
ly detection; (3) The feature learning model is a completely
unsupervised training process, which makes full use of
huge amounts of unlabeled data that are easy to access,
overcoming the difficulty to obtain labeled data.

CONFLICT OF INTEREST

The authors confirm that this article content has no con-
flict of interest.

ACKNOWLEDGEMENTS

This study was supported by the project grant from the
Science and Technology Department of SiChuan Province,
China. No. 15ZB0147 and No. 15ZB0142.

REFERENCES
[1] Zhang Zhao, Zhang Run-lian and Jiang Xiao-ge, “Anomaly de-

tection method based on feature selection and support vector ma-
chine”, Computer engineering and design, vol. 34 no. 9 pp. 3046-
3049, 3162, 2013.

[2] Guo Xiao-fang, Li Feng and Wang Wei-dong, “Local outlier
detection algorithm of multivariate time series based on k-nearest
neighbor”, Journal of Jiangsu University of Science and Tech-
nology, vol. 26, no. 5, pp. 505-513, 2012.

[3] Hou Di-bo, Chen Yue and Zhao Hai-feng, “Water quality anoma-
ly detection method based on RBF neural network and wavelet
analysis”, Transducer and Microsystem Technologies, vol. 32,
no. 2, pp. 138-141, 2013.

[4] Quan Liang-liang and WU Wei-dong, “Anomaly detection model
based on support vector machine and Bayesian classification”,
Journal of Computer Applications， vol. 32, no. 6, pp. 1632‐
1639，2012.

[5] Hinton G and Salakhutdinov R, “Reducing the dimensionality of
data with neural network Science”, vol. 313, no. 5786, pp. 504-
507, 2006.

[6] Yu Kai, Jia Lei and Chen Yuqiang, “Deep Learning: Yesterday,
Today, and Tomorrow，vol. 50, no. 9, pp. 1799-1804, 2013.

[7] Bengio Y. “Learning deep architectures for AI”, Foundations and
trends® in Machine Learning, vol. 2, no. 1, pp. 1-127, 2009.

[8] Rifai S, Vincent P and Muller X. “Contractive auto-encoders:
Explicit invariance during feature extraction”. Proceedings of the
28th International Conference on Machine Learning (ICML-11),
2011: 833-840.

[9] Bengio Y. “Deep learning of representations: Looking forward”,
Statistical Language and Speech Processing. Springer Berlin
Heidelberg, 2013: pp. 1-37.

[10] Bengio Y, Courville A and Vincent P, “Representation learning:
A review and new perspectives”, Pattern Analysis and Machine
Intelligence, IEEE Transactions on, vol. 35, no. 8, pp. 1798 -
1828, 2013.

[11] http://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wis con-
sin+%28Original%29

Received: May 26, 2015 Revised: July 14, 2015 Accepted: August 10, 2015

© Deng et al.; Licensee Bentham Open.

This is an open access articles licensed under the terms of the Creative Commons Attribution-Non-Commercial 4.0 International Public License (CC BY-NC
4.0) (https://creativecommons.org/licenses/by-nc/4.0/legalcode), which permits unrestricted, non-commercial use, distribution and reproduction in any medium,
provided that the work is properly cited.

