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Abstract: The interplay between cation-  and hydrogen bonding interactions involving aromatic rings is studied by 
means of Molecular Interaction Potential with polarization (MIPp) calculations. We have analyzed the effect of the par-
ticipation of the aromatic in hydrogen bonding interactions on the ion-binding affinity of the arene, by means of Molecu-
lar Electrostatic Potential (MEP), MIPp and ab initio calculations. We have observed that when the aromaric ring partici-
pates in hydrogen bonding interaction as hydrogen bond (HB) donor its capacity for interacting with cations (cation-  in-
teraction) augments. In addition when the arene is forming hydrogen bonding interactions as HB acceptors, the capacity of 
the aromatic ring for interacting with anion increments (anion-  interaction). This mutual influence of cation-  and HB in-
teractions is studied and analyzed by means of the MIPp partition scheme. 

INTRODUCTION 

 Non-covalent interactions are crucial in many areas of 
modern chemistry, especially in the field of supramolecular 
chemistry and molecular recognition [1, 2], which rely on 
these forces. Interactions involving aromatic rings are impor-
tant binding forces in both chemical and biological systems 
and they have been reviewed by Meyer et al. [3]. Among 
them, anion-  interactions [4-6] have attracted considerable 
attention in the last five years [7, 8]. There is a great deal of 
experimental [9-15] and theoretical [16-19] work that evi-
dence that the anion-  interactions play a prominent role in 
several areas of chemistry, such as molecular recognition 
[20] and transmembrane anion transport. [21, 22] Anion co-
ordination is an important and challenging aspect of contem-
porary supramolecular chemistry. Recent investigations have 
provided experimental evidence for the usefulness of pyri-
dine and diazines coordinated to Ag(I) in the design of anion 
receptors by demonstrating the ability of these rings to inter-
act with anions through multiple anion-  interactions [23-
27]. The structural consistency displayed by these networks 
and the uniform mode of anion binding demonstrate the po-
tential use of anion-  interaction in a structurally directing 

role [28]. In addition, cation-  interactions [29-34] are also 
important binding forces that are decisive in the ion selectiv-
ity of potassium channels [35, 36]. They are also important 
for the binding of acetylcholine to the active site of the en-
zyme acetylcholine esterase [37], and, recently, their impor-
tance has been demonstrated in neurotransmitter receptors 
[38]. The cation-  interaction is dominated by electrostatic 
and ion-induced polarization terms [39]. The nature of the 
electrostatic term can be rationalized by means of the perma-
nent quadrupole moment of the arene. The hydrogen bond  
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interaction is mainly dominated by electrostatic effects (di-
pole-dipole interactions) [40]. 
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Fig. (1). Aromatic compounds 1-5, the dashed lines indicate the 
intramolecular hydrogen bonds. 

 We have recently reported experimental [41] and theo-
retical [42, 43] evidence of interesting synergistic effects 
between anion-  and -  interactions. We have demon-

strated that there is a remarkable interplay between anion-  

and -  interactions in complexes where both interactions 
coexist. This interplay can lead to strong cooperativity ef-
fects. We have also demonstrated a similar behavior between 
C-H/  and -  interactions [44] and between cation-  and 
hydrogen bonding interactions [45] in pyrrole and indole 
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complexes where the simultaneous interaction of the arene 
(i) with cations using the -cloud of the aromatic ring and 
(ii) with water via hydrogen bonding using the N-H group 
has an enhancing effect on both interactions. In this manu-
script, we report a theoretical study on several polyhydroxy-
substituted biphenyl and p-terphenyl moieties where one 
benzene ring has been replaced by either pyridine, 
pyrimidine or s-tetrazine ring, see Fig. (1). The binding fea-
tures of compounds 1-5 have been compared with model 
compounds 6-11, see Fig. (2). 
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Fig. (2). Model compounds 6-11. 

COMPUTATIONAL METHODS 

 The geometries of all compounds and complexes studied 
in this work were fully optimized at the MP2/6-31++G** 
level of theory using the Gaussian-03 program [46]. The 
binding energies were calculated with correction for the ba-
sis set superposition error (BSSE) by using the Boys-
Bernardi counterpoise technique [47]. The optimization of 
compounds 1-11 has been performed without imposing 
symmetry constrains. The optimization of the complexes of 
2 with glycine has been performed imposing Cs symmetry. 
Other possible conformations of complexes have not been 
considered because the ultimate aim of this study is to verify 
the interplay between both non covalent interactions and to 
obtain an insight into the nature of the cooperativity, there-
fore we have only concentrated on those complex geo-
metries. The physical nature of the noncovalent interactions 
has been studied using the Molecular Interaction Potential 
with polarization (MIPp) [48] method. The MIPp is a con-
venient tool for predicting binding properties. It has been 
successfully used for rationalizing molecular interactions 
such as hydrogen bonding and ion-  interactions and for 
predicting molecular reactivity [49-51]. The MIPp partition 
scheme is an improved generalization of the MEP where 
three terms contribute to the interaction energy, i) an electro-
static term identical to the MEP [52], ii) a classical disper-
sion-repulsion term [53], and iii) a polarization term derived 
from perturbational theory [54]. Some basic concepts of 
MIPp follow (see reference [48] for a more comprehensive 
treatment). The MEP can be understood as the interaction 
energy between the molecular charge distribution and a clas-
sical point charge. The formalism used to derive MEP re-
mains valid for any classical charge, therefore it can be gen-
eralized using equation 1 where QB is the classical point 
charge at RB. QB can adopt any value, but it has a chemical 

meaning only when QB=1 (proton),  stands for the set of 
basis functions used for the quantum mechanical molecule A, 
cμi is the coefficient of atomic orbital μ in the molecular or-
bital i. 

MEP =
ZAQB

|RB RA |
A

cμic i < μ |
QB

|RB r| | >
μi

occ

  (1) 

 The MEP formalism permits the rigorous computation of 
the electrostatic interaction between any classical particle 
and the molecule. Nevertheless, nuclear repulsion and dis-
persion effects are omitted. This can be resolved by the addi-
tion of a classical dispersion-repulsion term, which leads to 
the definition of MIP (equation 2), where C and D are em-
pirical van der Waals parameters. 

MIP = MEP +
CA B

|RB RA |
12

DA B

|RB RA |
6 )(

A B
         (2) 

 The definition of MIPp is given by equation 3, where 
polarization effects are included at the second order pertur-
bation level;  stands for the energy of virtual (j) and occu-
pied (i) molecular orbitals. It is worth noting that equation 3 
includes three important contributions: first, the rigorous 
calculation of electrostatic interactions between quantum 
mechanical and classical particles; second, the introduction 
of an empirical dispersion-repulsion term and third, the per-
turbative treatment of the polarization term. 

MIPp = MIP + 1
i j

cμic i < μ |
QB

|RB r| | >
μi

occ

j

vir
2

     (3) 

 The MIPp has been computed at the HF/6-
31++G**//MP2/6-31++G** level of theory. The sodium 
cation has been considered as a classical non-polarizable 
particle, as is common in MIPp calculations [48]. 

RESULTS AND DISCUSSION 

 In Fig. (3) we show the MEP surfaces computed for 1 
and 2 and the MEP values calculated over the center of the 
rings. It can be observed that in 1 the MEP value is -20.9 
kJ/mol, and in the related model compound 3-hydroxy-
pyridine 6 is -36.4 kJ/mol. In compound 1 the 3-hydroxy-
pyridine moiety is participating in hydrogen bonding as ac-
ceptor and donor simultaneously and the global effect is a 
decrement in the absolute value of the MEP to 15.5 kJ/mol. 
An explanation for this result is that two opposite effects are 
operative in 1: i) the aromatic ring is acting as a H-bond ac-
ceptor via the nitrogen atom, increasing the electron-
deficiency of the -cloud of the aromatic ring; and ii) the 
aromatic ring is acting as a hydrogen bond donor via the 
hydroxyl group, increasing the electron richness of the -
cloud of the aromatic ring. The global effect, as deducted by 
the MEP values of 1 and 6, is an increase in the electron de-
ficiency of the -cloud of the aromatic rings of 1. This is 
because the H-bond acceptor nitrogen atom belongs to the 
aromatic ring, whilst the H-bond donor oxygen atom does 
not. Therefore the first aforementioned effect (increase of the 
electron deficiency) is more efficient than the second (in-
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crease in the electron richness). Moreover, the prediction and 
explanation of the global effect is still more complicated 
because in 1 each aromatic ring has, in addition to the hy-
drogen bond network, another ring conjugated, which also 
contributes to the electronic nature of the hydroxypyridine 
rings of 1. The behavior of compound 2 with respect to the 
model compounds resorcinol 7 and pyrimidine 8 is very in-
teresting. The MEP value over the center of the pyrimidine 
ring in 2 is much more positive than the value in 8, indicat-
ing that the presence of two hydrogen bonds has a enormous 
effect on the -binding ability of pyrimidine. In addition, the 
MEP value over the resorcinol ring is more negative (12.5 
kJ/mol) in 2 than in 7, indicating a moderate effect on the 
resorcinol. As a consequence of the intramolecular hydrogen 
bonding in 2, an enhancement of the pyrimidine ring for the 
interaction with anions is observed and, at the same time, an 
enhancement for the interaction with cation over the resorci-
nol ring is also observed. Therefore, compound 2 can be seen 
as a potential ion-pair ditopic receptor. 

 To verify the hypothesis deduced from the aforemen-
tioned preliminary results obtained using the MEP calcula-
tions, we have computed a complex of 2 with the most sim-
ple amino acid, i.e. glycine in its zwitterionic form at the 
MP2/6-31++G** level of theory. Moreover, we have com-
puted the same complex in a conformation where the in-
tramolecular hydrogen bonds in 2 are not formed (see Fig. 
(4)). It can be observed that the location of the glycine amino 
acid depends on the presence/absence of intramolecular hy-
drogen bonding. In the conformation with hydrogen bonds, 
the positive part (-NH3

+) mainly interacts with the resorcinol 
ring and the negative part (-COO–) with the pyrimidine ring. 
In the other conformation (absence of H-bonding), the ge-
ometry is totally different, and the amino acid is only located 
over the pyrimidine ring. A likely explanation for this migra-
tion is that the anion interacts more favorably with one hy-
drogen atom of the pyrimidine ring than with the -cloud of 
pyrimidine ring in the absence of hydrogen bonding. It is 
worth mentioning that the quadrupole moment of pyrimidine 
(Qzz) perpendicular to the aromatic ring is negative (-2.12 B), 
therefore the pyrimidine ring is not enough -acidic in the 
absence of hydrogen bonding. The computed binding ener-
gies are included in Fig. (4) and they indicate that the con-
formation where the hydrogen bonds are formed is more 
suitable for the zwitterionic recognition of glycine. 

 It has been demonstrated that the ion-  interaction 
[39,55,56] is equally dominated by polarization and electro-
static contributions. Therefore, we have extended our study 
to compounds 3-5 using the Molecular Interaction Potential 
with polarization (MIPp) method, see Fig. (5). We have 
computed the MIPp over the center of the rings in com-
pounds 3-5 interacting with Na+ and we have compared the 
partitioning of the interaction energies to those obtained for 
model compounds 7-11, see Fig. (6). In Fig. (5) and Fig. (6) 
we represent the optimized structures of the complexes and 
we include the computed value of the MIPp for the interac-
tion with Na+ over the center of the ring. It can be clearly 
observed that the MIPp values range from modest positive 
values (+20.5 kJ/mol, in the central ring of 5) to significant 

negative values (-176.4 kJ/mol in the central ring of 4). For 
instance the MIPp value computed for resorcinol in 3 is -
170.1 kJ/mol and in 5 is -115.0 kJ/mol. Furthermore, the 
value computed for pyrimidine in 3 is only -2.5 kJ/mol, 
whilst in 4 is -57.7 kJ/mol. 

 

Fig. (3). Molecular electrostatic potential energy surfaces computed 
for compounds 1-2 and model compounds 6-8. Some representative 
MEP values computed over the center of the ring are shown. 

 

Fig (4). MP2/6-31++G** optimized complexes of Glycine with 2. 
Distances are in Å. 
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Fig (5). Molecular Interaction Potential with polarization (MIPp) 
energy values (kJ/mol) computed for the interaction of the aromatic 
compounds 3-5 with Na+ at 2.2 Å over the ring centroid. 

 

 

Fig. (6). Molecular Interaction Potential with polarization (MIPp) 
energy values (kJ/mol) computed for the interaction of the aromatic 
model compounds 7-11 in several conformations with Na+ at 2.2 Å 
over the ring centroid. 

 In Table 1, we summarize the contributions (electrostatic 
Ee, polarization Ep and van der Waals Evw) to the total inter-
action energies of compounds 3-11 interacting with Na+. 
From the inspection of the results, several interesting points 
emerge. First, the polarization contribution (Ep) is very im-
portant in all compounds and in most cases dominates the 
interaction. It is more important in compounds 3-5 due to the 
extended aromatic systems. Second, we have explored in 
model compounds 9 and 10, two different conformations (a 
and b), depending on the orientation of the hydroxyl groups, 
see Fig. (6). In Table 1, we have included the MIPp values 
obtained for both orientations and the results are comparable, 
indicating that the orientation of the hydroxyl groups does 
not influence the MIPp values over the aromatic ring. Third, 
in compound 3 we observe that the hydrogen bond network 
considerably enhances the interaction energy of Na+ with the 
resorcinol ring (41.8 kJ/mol more negative than 7) and, in a 
more modest way, it also enhances the interaction of Na+ 
with the central ring. In contrast, the interaction of pyridi-
mine with Na+ is considerably reduced. This indicates that 
the participation of pyrimidine in hydrogen bonding as ac-

ceptor reduces its cation-  binding ability. Fourth, in 4 the 
central ring has an interaction energy significantly more 
negative than 10, indicating that the participation in hydro-
gen bonding as donor enhances the cation-  interaction. In 
this compound, the MIPp value computed for the pyrimidine 
ring is -57.7 kJ/mol, more negative than the value computed 
for 3, and in both cases it is participating in hydrogen bond-
ing as acceptor. The partition scheme indicates that the dif-
ference is due to electrostatic effects. A probable explanation 
is that in 4, the electron rich tetrahydroxybenzene ring is 
donating electrons into the pyrimidine and thereby making it 
more receptive to Na+. Finally, in 5, the MIPp value at the 
central ring is very similar to the computed one for the 
model compound 11. In addition, the value computed at the 
resorcinol ring is less negative than the computed one for 
resorcinol 7. This fact can be explained by the influence of 
the electron-withdrawing substituted s-tetrazine, which is an 
electron-poor ring. These results confirm that the participa-
tion of the arenes in hydrogen bonding as donor enhances the 
cation-  interaction. However this enhancement also de-
pends upon the nature of the aromatic ring that is directly 
bonded, since it can either donate or withdraw electron den-
sity to the aromatic ring that is interacting with Na+. 

Table 1.  Contributions to the Total Interaction (Et) Energy 
(kJ/mol) Computed Using MIPp of Compounds 3-5 
and 7-11 Interacting with Na+ at 2.2Å from the Ring 
Centroid 

 

Compound Ee
 

Ep Evw Et 

3 (central ring) 

(pyrimidine ring) 

(resorcinol ring) 

27.6 

77.7 

-75.7 

-112.0 

-92.0 

-106.6 

11.3 

11.7 

12.1 

-73.2 

-2.5 

-170.1 

4 (central ring) 

(pyrimidine ring) 

-66.5 

25.9 

-121.6 

-95.3 

11.7 

11.7 

-176.4 

-57.7 

5 (central ring) 

(resorcinol ring) 

109.9 

-21.7 

-99.9 

-105.8 

10.5 

12.5 

20.5 

-115.0 

7 -53.1 -89.5 15.5 -127.1 

8 2.5 -71.1 13.0 -55.6 

9a 11.3 -81.1 15.5 -54.3 

9b 6.7 -80.7 15.5 -58.5 

10a -44.7 -88.6 13.0 -120.4 

10b -44.3 -88.2 13.0 -119.5 

11 68.1 -61.4 11.7 18.4 

 

CONCLUSIONS 

 In summary, the results reported in this manuscript stress 
the importance of non covalent interactions involving aro-
matic systems and the interplay among them, that can lead to 
strong cooperativity effects Due to the presence of a great 
number of aromatic rings containing heteroatoms in biologi-
cal systems, this effect can be important in biological proc-
esses where the interplay between both interactions may ex-
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ist. It also should be taken into account in supramolecular 
chemistry and crystal engineering fields. 
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