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Abstract: So far, the accurate modeling and control of blast furnace iron-making process (BFIP) is still an open problem 
due to its excessive complexity. Aiming at the issue of long time-delay and strong cross-coupling characteristics of BFIP, 
the random forests (RF) algorithm is introduced for predicting the silicon content in hot metal, which is the most key indi-
cator of inner state of blast furnace. In the proposed model, both short and long-term BFIP features are adopted as inputs, 
without variable pre-selecting, to modeling the long-term dynamics of BFIP. Simulation results show that the RF algo-
rithm can successfully identify the importance of different features (the latest silicon content in hot metal obtains the larg-
est value of importance), can effectively decrease the effect of the redundancy and cross-coupling among variables. The 
RF model also can achieve similar or better prediction performance compared with support vector machines (SVM), 
which indicates that it is potential to modeling such BFIP-type complex industrial process using RF algorithm. 
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1. INTRODUCTION 

Blast furnace iron-making process (BFIP) is an extremely 
complicated nonlinear industrial process with intense sto-
chastic character. There are 108 principal chemical reactions 
happening in the blast furnace simultaneously under high 
temperature and pressure. Because of the difficult measure-
ment conditions, the silicon content in hot metal ([Si]), 
which has significantly positive correlation with the furnace 
temperature, is often considered as the alternative indictor of 
the thermal state of blast furnace (BF). To better control the 
iron-making process and produce iron with higher quality, 
the silicon content in hot metal should be controlled strictly 
at a certain degree. For this purpose, to predict the silicon 
content in hot metal has been taken as one of the most chal-
lenging issues in all the operational problems of BF. Howev-
er, the inner reaction mechanisms of iron-making blast fur-
nace are too complicated for the human being to understand. 
The BFIP owns most of the features of complex industrial 
process, such as the large scale time delay, variable-coupling, 
high temperature and pressure, multiphase simultaneous 
momentum, and so on. Up to now, the revealed mechanism 
of BFIP is too inadequate to construct a mechanism model to 
control the BF successfully. In the past decades, just because 
of this, many data-driven-algorithm based models have been 
contributed to it, such as auto-regression [1], neural networks 
[2, 3], fuzzy logic [4], partial least squares [5-6], grey system  
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theory [7-8], support vector machines [9], et al., and have 
shown good performance to some degree. Many tools above 
serve as universal nonlinear approximators. Hence these da-
ta-driven models can provide sufficient potential to learn the 
data selected from BFIP. Nevertheless, their prediction per-
formance in practice can not meet the requirements of real 
applications. Herein the main reason may lie in the long 
time-delay, strong cross-coupling, and redundancy character-
istics of BFIP.  

Random forests (RF) algorithm, proposed by Breiman L 
[10] in 2001, belongs to the nonparametric tree-based en-
semble learning methods and has been widely applied to data 
mining and machine learning fields. RF has the advantages 
of both the adaptive nearest neighbors and the bagging algo-
rithms [11] for effective data adaptive inference, and has 
been used extensively in different applications, including 
identification of DNA-binding proteins [12], prediction [13], 
recognition of handwritten digits [14], and many others. 
More specifically, the greedy one-step-at-a-time node split-
ting method introduces into RF algorithm the regularization 
for effective analysis in the so-called “large p, small n” or 
“high-dimension, low-sample-size” problems and the 
“grouping property” of trees [15] brings to RF the capability 
of adeptly handling the correlation and cross-coupling 
among variables. Furthermore, the variable importance 
measures that are obtained by RF algorithm provide a good 
criterion for ranking and selecting variables. So, all of the 
above properties of RF make it an potential tool for model-
ing BFIP with all sufficiently long-term BFIP features re-
gardless of the correlation and interaction among them. In 
this paper, RF algorithm is applied to evaluating the im-
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portance of input features and modeling the long-term dy-
namic of BFIP.  

The rest of this paper is organized as follows. In section 2, 
the classification trees and RF techniques are reviewed brief-
ly. Section 3 describes the data used and the experiment set-
up. The simulation results and comparison analysis are given 
in section 4, and section 5 concludes the paper. 

2. RANDOM FORESTS 

Given a set of training data points 

     
Xt = (Xm , ym ),m = 1,2,!, M{ } , where 

  Xm  is an input observa-

tion and  ym  is a predictor output [16]. A weak learner 

( , )tf X X  with low bias and high variance can be created using 
the training set tX . By randomly sampling from the set tX , a 
collection of weak learners 

    f (X,Xt ,!k )  can be created, where 

    f (X,Xt ,!k )  is the kth weak learner and  !k  are independent 
identically distributed random vectors generated by applying 
bootstrap sampling. RF can be taken as an ensemble of un-
pruned regression or classification trees. Fig. (1) presents the 
structure of an RF model, where B  denotes the number of 
trees. It can be shown that as the number of trees B  increas-
es, the out-of-bag (OOB) data set error rates converge, which 
indicates that over-fitting phenomena can be avoided in large 
RF [10]. It is crucial for good modeling performance to en-
sure the low bias and low correlation properties in RF, which 
can be guaranteed by growing the trees to maximum depth 
and applying the randomization strategy as follows [16]: 

(1). Each tree is grown on the bootstrap sample set which 
includes about two-thirds of the original training data. 

(2). At each node of the tree, n  variables are randomly 
selected out of all the N variables. Here n  is often initialized 
by 2log ( ) 1n N= +  or n N=  and then is adjusted to reach 
the minimum error for the left training data (OOB data). 

(3). At each node of the tree, only the unique variable 
that provides the best split performance is used out of the n  
candidate ones. 

The estimation of variable importance, which is a very 
attractive feature offered by RF, can also be conducted based 
on the OOB data. Variable importance measure in RF is de-
fined as the average decrease in classification accuracy on 
the OOB data. Specifically, when estimating the importance 
of the variable jx , the number of correct classifications oobR  
is counted for every tree based on the OOB data set, and then 
this number is recounted after permuting the values of varia-
ble jx  randomly. Therefore, the importance measure 

jD  for 
variable jx  is given by the average of these two numbers of 
all the trees in the RF model. 

Researches show that random forests algorithm is one of 
the most accurate learning algorithms. It can run efficiently 
on large data sets, handle thousands of inputs without feature 
extraction and feature selection, and estimate the variable 
importance. And it is an effective method to tackle with out-
liers and missing data. The main motivation of this paper is 
to take the above advantages of random forests to model the 
complex dynamic of BFIP. 

3. CASE STUDY 

3.1. Key Parameter Selecting 

As a very complicated and highly coupled nonlinear sys-
tem, BFIP contains many factors influencing silicon content 
in BF, which can be categorized as either control parameters 
or state parameters. Control parameters mainly include 
charging materials properties, air, oxygen rich, and so on. 
State parameters mainly contain feeding speed, composition 
and slag, hot air index et al. For the current study, based on 
the actual production situations of No.1 BF at Laiwu Iron 
and Steel Group Co., 6 key parameters are selected as input  
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Fig. (1). A general architecture of random forests. 
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variables, which contain three control parameters: coal injec-
tion (CJ), blast temperature (BT), blast quantity (BQ), and 
three state parameters: difference between theoretical value, 
actual value of iron output (MFe), gas permeability (GP), 
coal rate (CR). Additionally, noting that BF is a large inertial 
system, the latest silicon content in hot metal (denoted as 
[Si]n-1) has also been adopted as another key parameter. In 
total, 7 different key parameters are selected for the follow-
ing BFIP modeling, which can be denoted as 

  X
0 = ([Si]

n!1
,CJ , BT , BQ, MFe,GP,CR)  

3.2. Long-Term Feature Introduction for the Large 
Time-Delay in BFIP 

The current thermal status of BF is determined not only 
by the melting parameters acquired currently but also by the 
ones selected quite long time before. In fact, large time delay 
is a ubiquitous phenomenon for iron-making parameters. But 
how to estimate the accurate values of time delays of differ-
ent parameters has still not been solved till now [17]. To 
address this problem, we will introduce long-term features 
into the BFIP modeling process.  

BF is a huge industrial reactor, in which complex physi-
cal and chemical reactions would happen. The raw materials 
of BF are consisted of iron ore, coke, fluxes, and so on. They 
are filled into the top of BF by layers. At the same time, the 
tuyeres blow in the preheated compressed air and auxiliary 
fuels from the bottom of BF. As various materials move 
down through BF, the hot ascending gases will heat them 
progressively and then the carbon monoxide in hot gases 
transformed them to molten hot metal and slag, which would 
continuously trickle down into the hearth and gather at the 
bottom and top of the hearth respectively due to the different 
densities. Finally, the liquid hot metal and slag are tapped at 
regular intervals through tapholes. In general the whole iron-
making blast furnace process will last 6-8 h. 

During the whole BFIP process (6-8 h), the 7 key parame
ters selected above will take several different values as the ti
me changes. However every value may be crucial in determi
ning hot metal quality. So the long-term modeling strategy is
 necessary for modeling BFIP here. Note that the tapping int
erval of the BF concerned in this paper is about 2 h. Consequ
ently, all the parameter information during the latest 4 succes
sive tapping process will be adopted simultaneously as the m
odel inputs. As shown later in the paper, the redundancy and 
correlation of all the involved variables can be effectively de
alt with by RF algorithm.  Consequently, there are totally 28 
input variables which are denoted as  

   

X : = ([Si]n!1,CJ , BT , BQ, MFe,GP,CR,!,
[Si]n!4 ,CJn!3, BTn!3, BQn!3, MFen!3,GPn!3,CRn!3)
= (x1,x2 ,x3,x4 ,x5,x6 ,x7 ,!,x22 ,x23,x24 ,x25,x26 ,x27 ,x28 )

 (1) 

The new input feature set X contains necessary long-term 
attributes about the corresponding iron-making process, 
based on which the essential long-term dynamic model of 
BFIP could be explored. Although there may exist 
correlation and interaction among these 28 variables, RF 

algorithm provides an effective method for tackling these 
problems. 

Noting the huge diversity of different variables in order 
of magnitude, a preprocessing of the original dimensional 
variables should be undertaken before the model is 
developed. In this paper, both the input and output variables 
were normalized by the following equation: 

   
xmj

* =
xmj ! x j

" (x j )
,    m = 1,2,!, M , j = 1,2,!, N  (2) 

where 
  
x j =

1

M
x

mj
m=1

M

! ; " (x j ) =
1

M # 1
(x

mj
# x

j
)2

m=1

M

!  are mean and 

standard deviation of all data for the jth variable. After 

standardization treatment   X
* = (x1

*,x2
*,x3

*,x4
*,x5

*,x6
*,x7

*,

   !,x22
*,x23

*,x24
*,x25

*,x26
*,x27

*,x28
*)  are used as input vectors 

of RF. 

3.3. Model Criteria 

To verify the performance of the proposed models 
comprehensively, four criteria are considered in this paper, 
namely, Hit-rate (the rate of hitting the target), RMSE (root 
mean square error), MAE (mean-absolute error) and CC 
(correlation of coefficient) to evaluate the accuracy of the 
model in metallurgical field. The Hit-rate is defined as 
follows: 

1

1Hit-rate ( ) 100%
m

k
k
H

m =

= ×∑ ,  (3) 

ˆ1 ( ) ( ) 0.1
0k

y k y k
H

otherwise
⎧ − <⎪= ⎨
⎪⎩

,  (4)  

where m is the size of the testing samples, ( )y k  is the ob-
served value at instance k , and ˆ( )y k  is the corresponding 
predicted value. 

The RMSE is as follows: 

2

1

1 ˆRMSE ( ( ) ( ))
m

k
y k y k

m =

= −∑   (5) 

The smaller RMSE, the better predictive accuracy. 
And the MAE and CC are as follows respectively: 

( ) ( )
1

1 ˆMAE
m

k
y k y k

m =

= −∑   (6) 

 1

1 ˆ ˆ( ( ) )( ( ) )
CC

ˆ( ) ( )

m

k
y k y y k y

m
y yσ σ

=

− −
=

∑
 (7) 

where   y , ŷ  are the mean of the observed values and the 
forecasted values respectively, and   ! ( y),! ( ŷ)  represent 
their standard deviation. 
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4. RESULTS AND DISCUSSION 

4.1. Determination of the RF Structure 

There are two essential parameters in RF, namely B  (the 
number of decision tree) and n  (the number of random-
selected variables to split the node of the tree).  B  is general-
ly simple to select, since it is only needed to select the one 
that is big enough to ensure the convergence of RF. In this 
paper, B  is selected as 1000. n  is the only parameter which 
should be selected experimentally to improve the perfor-
mance of RF algorithm. According to the number of the in-
put variables, the maximum of n  should be 28. Since the 
appropriate number of n  is not known, our RF model was 
trained independently by adding the number of n  from 1 to 
28 to estimate the variable importance and predict the silicon 
content. 

To evaluate the performance of RF more comprehensive-
ly, support vector machine (SVM), which is considered as 
one of the state-of-the-art machine learning methods so far, 
is also used to model the BFIP dynamic here. In this study, 
the kernel function used in SVM is the radial basis function 
(RBF) 

   
K (x, !x ) = exp " x " !x

2
#( ) . As proposed by Hsu and 

Lin [18], the optimal values of γ  andσ  are obtained by 10-
folder cross-validation and grid search using the different 
combinations of   ! = [2"2 ,2"1,!,212] ,   ! = [2"4 ,2"3,!,210] .  

4.2. Prediction Results Comparisons 

To make the experimental results of the RF algorithm 
more convincing, two different groups of BFIP data (denoted 
by dataset A and dataset B), which own different statistical 
characteristics from each other, are used for establishing the 
RF models. The sizes of the two groups of samples are both 
300, and herein the first 200 samples are used as training 
dataset and the last 100 samples as test dataset. Fig. (2) 
shows the corresponding time series of silicon content of the 
two groups of test samples. As can be seen, the distribution 
of first silicon content series is relatively steady, while the 
other series is more volatile. More specifically, the standard 
deviation of the second silicon content series is 0.1581, 
which is almost as twice as that of the first sequence 
(0.0834). 

Firstly, the experiments are conducted on the first 200 
samples to train the RF models by adding the number of n  
from 1 to 28, and then determine the optimal number of n  
and calculate the importance measure for variables accord-
ingly. In this section, the results of the RF algorithms are the 
average ones computed from 20 trials.  

Fig. (3) shows the RMSE of two training datasets with 
different value of n  respectively. From Fig. (3), we can see 
that the optimal value of n  corresponding to the minimum 
RMSE of the first training samples is 28 and the optimal 
value of n  of the other training samples is 7. Therefore, we 
obtain the optimal RF configuration of two groups training 

 

Fig. (2). Two groups of test sequences of silicon content in hot metal. 

 
Fig. (3). The RMSE of two training data with different n . 
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data, based on which the variable importance can be estimat-
ed. 

Fig. (4) gives the average measurements of variable im-
portance in decreasing order for two groups of datasets based 
on the optimal RF configuration, from which the variable 
importance ranking can be obtained. Here 1000 trees are 
used to estimate the variable importance in the forest and the 
number of variables used to split a node is 28, 7 respectively. 
As one can see, among all the parameters   [Si]

n!1  (variable 1) 
obtains the largest value of importance on both datasets. Be-
sides, variables 10, 15, 16, 13, 17, et al. also have the similar 
importance on both datasets. On the other hand, there also 
exists difference in the evaluation of variable importance on 
two samples. The reason may lie in that variable importance 
ranking may, to some extent, depend on the training dataset 

and the value of the key parameter n . The results obtained 
here can be considered as an illustration for the time-varying 
characteristic of BFIP dynamic from the perspective of melt-
ing parameter importance. 

To investigate the capability of the variable selection of 
RF, we establish RF models with the number of inputs in-
creased one by one according to the variable importance 
ranking results obtained above, and then use the models to 
predict the silicon content. Fig. (5) depicts how the predic-
tion accuracy (Hit-rate) and the root mean square error 
(RMSE) vary on the 100 test samples when the number of 
inputs increase according to the variable ranking results.  

As can be seen in Fig. (5), generally speaking, Hit-rate 
first increases and then reduces when the number of varia-
bles varies from 1 to 28, and there exists an optimal variable 

 

Fig. (4). The average value of variables importance for two training data. 

 

 

Fig. (5). The Hit-rate and RMSE obtained by adding the inputs one by one according to their importance ranking results. 
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number. The same trend can be found with respect to RMSE. 
The results show that the RF algorithm here can also serve as 
an effective feature selection method. On the other hand, we 
also note that due to the dissimilarity between the standard 
deviations of two datasets, RF gets much better prediction 
performance on the first dataset (the corresponding Hit-rate 
and RMSE are 91.30% and 0.066 respectively, while those 
of the second dataset are 79.30% and 0.1110). Additionally, 
when the number of inputs is larger than the optimal one, the 
performance of the RF models is rather steady (just becomes 
worse slightly), which tells that the silicon content prediction 
model based on RF has potential to handle all the short and 
long-term features in BFIP. 

Experimental comparisons have been made between RF 
and SVM algorithms, since SVM is considered to be one of 
the state-of-the-art methods for BFIP modeling. Table 1 
shows the forecasting results of RF and SVM models for two 
silicon content series. The results of both algorithms present-
ed here are obtained based on feature selection, that is, with 
the optimal input variable set. And the optimal testing results 
are shown in boldface under the corresponding criteria. 

 

For dataset A, the best Hit-rate obtained by RF algorithm 
is 91.30% while that of SVM is only 88.00%. Meanwhile, 
the Hit-rate of RF model is also 2.30% higher than that of 
SVM for dataset B. Additionally, the similar advantages can 
be found when all other 3 criteria are concerned. Conse-
quently, all the results in Table 1 show that the RF algorithm 
can achieve higher prediction accuracy than SVM for both 
datasets. 

We also note that the input number of the optimal RF 
model is 21, while that of SVM is only 10 on the first dataset 
and those of the second dataset are 20 and 7 respectively. Fig. 
(6) illustrates the reason for this: with the increase of the 
input number, and hence the increase of complexity of the 
relationship between all the model inputs, RF can effectively 
deal with the correlation and interaction among variables, but 
SVM fails to do so. By restraining the effect of the correla-
tion and interaction, RF can successfully mine the essential 
model between all the inputs. Fig. (6) depicts this point in 
detail, in which we can see that compared with SVM algo-
rithm, RF algorithm can obtain better prediction Hit-rates 
and RMSEs when the number of inputs becomes saturated. 

 

Table 1. Results obtained by different models for two test datasets. 

Dataset Model RMSE MAE CC Hit-rate #inputs 

A 
RF 0.0663 0.0521 0.6021 91.30% 21 

SVM 0.0668 0.0535 0.5966 88.00% 10 

B 
RF 0.1122 0.0793 0.4054 79.30% 20 

SVM 0.1196 0.0818 0.3035 77.00% 7 

 

 
Fig. (6). The dependency of the Hit-rate and RMSE for RF and SVM on the number of variables. 
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Figs. (7 and 8) give the prediction results and the error 
sequences obtained by the RF and SVM models. All these 
results also tell that the RF model can obtain better predic-
tion results compared with SVM for both datasets.  

CONCLUSION 
The modeling and the prediction of the key indicator of 

blast furnace [Si] has not been solved till now, due to the 
complexity of BFIP. There exist the phenomena of long 
time-delay and strong cross-coupling in BFIP which play a 
crucial role in preventing current data-driven models from 
good modeling performance. This paper investigates the ap-
plicability of the RF algorithm for modeling BFIP. The 
simulation results obtained on two different datasets show 
that the RF algorithm can effectively handle the correlation 
and interaction between different control and state parame-
ters of BFIP, and can evaluate the importance of these  
 

 

parameters. All these results demonstrate the rationality of 
establishing the long-term BFIP model by introducing the 
long-term BFIP parameters into RF algorithms. The results 
also show that it has potential to model such BFIP-type 
complex industrial process using RF algorithm. 
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Fig. (7). Prediction results and errors comparison between the RF and SVM models for dataset A. 

 

 
Fig. (8). Prediction results and errors comparison between the RF and SVM models for dataset B. 
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