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Abstract: Minimal energy conformations of amphiphilic monolayers within a microemulsion are investigated. An 

exploitation of the Euler-Lagrange equations yields the internal forces and torques of the fluid film, which cannot be 

characterized by a simple surface tension. A numerical scheme reveals various properties of the equilibrium solutions of 

three families of bicontinuous structures. The influence of the constitutive behaviour is demonstrated not only on the basis 

of a quadratic bending energy density but also with a non-linear extension which exhibits symmetry breaking. The latter is 

essential to allow the three-phase coexistence of a microemulsion with excess phases of oil and water and hence the 

existence of an X point in the phase map. 
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1. INTRODUCTION 

 A mixture of water, oil and amphiphile forms a micro-

emulsion within which an amphiphilic monolayer separates 

an oil rich region from a water rich region ( cf. Strey [1], 

Gompper and Schick [2], and Safran [3, 4] for the 

experimental and theoretical background). Adopting the 

continuum mechanical approach, we regard this monomo-

lecular fluid film of the amphiphilic surfactant as a curved 

sheet with bending stiffness. The curvature dependence of 

the bending energy density may be tuned e.g. by the tem-

perature so that a variety of structures — with typical lengths 

in the nanometer range — can be observed experimentally: 

lamellae, micelles as well as bicontinuous surfaces. These 

impose various constraints on the enclosed water or oil 

volumes. Therefore the microemulsion of water, oil and 

amphiphile may coexist with excess phases of pure water 

and oil. 

 The goal of this paper is threefold: 

1.1. General Theory 

 Starting from the postulate of minimal energy, we extract 

from the necessary Euler-Lagrangean differential equations 

the conditions of equilibrium of forces and moments and 

gain insight into the internal forces and torques of the fluid 

film. Since both membrane forces and transverse forces 

work together, the carrying behaviour differs markedly from 

that of a simple surface tension, which is familiar from the 

theory of capillarity. 

1.2. Computational Method 

 We want to construct some equilibrium conformations. 

While the three structures with homogeneous curvature 

(lamella, sphere, and cylinder) can be treated exactly, a 
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difference scheme is applied to handle bicontinuous surfaces. 

The latter divide space into two distinct, multiply-connected, 

intertwined subspaces. Such structures may be chaotic due to 

thermal fluctuations. But we restrict our attention to the 

static limit and discuss three ordered families which may be 

considered as periodic systems of tubes. The axes of the 

tubes are periodic graphs. (See Figs. (1,2,3).) The plane 

graph of the first family, called tube3, is doubly-periodic. 

Three edges meet at each vertex, forming a Y-junction. 

Networks with such junctions are discussed in [5]. The 

spatial graphs of the other two families, called tube4 and 

tube6, are triply-periodic with four or six edges meeting at 

each vertex. Prominent members of tube4 and tube6 are the 

minimal surfaces D (Diamond) and P (Primitive), 

respectively, of Schwarz [6, 7]. We restrict the admissible 

tubes by the postulate that any plane of symmetry of the 

skeletal graph is also a plane of symmetry of the tube. 

(Gyroids are not included in our treatment. They are triply-

periodic surfaces with three edges at each vertex — cf. [8] — 

but have no planes of symmetry, which are essential for our 

numeric scheme). 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (1). A portion of the skeletal graph of tube3. 
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Fig. (2). A portion of the skeletal graph of tube4. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (3). A portion of the skeletal graph of tube6. 

 

 Let the distance e  of two neighbouring vertices be called 

the characteristic length of the structure. The skeletal graphs 

of tube3, tube4, tube6 have periods of 3e , 4e , and e , 

respectively in the direction of each edge. Let these graphs 

represent the axes of tubes filled with oil. In case of tube4 

and tube6, there exist also dual graphs, which represent the 

axes of tubes filled with water. They can be obtained by a 

translation of the original graphs; in case of tube 4 by 2e  in 

the direction of an edge, in case of tube 6 by / 2e  in each of 

the three directions of the edges. If the minimal surface D or 

P, respectively, undergoes the same translation, then the oil 

and water volumes interchange their places.  

1.3. Study of the Constitutive Behaviour 

 We investigate the influence of the constitutive law on 

the properties of the structures. If the energy density does not 

depend on the saddle-splay deformation, then the 

equilibrium solutions are surfaces of constant mean 

curvature. These have been studied extensively by Anderson 

et. al. [7] and were also applied to amphiphilic systems [8]. 

However, an influence of the saddle-splay deformation on 

the energy leads to different shapes. Some properties of these 

more complex surfaces are exploited in the paper in hand. 

 In this context, the effect of a symmetry breaking as 

discussed by Leitão et.al. [9] is of paramount importance. It 

could be demonstrated in [10] that such a symmetry breaking 

may explain the experimentally confirmed three-phase 

coexistence of a microemulsion with an oil and a water 

excess and allows the existence of an X point in the phase 

map, separating regions with none, one, and two excess 

phases. 

 Mathematical details are postponed into four appendices.  

2. THEORY 

 We lay down the following suppositions:  

• There is only one kind of structure; a coexistence of 

several structures is not treated.  

• The monomeric solubility of the surfactant within oil or 

water is neglected.  

• Oil and water are incompressible.  

• The area of the middle surface of the surfactant film is 

constant.  

• An environmental pressure is not considered.  

 A treatment without these restrictions can be found in the 

monograph [11]. 

 The local curvature tensor of the surfactant film is written  

 
   
C = c

1
a

1
a

1
+ c

2
a

2
a

2
 

where  denotes dyadic multiplication, 
  
a

1
 and 

  
a

2
 are two 

orthogonal proper unit vectors and 
1

c  and 
2

c  the proper 

numbers of the tensor, called principal curvatures. The two 

invariants, trace and determinant, are given by  

 
   
trC = 2H = c

1
+ c

2
, detC = K = c

1
c

2
 

and H  and K  are called mean and Gaussian curvature, 

respectively. 

 We assume the surfactant film to be endowed with a 

bending energy the density w  of which depends on the local 

curvature. Since a rigid rotation changes the vectors 
  
a

1
 and 

  
a

2
 but not the energy density, w  can only depend on the 

principal curvatures — or, equivalently, on the two 

invariants — and is thus an isotropic function of  C . If there 

is an oil and/or a water excess, then there will also be a plane 

surfactant film between the microemulsion and any excess 
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phase. The energy density of these plane surfaces with area 

O
A  or 

W
A  shall be denoted by 

O
w  or 

W
w . The free energy 

of the system is therefore  

 
   
F =

A

w(C)dA+ w
O

A
O
+ w

W
A

W
 

 The volume of the microemulsion is assumed to consist 

of a large number N  of cells, each of which contains the 

same bending energy, area of the film middle surface, oil 

volume, and water volume  

 
   
W

C
=

A
C

w(C)dA, A
C

=
A
C

dA, V
OC

, V
WC

 

 Let the total volumes of oil and water of the mixture be 

denoted by 
O

V  and 
W

V . Then the following constraints must 

hold  

 
C O W

= 0A NA A A  

 
O O W W

0, 0
C C

V NV V NV  

 Strict inequality indicates that an excess is present. 

 We are interested in finding a conformation of the film 

that minimizes the energy under these constraints. Therefore, 

we multiply the constraints with Lagrangean parameters f , 

O
p , 

W
p , add them to the energy and finally divide by the 

constant value A . Introducing  

 O W= , = , =
O W

V VN
n L L

A A A
 

 called the number of cells per unit area of the film and oil 

length and water length of the mixture, respectively, we 

arrive at the expression  

 O W

C O W
=

A A
E nW w w

A A
+ +  

 O W

C
1

A A
f nA

A A
+  

 
  
+ p

O
(L

O
nV

OC
)+ p

W
(L

W
nV

WC
)   (1) 

which we call the extended mean energy density. If an oil 

excess is present then we have to put 
O

= 0p , but 
O

0A , 

otherwise 
O

0p  and 
O

= 0A , and the same applies to the 

water. 

 Our search for the minimal free energy requires that E  

be stationary with respect to any variation of the parameters 

n , f , 
O

p , 
W

p , and of the placement of the film, which 

influences 
C

W , 
C

A , 
OC

V , and 
WC

V . The vanishing of the 

partial derivative of E  with respect to f , 
O

p , 
W

p  yields 

the constraints — the latter two (with equality) only if there 

is no excess and hence 
O

0p  and/or 
W

0p . The 

vanishing of the derivative with respect to n  gives  

  
C C O O W W

0 = C CW f A p V p V  

O O W W
=f w p l p l   (2) 

with the abbreviations  

 C O W

O W

C C C

= , = , =C C
W V V

w l l
A A A

 

which may be called mean energy density, oil length and 

water length of the cell. 

 The variation of the placement is elaborated in appendix 

B. (Notation: The dot product of vectors means the inner 

product. The dot and double dot products with tensors are 

defined by the rules 
  
(b c) d = b(c d) , 

  
(a b) (c d) = (b c)a d , 

  
(a b) : (c d) = (a c)(b d) ). It is 

shown there that the internal torques and forces of the film 

can be characterized by the tensor of moments  
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the tensor of membrane forces  

 
   
T = (w f )1

T
+C M  
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 — where 
  
1

T
 denotes the unit tensor in the tangential plane 

— and an operator of transverse forces  

 
   
q

T
= q

1
a

1
+ q

2
a

2
 

which is obtained from  

 
  
q

T
= 1

T
(M

T
)     (3) 

as the tangential part of the divergence of the moment tensor 

field. The last equation expresses the equilibrium of 

moments, while the equilibrium of forces normal to the film 

is given by  

 
   
T :C + q

T T
= p

n
    (4) 

with — h  denotes the constant thickness of the film —  

 
   
p

n
= p

W
1( + trC

h

2
+ detC

h2

4
)   

  
   

p
O

1( trC
h

2
+ detC

h2

4
)          (5) 

which enables the interpretation of 
O

p  and 
W

p  as the 

pressures within the oil and water cavities and of 
n

p  as the 

effective local pressure acting on the middle surface in the 

direction of the unit normal  n , which points towards the oil. 

 Actually, a mixture needs some time to reach a state of 

minimal energy. During that time, the position of the test 

tube and, if excesses have formed, also the values of 
O

A  and 

W
A  are held constant. After the state of equilibrium is 

reached, let us tilt the test tube so that these areas increase by 

O
A  and 

W
A . The mean energy density of the system then 

increases by  
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 0 O O W W

1
= [( ) ( ) ]E E w f A w f A

A
+ +  

where 
0

E  denotes that part of the increment which is due to 

changes of f , 
O

p , 
W

p , n  and the placement. But that part 

is zero because we start from a state of equilibrium. So the 

increment of the free energy of the system is seen to be equal 

to the power of surface tensions  

 
O O W W

= =F AE t A t A+  

 with  

 
O O W W

= , =t w f t w f    (6) 

 The isotropic tensor of membrane forces becomes  

 
   
T

O
= (w

O
f )1

T
, T

W
= (w

W
f ) 1

T
 

 Since   C = 0  in the phase boundaries, this representation 

is in full accord with that of the membrane forces of the 

curved film, except that the energy density w  is replaced by 

O
w  or 

W
w . The simplest assumption would be 

   
w

O
= w

W
= w(C = 0) , in which case the bending moments in 

that plane surface are 
   
M = w / C(C = 0) . 

 The role of the phase boundaries is now clarified, and we 

will neglect their contributions in all our computations, thus 

assuming 
O

= 0A , 
W

= 0A  even if there are excesses. 

 The behaviour that we found contrasts with the theory of 

capillarity. There we have a surface energy density 

0
=w const  and an isotropic surface tension 

   
T = w

0
1

T
 even 

with curved surfaces, but no transverse forces and no 

moments. 

Finding 1 

 The internal forces and torques of our fluid film are by 

far more copious than those of the theory of capillarity and 

are identical to those of a solid shell ( cf. Flügge [12]). 

Generally, the tensor of membrane forces  T  is not isotropic 

(
1 2
t t ), and we have not only normal  e T e  but also 

shearing forces 
 
g T e . (

  
{e, g}  denotes an orthonormal 

basis in the tangential plane which does not coincide with the 

basis 
  
{a

1
,a

2
} of proper vectors). In addition, there is a tensor 

of moments  M , the components of which can be interpreted 

as bending and twisting moments  e M e  and 
 
g M e , 

respectively. If the tangential part of the divergence of  M  is 

not zero then the equilibrium of moments additionally 

requires the existence of transverse internal forces, described 

by the operator 
  
q

T
. The existence of all these internal forces 

and torques in a fluid film was already pointed out by 

Helfrich [13]. 

Finding 2 

 We identify two totally different mechanisms which 

carry the surface pressure 
n

p : The change of the direction of 

membrane forces due to curvatures (
   
T :C = t

1
c

1
+ t

2
c

2
) and 

the divergence of transverse forces (
  
q

T T
), the latter being 

the only mechanism possible even in a plane plate. 

Finding 3 

 The carrying contribution of the membrane forces can be 

further elucidated. To this purpose, we eliminate f , which 

may be interpreted as a chemical potential, from  T  by 

means of (2) and arrive at  

 
   
T = (w w+ p

O
l
O
+ p

W
l
W

)1
T
+C M  

and  

   
T :C = (w w)trC + ( p

O
l
O
+ p

W
l
W

)trC + M(C) :C
2
 (7) 

 The first term is present if the local value w  of the 

energy density differs from the mean value w ; it is therefore 

absent with spheres and cylinders. The second term arises if 

there is a constraint on the oil or the water volume so that 

pressures 
O

0p  and/or 
W

0p  exist, and the third is due 

to the presence of internal moments in the film. While the 

first and the second term are influenced by properties of the 

structure as a whole, the third term only depends on the local 

curvature. 

Finding 4 

 If we let the film thickness 0h  and apply the theory 

of capillarity, then the equilibrium condition of forces (4) 

with (5) reduces to the membrane equation  

 
   
T :C = w

0
trC = p

n
= p

O
p

W
 

 

   

trC = 2H =
1

w
0

( p
O

p
W

) = const          (8) 

 So the placement of the surface must be one with 

constant mean curvature. Such a special surface appears in 

the case of our fluid film only if no saddle-splay stiffness 

exists. But then we have = 0w  and 
O W

= = 0p p  while 

0H  is possible, as will be demonstrated below. It is 

therefore erroneous to assume that the mean curvature of an 

interface always represents a difference in pressure. 

Finding 5 

 The surface tension in the plane phase boundaries must 

not be confused with the internal forces within the curved 

fluid film. If there is an oil excess and a water excess, then 

(6) with (2) yields  

 
O O W W

= , =t w w t w w  

 This has been pointed out by Strey ([1], eq. (14)). The 

energy terms on the right-hand sides may become nearly 

equal under suitable environmental conditions, e.g. 

temperature, so that the surface tensions 
O

t  or 
W

t  may 

assume ultralow values near zero. This is an essential effect 

of the presence of a surfactant in the phase boundary. If there 

is an oil excess but no water excess, then we have  

 
O O W W

=t w w p l+  
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with tube4 and tube6. In case of sphere, cylinder or tube3, 

however, we assume that there is enough water to prevent a 

contact between the single structures. The last equation is 

then valid with 
W

= 0p . 

Finding 6 

 The simultaneous addition of a constant value to the 

energy densities w , 
O

w , 
W

w  has no influence on the 

internal forces and moments in the curved film and in the 

plane phase boundaries, since only differences and 

derivatives enter the forces and moments, respectively. This 

is in contrast to the theory of capillarity, where energy 

density and membrane forces are identical. 

Finding 7 

 If the energy density of the film actually does not depend 

on the curvature but is constant then our search for a 

conformation with minimal energy is vacuous. Note that the 

area of the film is assumed to be fixed and so is the total 

energy which is hence the same for all conformations. On 

the other hand, the energy density of a surface is assumed 

constant in the theory of capillarity, too. Nevertheless, the 

search for a conformation with minimal energy is 

meaningful there since the area of the surface is not 

restricted. 

Finding 8 

 Both analytical and numerical computations reveal that 

the pressures within the oil and water cavities have negative 

sign. This is plausible: If there is not enough oil or water to 

form an excess, then it must contract the cavities. 

Nevertheless, the fluids will not tear since the cavities are 

extremely small and the formation of free surfaces would 

require too much energy.  

3. EXACT SOLUTIONS 

3.1. Sphere 

 We consider spheres which enclose oil; = 1/R c  is the 

radius of the middle surface of the film and h  its thickness. 

We identify one sphere with a cell and consider first the case 

without an oil excess. The extended mean energy density is 

then  

 
2 2

4 4
= ( ) 1E nw c f n

c c
+  

 
3

O O

4 1

3 2

h
p L n

c
+  

 The derivatives with respect to 
O

p  and f  must vanish. 

This yields the following two equations for the determination 

of c  and n .  

 

3 2

O
1 3 = 0, =

2 4

h c
c L c n  

 Next, we study the vanishing of the derivatives with 

respect to n  and c  and note 

  
dw / dc = w / c

1
+ w / c

2
= m

1
m

2
= 2m . We find  

 

3

O = 3 1 ( )
2

h
p c c w f  

 

2

= 2 1 ( )
2

h
c c w f mc+  

This implies  

 
2

=
1

hc
w f mc

hc+
 

 
3

= =
1

t w f mc mc
hc

+
+

 

and  

 
2

O 2

24
=

(2 ) (1 )

mc
p

hc hc+
 

 If an oil excess exists, then c  cannot be computed from 

the volume constraint. Instead, we make use of the statement 

O
= 0p  and find — because of 0c  —  

 = 0, = 0, = 0w f m t  

 So the sphere is free of internal forces and torques, and 

the curvature c  is now obtained from the evident condition 

2 = ( ) / = 0m dw c dc .  

3.2. Cylinder 

 We consider cylinders with radius 
1

= 1/ = 1/R c c  which 

enclose oil. We identify a piece of one cylinder of length l  

with a cell and consider first the case without an oil excess. 

The extended mean energy density is then  

 
2 2

= ( ) 1
l l

E nw c f n
c c

+  

 

2

O O

1

2

h
p L n l

c
+  

 The constraints yield two equations for the determination 

of c  and nl .  

 

2

O
1 2 = 0, =

2 2

h c
c L c nl  

 The vanishing of the derivatives with respect to n  and c  

implies — note 
1 1

/ = / =dw dc w c m  —  

 

2

O = 2 1 ( )
2

h
p c c w f  

 

1

1= 1 ( )
2

h
c c w f m c+  

and hence  

 
1

2
=

2

hc
w f m c

hc+
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1 1 1

4
= =

2
t w f m c m c

hc
+

+
 

and  

 

  

p
O

=
8m

1
c2

(2 hc) (2+ hc)
 

If an oil excess exists, then 
O

= 0p  leads to  

 
1 1

= 0, = 0, = 0w f m t  

 So the cylinder is free of internal hoop forces and 

torques, and the curvature c  is now obtained from 

1 = ( ) / = 0m dw c dc .  

4. CONSTITUTIVE RELATIONS 

 We define  

 1 2 1 2

1 1
= ( ), = ( )

2 2
H c c D c c+  

and see that the local curvature tensor  

 
   
C = H (a

1
a

1
+ a

2
a

2
)+ D(a

1
a

1
a

2
a

2
)  

is the sum of an (isotropic) spherical part characterized by 

H  and an (anisotropic) saddle-splay part characterized by 

D . H  is an invariant of the curvature tensor and so is 
2

D , 

but D  is not, since it depends on the numbering of the axes. 

These invariants are related with the Gaussian curvature K  

by  

 
2 2

=K H D  

 First, we restrict the energy density to a complete 

invariant quadratic expression in the curvatures and find two 

equivalent representations  

 
    
w(C) = w

0
+

1
(H H

0
)2

2
K  

 
2 2

0 1 0 2= ( )w H H D+ +  

with the connections  

 
1 1 2 1 0 1 0

= , =H H+  

 
2

1 0 0 1 2 0( ) =w w H  

between the material constants. The common choice of the 

invariants is ( , )H K , following Helfrich [13]. But the 

variables 
2( , )H D  will be more useful in our later non-linear 

extension. The constant 
0

w  can henceforth be omitted since 

— as we already know — it does not influence the internal 

forces and torques of the film nor the search for the 

minimum conformation. A comparison with the behaviour of 

solid shells suggests the representation  

 
2 2

1 0

1
= ( )

1
w H H D+

+
   (9) 

where  is Poisson's ratio. The film with this constitutive 

behaviour enjoys its minimal energy density = 0w  

everywhere if it forms a sphere with the spontaneous 

curvature 
0

0H H  and radius 
0

= 1/R H  or a lamella 

with 
0

= 0H H . A state of isotropic curvature is therefore 

preferred. 

 However, the experimental occurrence of bicontinuous 

surfaces shows that real isotropic films may instead prefer 

anisotropic curvatures. This phenomenon is an example of 

symmetry breaking, which was introduced in [9] and 

excludes a quadratic energy density. We will therefore 

extend the term containing 
2

D  in a non-linear manner. We 

follow [10] and choose  

 

2 2 2

2 0

1 0 2 2

0

( )1
= ( )

1

D D
w H H

D D
+

+ +
  (10) 

 The local minimal value = 0w  of the energy density is 

now reached if 
0

=H H  and 
0

=D D± . (See Fig. (4).) This 

value can only be achieved everywhere in the structure in the 

two special cases 
0

= 0D  (sphere or lamella) and 
0 0

=D H±  

(cylinder). Otherwise, the free energy of any structure must 

be positive. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (4). The function 
2 2 2 2 2

0 0( ) / ( )D D D D+  from the saddle-

splay part of the energy density according to equation (10) with 

= 1/ 3 . a: Case 
0

= 0D , no symmetry breaking. b: Case 

0
= 1D , symmetry breaking. 

 

 The choice (10) represents a model law, as complex as 

necessary and as simple as possible in order to admit 

symmetry breaking. The following computations are based 

either on this non-linear law or on Helfrich's law (9), which 

results from it by putting 
0

= 0D . But we will also have to 

exploit the special case = 1 , where (9) and (10) coincide 

and any surface with constant mean curvature 
0

H H  is a 

solution with zero energy. A broader study in [11] suggests a 

microscopic origin of symmetry breaking, but yields a more 

complex dependence of the energy density on the variables 

H  and 
2

D . 
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 A numerical examination reveals that the material 

parameter  has no essential influence on the qualitative 

behaviour of solutions. Therefore we always use the fixed 

value = 1/ 3  in our computations. 

 Important remark: Our model law is not intended to fit 

experimental data of a special mixture. We only want to 

obtain qualitative insight, so that an excessive accuracy of 

the numerical results would be misleading.  

5. NUMERICAL COMPUTATION 

 It is explained in appendix D that we endow the curved 

patch of our film within a cell with a mesh of gridpoints. 

Unless otherwise stated, all the following computations were 

performed with 16 16  gridpoints. Unknowns are the 256 

values 
ij

, which describe the shape of the placement of the 

film, and in addition the five quantities n , f , 
O

p , 
W

p , and 

a . (The length a  describes the magnitude of the placement 

and is explained below.) The extended energy density is thus 

represented as a function of 261 variables. The postulate that 

the first partial derivatives with respect to all of these 

variables vanish, yields 261 non-linear equations. These 

derivatives as well as the second derivatives required by the 

Newton-Raphson method are provided analytically. 

 It is obvious that this approach yields stationary values of 

the free energy but is not sufficient to guarantee a minimum. 

On the contrary, we will see that the non-linear equations 

may have more than one solution with rather different values 

of the energy. 

 If an oil excess exists, then the variable 
O

p  is known to 

be zero, and the appertaining equation must be cancelled. 

The same is valid in the case of a water excess. 

 The variable a  may be identified with the characteristic 

length e  in case of tube3, tube4, tube6. But it is the fixed 

side length of the reference patch, if spheres or cylinders are 

to be treated numerically. (See appendix C.) In the latter 

case, a  must not be varied and the appertaining equation 

must be ignored. We learn in the next section that the same 

is true with tube3, tube4, tube6 in the case = 1 , where a 

family of solutions with parameter e  exists. So =a e  must 

be fixed to obtain a definite solution. 

 It is even possible to fix = 1n  and = 0f , to suppress the 

appertaining equations and to prescribe a constant energy 

density 
0

=w w . The numeric code is then adapted to solve 

problems from the theory of capillarity. 

The quantity  

2 2

C C

6 6
= = ( )

A A

K dA D H dA   (11) 

which we call the defect of the patch, is checked during each 

computation. If it differs markedly from the exact value, 

which is known a priori ( cf. Appendix C), then the value of 

the energy, which is obtained from a similar integral, will 

also be dubious. 

 The MAPLE code of the numeric scheme and input and 

output data of selected solutions can be found on the author's 

homepage [14]. 

6. RESULTS 

 The assignment of a characteristic length e  to a given 

structure is arbitrary. We obtain an expedient comparison of 

different structures by selecting the distance of two 

neighbouring vertices of the skeletal graph in case of tube3, 

tube4, tube6, and the diameter and twice the diameter — and 

hence | |= 2eH  — in case of sphere and cylinder, 

respectively. The concept of a characteristic length is not 

meaningful with lamellae. 

 The qualitative behaviour of solutions is strongly 

influenced by the material parameters 1 , 
0

D  and 
0

H , 

which may be either zero or positive. The six significant 

combinations are denoted by A, B, C, D, E, F and the 

corresponding properties of solutions compiled in Table 1. 

These findings are substantiated in the following sections. 

6.1. The Special Case 
0

= 0H  

 If we consider spheres (with 0D ) then the energy 

density (10) reduces to  

 

2

2 0

1

1
=

1

D
w H +

+
 

 Its infimum is approached with 0H  and equals the 

energy density  

 
2

0

1

1
=

1

D
w

+
 

of a lamella, but a minimum does not exist. So spheres 

cannot be encountered in cases A, B, E of Table 1 if no 

volume constraint exists. 

 The energy density of a cylinder (with 
2 2

D H ) 

becomes 

 

2 2 2

2 0

1 2 2

0

( )1
=

1

H D
w H

D H
+

+ +
 

 

2 2 2 2 2 2
2 0

1 2 22 2

00

( )1 2 ( )
=

1 1

H D H H
H

D HD H
+ +

+ + ++
 

and attains a minimum at  

 0

1
| |= (1 )

2
H H D +  

provided that this value is real and positive, which requires 

0
> 0D  and  

 
1

>
2 1+

    (12) 



Equilibrium Conformations of Fluid Films with Bending Stiffness The Open Chemical Physics Journal, 2011, Volume 3    17 

Table 1. Influence of the Material Parameters on the Solution Properties 

Case A B C D E F 

Material parameters 

1  > 0  > 0  > 0  > 0  0 0 

0
D  0 > 0  > 0  0 — — 

0
H  0 0 > 0  > 0  0 > 0  

 — 0 > 0 , < 1 1 — — 

M
c  0 > 0  > 0  > 0  0 > 0  

SB N Y Y N N N 

Properties in case of no volume constraint 

ZE L N C (if 
0 0
=D H ) S L,D,P S,C,T3,T4,T6 

M-S N N Y Y N Y 

M-C N Y,N Y Y N Y 

M-T3 N (Y) (Y) Y N Y 

M-T4,T6 N (Y) (Y) Y D,P Y 

Properties in case of an oil volume constraint 

AD-S,C Y Y Y Y Y Y 

AD-T3 — N N N — N 

AD-T4,T6 Y A N N D,P N 

CMC-S,C Y Y Y Y Y Y 

CMC-T3 — N N N — Y (
0

H H ) 

CMC-T4,T6 N N N N D,P ( 0H ) Y (
0

H H ) 

ZE-S,C N N N N N N 

ZE-T3 — N N N — Y 

ZE-T4,T6 N N N N D,P Y 

Abbreviations: SB: Symmetry breaking. Y: Yes. N: No. A: Approximately. D, P: Yes, with a minimal surface ( 0H ) of Schwarz (D with tube4 and P with 

tube6). ZE: Existence of a solution with zero energy ( 0w ). M: Existence of a solution with minimal energy. AD: Affine diminution of the solution surface 

with decreasing oil length. CMC: The solution is a surface with constant mean curvature. L, S, C, T3, T4, T6: Solution within the families lamella, sphere, 

cylinder, tube3, tube4, and tube6. 

The brackets around Y indicate that these statements were found with the parameters = 1/ 3  and = 0.9  but need not hold generally. The alternative Y,N 

with M-C refers to the fulfilment of the condition (12). 

 

 Otherwise, an infimum is approached with 0H , but a 

minimum does not exist. This is especially the case in the 

absence of symmetry breaking (
0

= 0D  or = 1 ) and 

therefore cylinders cannot be encountered in cases A and E 

of Table 1 without a volume constraint. 

 If an oil constraint exists, then spheres and cylinders are 

possible solutions, but their energy is positive in any case 

since > 0H . 

 Next, we consider the tube families. If = 1  (case E), 

then the energy density 
2

1
=w H  attains the minimum value 

0w  if 0H . This is valid with the minimal surfaces D 

and P in case of tube4 and tube6, respectively, while no such 

minimal surface is contained in the family tube3. Since the 

characteristic length e  of the surfaces D and P is arbitrary, 

they may enclose any amount of oil but also allow for an oil 

excess. So the notion of a volume constraint dissolves in this 

case. 

 If < 1  and 
0

= 0D  (case A) then the energy density 

becomes  

 
2 2

1

1
=

1
w H D+

+
 

 Now, if there is no volume constraint, let us consider an 

equilibrium solution within tube4 or tube6 with fixed 

characteristic length e . (It will be rather close to a D or P 
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surface. No such solution exists in case of tube3.) If we 

apply an affine magnification with factor  then e e  

and 
2

/w w . So the mean energy density approaches its 

infimum = 0w  if , but a minimum does not exist 

within these families. On the other hand, if < 1  and 

0
> 0D  (case B, with symmetry breaking), then our 

numerical computations produce solutions with minimal 

energy in each of the families tube3, tube4, tube6. 

 Next, we apply a volume constraint and let the amount of 

oil decrease. Then the tube4 and tube6 solutions undergo an 

exact (case A) or approximate (case B) affine diminution. 

However, not the surfaces D or P do minimize the energy. 

They cancel the first term of the energy density, which 

depends on H , but let the second term, which depends on 

D , remain too big. The resulting surface, instead, has not a 

constant mean curvature, and its energy is positive. These 

findings remain true in case B, where even a tube3 solution 

exists. But the latter does by no means undergo an affine 

diminution if the amount of oil decreases. 

6.2. The Special Case 
0

0H  and = 1  

 This is case F of Table 1. The energy density reduces to  

 
2

1 0= ( )w H H  

 It does not comprise the material constant 
0

D  and hence 

shows no symmetry breaking. Any surface with constant 

mean curvature 
0

H H  possesses the minimum possible 

energy density 0w . If no volume constraint exists, then 

spheres and cylinders with the fixed value 0| |= 2eH  are 

admissible, while solutions for tube3, tube4, tube6 exist with 

various values of 
0

eH . The maxima of their absolute values 

which could be achieved numerically were 2.45 , 2.30 , and 

2.08 , respectively. Lamellae are of no interest since they 

require the positive energy density 
2

1 0
= > 0w H . 

 In case of an oil volume constraint, we will have 

0
H H  and 0w  with spheres and cylinders. On the other 

hand, tubes may exhibit solutions with 
0

H H  and 0w , 

but various values of e . They are, of course, not affine and 

may enclose different amounts of oil. Here again, the notion 

of a volume constraint becomes vague. 

6.3. No Volume Constraints 

 This implies the existence of both an oil and a water 

excess, when we handle tube4 and tube6. In case of sphere, 

cylinder, and tube3, the water outside of these structures is 

part of the microemulsion and a water excess cannot be 

observed, while oil is not only contained within the 

structures but also present as an excess phase. 

 We define two constitutive parameters, the dimensionless 

value  

 0

0

2
= arctan

H

D
 

and the material curvature  

 2 2

M 0 0

1 1
=

1
c H D+

+
 

 The oil length of a cell 
O O C

= /
C

l V A  does not only 

depend on the placement of the middle surface but also on 

the thickness h  of the film. We restrict the following 

presentation to the case 0h . 

 The Figs. (5-8) cover the range from = 0  to = 1  

(case B, C, D of Table 1) with the choice = 0.9 , and some 

of them also give the continuation into negative values of  

and hence of 
0

H . The Figs. (5,6 and 7) present the dimen-

sionless quantities 
O M
l c , 

0
eH , and 

O
/e l  as functions of . 

It is noteworthy that these quantities are not determined in 

any way by constitutive parameters with tube3, tube4, tube6 

if = 1  (case E and F with tube6 and tube4, case F only with 

tube3). The dimensionless energy 
2

1 M/ ( )w c , given in Fig. 

(8) as a function of , is generally not zero in contrast to the 

case = 1 , while its value is equal to 1 — independent of  

— in case of lamellae. If we fix the constitutive parameter 

, then we infer from the figure which structure possesses 

the minimal energy. These are consecutively tube6, tube4, 

tube3, cylinder, and sphere, if increasing values of  from 0 

to 1 are considered. Below 0.3 , we encounter a three-

phase system (microemulsion and oil and water excesses) 

and above a two-phase system (microemulsion and oil 

excess). The tuning of  can experimentally be achieved, 

e.g., by a change of temperature, which influences the 

preferred mean curvature 
0

H . 

 

 
 

Fig. (5). No volume constraint. Dependence of 
O M
l c  on  in the 

case = 0.9 . Compares the oil content of different structures. 
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Fig. (6). No volume constraint. Dependence of 
0

eH  on  in the 

case = 0.9 . Indicates the magnitude of the structures. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (7). No volume constraint. Dependence of 
O

/e l  on  in the 

case = 0.9 . Characterizes the shape of the structures. 

 

 Figs. (9a, 9b) show 
O

/e l  as a function of 
O 0
l H  with 

= 0.9  (case B, C, D) and = 1  (case E, F), respectively. 

Remarkable differences appear with cylinder and tube3. The 

diagrams are truncated on the left-hand side. 

 Fig. (10) gives the mean value and the standard deviation 

of 
0

/H H  as functions of 
0

eH  in the case = 0.9  and 

compares it with the value 
0

/ 1H H  of the case = 1 . 

 The mean value and the standard deviation of eD  as 

functions of 
0

eH  with = 0.9  and = 1  are represented in 

Figs. (11a, 11b), respectively. We also include the diagram 

of 
0

eD  in the case = 0.9 , while 
0

D  is not defined if = 1 . 

The variable 
0

eH  of Figs. (10, 11) depends on  according 

to Fig. (6) if = 0.9 , but may be any value within some 

range mentioned in the previous section if = 1 . 

 

 
 

Fig. (8). No volume constraint. Dependence of 
2

1 M/ ( )w c  on  

in the case = 0.9 . Compares the energy of different structures. 

The yellow line gives the constant value 1 of a lamella. 

 

 The Figs. (5-11) remain valid if we substitute 

0 0
H H , , 

O W
l l  and assume that the 

spheres, cylinders, and tube3 surfaces enclose water instead 

of oil. 

 Figs. (12a, 12b, 12c) show placements of the elementary 

patches of tube6, tube4, and tube3, computed with 

0 0
= 0.9, = 0, > 0H D  (case B). The tube6 and tube4 

solutions are adjacent to the minimal surfaces D and P, 

which would result in case = 1 , while a tube3 solution 

does not exist in that case.  

6.4. Oil Volume Constraint 

 Remember the constraints  

 
C O O

= ,
C

A NA V NV  

which imply 

 O O

O O

C

C
V V

L l
A A

 

 If an oil excess exists then the oil length 
O

L  of the 

mixture is greater than the oil length 
O
l  of the structure. 

Otherwise, the two lengths are equal. Now consider Figs. 

(13-17). The variable on the horizontal axis is always 
O M

L c . 
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Fig. (9). No volume constraint. Dependence of 
O

/e l  on 
O 0
l H . a: 

Case = 0.9 . b: Case = 1 . 

 

Let us regard a sufficiently small positive value of this 

variable. If < 1  then there will be no structure within any 

of our families that allows an oil excess, and so we have 

O M O M
=l c L c . If we increase the amount of oil and hence 

O M
L c , we will reach a critical value, which can be read off 

from Fig. (5), such that the structure can exist without the 

volume constraint, and with zero oil pressure. That limit is 

marked by a big dot on the curves. If 
O M

L c  is further 

increased, then the structure and all its properties, e.g. 
O M
l c , 

remain constant while the surplus of oil forms an excess 

phase. On the other hand, if = 1 , then the big dot indicates 

the maximum possible value of 
O M
l c . If 

O M
L c  exceeds this 

value then an oil excess inevitably exists. But we cannot 

exclude the possibility that such an excess exists with 

smaller values of 
O M

L c , since the energy of the film has 

always its minimum possible value zero. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (10). No volume constraint. Dependence of 
0

/H H  on 
0

eH  

in the case = 0.9 . Solid line: Mean value. Dashed line: Mean 

value ±  standard deviation. The black line gives the constant value 

1 of the case = 1 . 

 

 The diagrams AB, C, D of each figure are computed with 

= 0.9 . Moreover, the diagram AB is based on 
0

= 0H ; the 

symbols represent 
0

= 0D  and hence 
M

= 0c  and 
O M

= 0L c  

with any 
O

L  (case A of Table 1), the curves represent 

0
> 0D  and hence = 0  and 

O M
> 0L c  (case B). Diagram 

C is based on 
0 0

/ = 0.7H D  or = 0.388  (case C) and 

diagram D on 
0

> 0H , 
0

= 0D  or = 1  (case D). Diagram 

EF is computed with = 1 ; the symbols represent 
0

= 0H  

and hence 
M

= 0c  and 
O M

= 0L c  with any 
O

L  (case E of 

Table 1), the curves represent 
0

> 0H  and hence 
O M

> 0L c  

(case F). 

 Particularly, Fig. (13) gives the ratio 
O

/e l  and Fig. (14) 

presents the mean value and the standard deviation of eD  of 

the three tube structures. Note that Fig. (13F) is identical 

with Fig. (9b) as far as the tube structures are concerned. 

 If a reduction of the amount of oil and hence of 
O

L  

induces an affine diminution of the structure, then the values 

of 
O

/e l  and eD  remain constant. This is exactly the case 

with spheres and cylinders. Moreover, if 
0

= 0H , then it is 

realized with tube6 and tube4 exactly if 
0

< 1, = 0D  (case 

A) or = 1  (case E) and approximately if 
0

< 1, > 0D  

(case B). On the other hand, if 
0

> 0H , then the values of 

both 
O

/e l  and eD  of the tube structures vary markedly and 

the characteristic length e , although decreasing 

monotonically, is by no means proportional to the oil length 

O
l . 
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Fig. (11). No volume constraint. Dependence of eD  on 
0

eH . 

Solid line: Mean value. Dashed line: Mean value ±  standard 

deviation. a: Case = 0.9 . The dotted line gives 
0

eD . b: Case 

= 1 . 

 

 Fig. (15) presents the mean value and the standard 

deviation of 0( )e H H  of the three tube structures and the 

values of cylinders and spheres. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (12). No volume constraint. Placement of the elementary patch 

in the case = 0.9 , 
0

= 0H , 
0

> 0D . The boundary of the 

quadrilateral plane reference patch is marked by a thick line, the 

thin lines indicate the intersection of two planes of symmetry and 

delimit the cell volume. a: tube6. b: tube4. c: tube3, enclosing 

either oil or water. 
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Fig. (13). Oil volume constraint. Dependence of 
O

/e l  on 
O M

L c . A, B, C, D, E, F: Cases according to Table 1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (14). Oil volume constraint. Dependence of eD  on 
O M

L c . Solid line: Mean value. Dashed line: Mean value ±  standard deviation. 
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Fig. (15). Oil volume constraint. Dependence of 0( )e H H  on 
O M

L c . Solid line: Mean value. Dashed line: Mean value ±  standard 

deviation. The constant value 2 of spheres and cylinders in case A and B lies outside the displayed range. The constant value 0 of tube6, 

tube4, tube3 in case F is represented by a black line. 
 

 Fig. (16) gives the dimensionless energy 
2

O 1
/wL . On 

the right-hand side of the phase transition (characterized by 

the big dot on the curve), the mean energy density w  

remains constant and the (dashed) curves are therefore 

parabolic. If decreasing values of 
O

L  are considered, then 

the structures with minimal energy are seen to be, 

consecutively, tube6, tube4, and lamella in case B ( = 0 ), 

cylinder, tube3, and lamella in case C ( = 0.388 ) and 

sphere, cylinder, tube3, and lamella in case D ( = 1 ). A 

water excess is present with tube6 and tube4, but not with 

the other structures. 

 Fig. (17) presents the dimensionless oil pressure 
3

O O 1
/p L  (negative, as we know). If = 1  then the tubes 

have zero energy and the oil pressure is zero, too (case E and 

F with tube6 and tube4, case F only with tube3). 

6.5. Oil and Water Volume Constraint 

 We discuss an example: Tube4, case B ( = 0.9 , 

0
= 0H , 

0
> 0D ), 

W O
/ = 1.15L L  (Such a constant ratio is 

maintained if the amount of amphiphile is raised.). The green 

curves in Figs. (18a,18b, 18c) give 
O

/e L , 0( )e H H eH , 

and 
3

O O 1
/p L  together with 

3

W O 1
/p L , respectively, as 

functions of 
O M

L c . The black curves — taken from Figs. 

(13B, 15B and 17B) for the sake of comparison — describe 

the behaviour if only the oil volume constraint is present. 

The fact that now 
O

/e L  and eH  remain constant suggests 

an affine diminution. However, the standard deviation of 

eH  diminishes with decreasing amount of oil and water, so 

that the tube tends towards a surface with constant mean 

curvature. Since 
W O

/ 1L L , this mean curvature differs 
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Fig. (16). Oil volume constraint. Dependence of 
2

O 1
/wL  on 

O M
L c . The constant value 0 of tube6, tube4, tube3 in case F is represented by 

a black line. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (17). Oil volume constraint. Dependence of 
3

O O 1
/p L  on 

O M
L c . The constant value 0 of tube6, tube4, tube3 in case F is represented by 

a black line.   
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from 
0

= 0H  and increases nearly proportional to 
O

1/ L . We 

see that the absolute value of the oil pressure can now be 

smaller, because there is also a (negative) water pressure due 

to the water volume constraint, which helps to contract the 

tube. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 

Fig. (18). Oil volume and water volume constraint (green). 

Dependence on 
O M

L c . a: 
O

/e l . b: 
  
e(H H

0
) . c: 3

O O 1
/p L  and 

3

W O 1
/p L . The case of an oil volume constraint alone is illustrated 

in black. 

6.6. Consequences of the Lack of Symmetry Breaking 

 We consider the case D of Table 1 (
  

< 1, D
0

= 0, H
0

> 0 ), 

which gives rise to Helfrich's quadratic energy density (9). 

Fig. (19a) shows a tube6 solution with = 0.9  and without 

volume constraints. Since we deal with a non-linear problem, 

it is not surprising that we encounter another solution, shown 

in Fig. (19b). The values of the first-mentioned solution  

can be read off from Figs. (5-11) ( = 1 ), those of the 

second solution are given in brackets: 
  
l
O

c
M

= 0.3452(0.3408) , 

  
eH

0
= 2.560(4.195) ,

  
e / l

O
= 7.415(12.310) ,

  
w / (

1
c

M

2 ) = 0.1617(0.3059) , 

  
H / H

0
= 0.838 ± 0.023(0.694 ± 0.363) , 

  
D / H

0
= 0.718 ±1.432(1.164 ± 0.424) . 

Each of the two solutions describes a state of equilibrium, 

but the appertaining stationary values of the energy differ 

almost by a factor of 2. The reason is the following one: The 

values of H  and D  of the solution with higher energy 

cover a wide range. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (19). No volume constraint. Placements of the elementary 

patch of tube6 in the case = 0.9 , 
0

> 0H , 
0

= 0D . a: Solution 

with minimal energy. b: Other equilibrium solution. 
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 The mean curvature H  of the solution with the lower 

energy is more homogeneous and nearer to the preferred 

value 
0

H . Moreover, its elementary patch consists of two 

distinct parts. The difference D  of the mean curvatures is 

rather small in the region on the left-hand side of the picture, 

so that its shape is almost that of a sphere. On the right-hand 

side, however, we see a narrow tunnel which connects this 

sphere-like region with another one on the other side of the 

plane of symmetry. Only that small region shows giant 

values of D  and hence of the local energy density w . 

 Nevertheless, it is unlikely that a tube solution — and 

hence a three-phase coexistence in case of tube6 and tube4 

— is observed at all, since the minimum possible energy 

0w  is provided by a sphere with 
0

=H H . 

 In this context, we encounter another problem. The 

relative error of the defect is 0.002% with the bracketed 

solution but more than 6% with our minimum solution. The 

reason is surely the high curvature gradient near the tunnel 

region. But even if we adopt a rectangular mesh ( 4 71  

instead of 16 16 ), we do not succeed in reducing the error. 

The same is true if the effect of symmetry breaking is 

present but too small. The numerical studies show that the 

relative error exceeds 1% — and hence the results are 

dubious — if > 0.70 , > 0.85 , > 0.80 , with tube6, 

tube4, and tube3, respectively. On the other hand, in case of 

tube3 with = 1  and 
0

H  almost zero (case F of Table 1), 

the relative error of the defect is really intolerable with a 

quadratic mesh, but can be considerably brought down with 

a rectangular one. (If 
0

= 0.1eH , then the error is 15 % with 

a 16 16  mesh, but less than 2% with a 41 7  one.) 

 Till now, we did not apply values of  smaller than 0.9. 

Indeed, computational trials with such values were not 

successful with tubes over a wide range of . On the other 

hand, if there is no symmetry breaking ( = 1 ), then results 

could be obtained down to = 1/ 3  in the case without 

volume constraint. We present the dependence on  in case 

of tube6 ; tube4 and tube3 show the same qualitative 

behaviour. Figs. (20a, 20b, 20c, 20d) give 
0

eH , 
2

1 M/ ( )w c , 

0
/H H , and 

0
/D H  as functions of (1 ) / (1 )+ . 

Although we have in mind the considerable error of the 

defect, we must admit that the tendencies look reasonable.  

6.7. The Carrying Behaviour of the Film 

 The following example will reveal the internal forces in 

the presence of an oil pressure due to an oil volume 

constraint. We discuss tube6 with case C of Table 1 

( = 0.9 , 
0 0

/ = 0.7H D ). If we choose = 0h  — as we did 

till now — and 
O 0

= 0.145l D  then we obtain a solution with 

0
/ = 0.90H D  and 

2

C 0
= 0.0423A D . Now, we want to study 

the influence of the film thickness h . (Note that no such 

influence exists in the absence of volume constraints.) 

According to equation (23) of appendix D and with the 

definition (11) of the defect, we have  

 
2 3

O

O O

C C

( ) = = ( = 0)
2 4 144

C
V h h h

l h l h H
A A

+ +  

 If we retain the placement and hence the values of 

O ( = 0)l h , H , and 
C

A  of the above solution and choose 

0
= 0.2hD , then this formula yields 

O 0
= 0.0581l D . So one 

could think that the only influence of the thickness is a 

change of the oil length scale. Actually, however, the correct 

equilibrium solution corresponding to 
O 0

= 0.0581l D  is 

somewhat different. Indeed, the placement and even the 

mean energy density w  almost remain constant, but the 

internal forces and the oil pressure change markedly. The 

effective pressure on the middle surface according to (5) 

reduces to  

   

and its mean value becomes  

   

i.e. 70% of the absolute value of the oil pressure. Equations 

(7) and (4) can be given the dimensionless form  

 

   

T :C

p
n

=
p

n

p
n

+
q

T T

p
n

 

 

    

=
w w

p
n

trC
p

O
l
O

p
n

trC
M :C

2

p
n

 

 The two underlined terms are evaluated at all the points 

of integration in Fig. (21). We note / [0.78,1.22]
n n

p p  in 

contrast to the case = 0h  where we had the simple result 

O
=

n n
p p p . The values of the membrane force 

contribution   T :C , however, are at some points smaller 

and at other points even twice as large as the values of 
n

p . It 

is the difference between the two values that must be 

compensated by the transverse force contribution 
  
q

T T
. So 

membrane forces and transverse forces yield carrying 

contributions of equal order of magnitude. (If no volume 

constraint is present, then 0
n

p , and the two contributions 

cancel each other, but none of them is generally equal to 

zero.) This finding demonstrates that the static behaviour of 

our fluid film differs markedly from that of a membrane 

without bending stiffness, controlled by equation (8). The 

contribution of the membrane forces is the sum of the three 

underbraced components. In our example, the first and 

second term do not exceed the absolute value 0.16. So the 

essential term is the third one, which depends on the local 

moments. 

6.8. Numeric Problems Caused by Symmetry Breaking 

 The elementary patches of each of our tubes possess 

corner angles of 60 , one in case of tube3 and tube6, two in 

case of tube4. Six patches of the total tube structure meet at 
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Fig. (20). Influence of the saddle-splay stiffness in the case without symmetry breaking on the following properties: a: 
0

eH . b: 
2

1 M/ ( )w c . 

c: 
0

/H H . d: 
0

/D H . 

 

such a corner. Due to the symmetry requirements, the 

curvature tensor must be isotropic at that corner point and 

hence = 0D  must hold there. If symmetry breaking is 

present ( < 1 , 
0

> 0D ) then the film will try to adjust its 

curvature difference D  to the preferred difference 
0

D , but 

this is simply impossible at the corner points. The problem 

becomes more severe with increasing saddle-splay stiffness 

which means decreasing value of . Consider tube6 without 

volume constraints and let 
0 0

=H D  (case C of Table 1). If 

we choose = 0.9 , then we obtain a smooth solution. If, 

however, = 0.8 , i.e. if the influence of the saddle-splay 

deformation is nearly duplicated, then the field of the mean 

curvature H  and of the energy density w  show oscillatory 

behaviour near the corner point, which becomes more 

pronounced with a finer mesh. If even smaller values of  

were considered, then not even the convergence to a solution 

could be achieved. This is surely not a shortcoming of the 

numerical method but stems from the condition = 0D  and 

should also be present in an analytic solution, which 

unfortunately is not available. After all, if we are only 

interested in the structure with minimal energy, we know 

that the cylinder has 0w  under the above setting, so that 

tubes are insignificant. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. (21). Values of 
   

T :C / p
n

 (red) and /
n n

p p  (black) at the 

points of integration. Horizontal axis is /u r . Points with equal v  

are connected. The upper red line and the lower black line 

correspond to the smallest value = 0.25v . 
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7. OUTLOOK 

 Our investigation was based on continuum mechanics. 

One might argue that the conformation of a monomolecular 

film should better be derived from first principles. Indeed, a 

lot of progress in molecular modelling has been made due to 

the potential of modern computers. Among the many 

approaches, based on different idealizations ( cf. [15]), the 

classical density functional theory (DFT) is rather prominent. 

The authors of [16] succeeded to construct a connection 

between a quadratic approximation of DFT and the quadratic 

phenomenological constitutive relation (9) of Helfrich. 

However, if volume constraints are absent then this relation 

predicts that the film should have spherical geometry, since 

this shape minimizes the energy. We infer this result from 

our Fig. (8), where 
0

= 0D  corresponds to = 1 . But it is 

well known that actually bicontinuous structures are 

observed and form the basis of the three-phase coexistence 

of a microemulsion with oil and water excesses. They can 

only be predicted with a non-quadratic constitutive relation, 

as was already pointed out in [10, 11]. We obtained 

symmetry breaking by the introduction of a preferred saddle 

splay curvature 
0

D  in the relation (10). If 
0 0

H D  and 

hence  near 0, then Fig. (8) shows us that bicontinuous 

structures are indeed energetically favorized. It would be 

highly desirable, to start from a more refined molecular 

modelling in order to derive a realistic macroscopic 

description of the dependence of the free energy density on 

the local curvature of the film. A promising approach seems 

to be the improved DFT, developed by Shiqi Zhou (see e.g. 

[17]) which takes into account the formerly discarded terms. 

Once such a macroscopic law has been derived from first 

principles, the computation of equilibrium conformations 

can be done with the numerical method of the paper at 

present. Such a proceeding surely reduces the computer cost 

compared with a full molecular modelling of the total 

conformation. This remains a challenge for further research. 

APPENDICES 

A. SOME FACTS FROM DIFFERENTIAL 

GEOMETRY 

 Let 
   
x(u,v)  denote the position vector of the middle 

surface of the film as a function of the surface coordinates u  

and v . The tangent vectors of the surface are obtained by 

partial differentiation with respect to u  and v  (denoted by a 

comma). 

 
   
g

u
= x,

u
, g

v
= x,

v
 

The vector  

 
   
w = g

u
g

v
 

is then normal to the tangential plane and the unit normal 

vector of the surface is obtained as  

 
  
n = w  

with the abbreviation  

 

  

=
1

| w |
 

The cotangent vectors are  

 
   
g

u = 2
g

v
w = 2 (g

vv
g

u
g

uv
g

v
)  

 
   
g

v = 2
w g

u
= 2 (g

uu
g

v
g

uv
g

u
)  

with  

 
   
g

uu
= g

u
g

u
, g

vv
= g

v
g

v
, g

uv
= g

u
g

v
 

 The oriented surface element is given by  

 
   
da = dAn = x,

u
du x,

v
dv = wdudv  

and its area by  

 

   

dA = da n =
1

dudv          (13) 

 The tensor of curvature is the tangential gradient of the 

unit normal vector field, endowed with a negative sign.  

 

   

C = n
T

= n g
u

u
+ g

v

v
 

 
   
= n,

u
g

u
n,

v
g

v
 

One representation of the spatial unit tensor is  

 
   
1 = g

u
g

u
+ g

v
g

v
+ n n = 1

T
+ n n  

B. THE EULER-LAGRANGEAN EQUATIONS OF 
OUR MINIMUM PROBLEM 

 Our numerical treatment is based on a discretization of 

the extended energy which leads to a classical minimum 

problem with a finite number of unknowns. In this appendix, 

however, we stay within the continuum formulation, make 

use of the methods of variational calculus and get interesting 

insight into the internal forces and torques of a fluid film 

with bending stiffness. The following exposition is rather 

condensed. A more detailed presentation within a somewhat 

broader context can be found in the monograph [11]. 

 The extended energy density (1) can be given the form  

 
  
E = n(

1
+

2
)+ f + p

O
L

O
+ p

W
L

W
 

 O W

O W( ) ( )
A A

w f w f
A A

+ +  

with  

 

   
1

=
A
C

w(C)dA f
A
C

dA  

 
2 O O W W

=
C C

p V p V  

 We shall denote the variation of a quantity by a 

superposed dot. A necessary condition for the minimum of 

the bending energy under the given constraints is that the 

variation of 
 1

+
2

 vanishes under any change of the 

placement of the film. 

 First, we need the variation of some geometric objects. 

So we get  
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g = g 1 = (g g

u
)gu

+ (g g
v
)gv

+ (g n)n  

 
    
= (g g

u
)gu (g g

v
)gv (g n)n  

 
    
= g (g

u
g

u
+ g

v
g

v
+ n n)  

 
    
= g (x

T
+ n n), = u,v  

and  

 
    
n = n 1 = (n g

u
)gu

+ (n g
v
)gv

+ (n n)n  

 
    
= (n g

u
) g

u (n g
v
) g

v
 

 
    
= n (g

u
g

u
+ g

v
g

v ) = n (x
T
)       (14) 

where we used the fact that the variation of the constant 

values  

 
   
g g

u
=

u
g g

v
=

v
 

 
  
g n = 0 g n = 0 n n = 1  

vanishes. (Note that Kronecker's  is either 1 or 0.) We also 

have  

 
    
C = n,

u
g

u
n,

v
g

v
n,

u
g

u
n,

v
g

v
 

 
   
= n

T
+ (n

T
) (x

T
+ n n)  

and hence  

 
   
C 1

T
= n

T
C (x

T
)  

Finally,  

  

and hence  

 
    
= (x,

u
(x,

v
w) + (w x,

u
) x,

v
)du dv  

 

    

= (x,
u

g
u
+ x,

v
g

v )
1

du dv  

 
    
= x

T
dA = 1

T
: (x

T
)dA  

 If h  is the constant thickness of the film, then the surface 

elements on the oil-sided and the water-sided boundary are 

given by (note that the normal vector of the middle surface is 

oriented towards the oil side)  

 

    

dA
O/W

= 1 trC
h

2
+ detC

h
2

4
dA  

A variation of the placement of the surface yields  

 
2 O O W W

=
C C

p V p V  

 

    

= p
O A

OC

x n dA
O

p
W A

WC

x n dA
W

 

 

    

=
A
C

x n p
n

dA  

with the abbreviation 
n

p  according to (5). 

 The energy density w  is an isotropic function of the 

local curvature tensor  C , which is a symmetric tensor. Its 

derivative, endowed with a negative sign and called tensor of 

moments,  

 
   

M =
w

C
 

is also a symmetric tensor in the tangential plane, which has 

the same principal axes as  C  and hence commutes with  C  

so that 
  
C M = M C  is a symmetric tensor, too. Therefore,  

 
    

w =
w

C
:C = M :C  

 
   
= (M 1

T
) : C = M : (C 1

T
)  

 
   
= M : (n

T
+ C (x

T
))  

 
   
= M : (n

T
) + (C M) : (x

T
)  

 For brevity, we also introduce the symmetric tensor of 

membrane forces  

 
   
T = (w f )1

T
+ C M  

and find 

  

 

    

=
A
C

[T : (x
T
) + M : (n

T
)]dA        (15) 

 The two terms represent the internal power of the 

membrane forces and of the moments, respectively, on a 

stretching and bending of the surface. We saw in (14) that 

the fields   n  and   x  are not independent, so that  

 

    

0 =
A
C

[n + n (x
T
)] q

T
dA         (16) 

is valid for any choice of the tangential vector field 
  
q

T
. We 

interpret 
  
q

T
, called operator of transverse forces, as a 

Lagrangean parameter, add (16) to (15), apply integration by 

parts with the help of the divergence theorem of curved 

surfaces and arrive at the condition  

 
  
0 =

1
+

2
 

 
    
= [x (T + n q

T
) e + n M e] ds  

 

    
A
C

( x [(T + n q
T
)

T
+ p

n
n]  

 
    
+n 1

T
(M

T
q

T
) ) dA  

 (We made use of 
   
n = n 1

T
 because of    n n = 0 .) 

 We first concentrate on the line integral, which is 

evaluated along the boundaries of a surface patch. The line 

element of one boundary shall be written 
   
dx = g ds , while 

the unit vector  e  within the tangential plane, defined by  
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e = g n  

is normal to the boundary unit vector 
 
g . We are interested in 

the case, where all of the boundaries lie on planes of 

symmetry of the total surface structure. So  e  must coincide 

with the constant unit normal vector 
  
e

S
 of such a plane of 

symmetry, and we have the geometric boundary condition  

 
  
e

S
n = 0  

 
   
0 =

d

ds
(e

S
n) = e

S
(n

T
) g = e

S
C g  

 This means that  e  and 
 
g  are proper vectors of  C  and 

hence also of  M  and  T . Therefore, the boundary is a line of 

principal curvature and the shearing membrane force and the 

twisting moment must vanish there.  

 
  
g T e = 0, g M e = 0  

 
  
T e = (e T e)e, M e = (e M e) e  

The boundary integral becomes  

 
    

[(x e)(e T e)+ (x n)(q
T

e)+ (n e)(e M e)] ds  

 The boundary points  x  and the normal  n  must remain in 

the plane of symmetry during a variation of the placement 

and hence the underlined terms are zero. So the normal 

membrane force  e T e  and the bending moment  e M e  

are not restricted on the boundaries. The remaining power of 

the transverse force 
   
(q

T
e) n  can only be zero for arbitrary 

functions   x n  if the transverse force vanishes along the 

boundary, and the natural boundary condition is therefore  

 
   
q

T
e = 0  

 The area integrals remain to be discussed. Since   x  is an 

arbitrary spatial vector field and   n  an arbitrary tangential 

vector field, the following Euler-Lagrangean differential 

equations must be valid  

 
   
(T + n q

T
)

T
+ p

n
n = 0  

 and  

 
  
1

T
(M

T
) q

T
= 0          (17) 

 The first of these field equations expresses the 

equilibrium of the internal and external forces in the three 

directions of space and the latter the equilibrium of moments 

around any axis within the tangential plane. 

 Regarding first the equilibrium of forces within the 

tangential plane and eliminating the operator of transverse 

forces, we find  

 
  
1

T ( [T + n 1
T

(M
T
)]

T ) = 0        (18) 

 Now, the fields  T  and  M  depend on the field of 

curvature  C  and the constant f . The following can be 

proved ( cf. [11] for a proof within a broader context). 

Theorem: The left-hand side of equation (18) is identically 

zero for any placement of the surface and any choice of f . 

So the tangential equilibrium of forces is identically satisfied 

and need not be cared for. 

 This result has its origin in the peculiar dependence of 

the membrane forces  T  of a fluid film on the curvature. It is 

in sharp contrast to the behaviour of solid shells, the 

membrane forces of which depend essentially on the 

stretches of the middle surface. 

 So we may restrict our attention to the equilibrium of 

forces in the normal direction  

 
   
0 = n ( (T + n q

T
)

T
+ p

n
n )  

 
  
= (n T)

T
T : (n

T
)  

 
   
+(n n)(q

T T
) + n (n

T
) q

T
+ p

n
 

where the underlined terms vanish, and arrive at  

 
   
T : C + q

T T
= p

n
         (19) 

 Making use of vector and tensor components, the 

equilibrium conditions (17) and (19) — our former equations 

(3) and (4) — may be written  

   =u,v

( m , +
=u,v

[m (g x, )  

 
   

m (g x, )] ) q = 0 = u,v  

   =u,v

(
=u,v

[t c + q (g x, )]+ q , ) = p
n
 

 Next we render the description of a surface more precise 

by introducing a reference plane and characterizing a point 

of the curved surface by its deviation from that plane in the 

following manner.  

 
   
x(u,v) = x

R (u,v) + (u,v) m (u,v)  

 
    
= e (x R (u,v)+ (u,v) m (u,v))  

 We may think of 
   

m = e m  as a displacement from the 

reference position     x
R

= ex
R

 to the actual position  x . The 

introduction of the characteristic length e  of the structure 

and the dimensionless quantities    x
R

 and  allows a 

separation of magnitude and shape of the placement of the 

structure, and  m  denotes a field of unit vectors, called 

directors. The above representation is common in the 

treatment of solid shells, where the unknown vector field 

 
m  has to be computed. Its variation, called the virtual 

displacement, is then the vector field 
  

m + m , the three 

components of which ensure the equilibrium of forces in the 

three directions of space. 

 However, we are in a much better situation. We may 

prescribe the director field 
   
m(u,v)  and only regard the 

scalar field ( , )u v  as unknown. This can be seen in two 

ways. First, the placement of the surface and hence its 

curvature are fully determined by this mode of procedure, 

and it is only the curvature that enters the energy. Second, 
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the variation of the displacement reduces to 
  

m  which only 

ensures local equilibrium in the direction of  m . But if we 

exclude the possibility   m n = 0 , then the equilibrium 

condition in the direction of  n  — which is the only one to 

be regarded with fluid films — is also satisfied. Shortly 

speaking, any point of a solid shell has three degrees of 

freedom while any point of our fluid film with bending 

stiffness needs only one. On the other hand, this is the reason 

why the wealth of software for the treatment of solid shells is 

not applicable to our topic.  

C. MATHEMATICAL DESCRIPTION OF THE 
STRUCTURES 

 Our numerical investigation concerns the classes of 

tube3, tube4, and tube6. Additionally, we may treat spheres 

and cylinders numerically in order to judge the performance 

of the numerical method, since a comparison with exact 

solutions is possible. 

 As is detailed in the following, we choose four planes of 

symmetry of the structure. They enclose a region that is 

finite in the case of tube4 and tube6 and infinite in the case 

of sphere, cylinder, and tube3. We call that region the cell 

and the part of the surface contained in it the patch. The 

whole space and the totality of the structure are obtained by 

repeated mirror reflections through the planes of symmetry. 

 We introduce an orthonormal basis 
  
{e

1
,e

2
,e

3
}. Next, we 

choose a plane quadrilateral reference patch located in the 

cell, normal to 
  
e

3
, and bounded by the four planes of 

symmetry. The position vectors of its four corners are 

denoted by 
  
x

00

R
, 

   
x

r0

R
, 

   
x

0s

R
, 

   
x

rs

R
, and the straight lines of 

intersection of two planes of symmetry at these corners are 

characterized by the unit vectors 
  
m

00
, 

   
m

r0
, 

   
m

0s
, 

  
m

rs
. We 

also introduce  

 

   

m =
m

m e
3

with m e
3

= 1  

 Bilinear interpolation of   x
R

 and   m , respectively, in the 

domain [0, ], [0, ]u r v s  yields  
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        (20) 

and  

 

    

m(u,v) = m
00

1
u

r
1
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s
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u

r
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v
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+m
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1
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The director field  m  is then obtained by  

 

    

m(u,v) =
m(u,v)

| m(u,v) |
         (22) 

and is an irrational function of u  and v . 

 Our quadrilateral curved patch is bounded by four 

geodesics. Therefore the Gauss-Bonnet theorem reads — 

with the definition (11) of the defect  of the patch —  

 
4

C =1

= = 2
6

i
A

i

K dA  

and connects the integral over the Gaussian curvature K  

with the difference of the sum of inner corner angles of a 

curved and a plane quadrangle. But the corner angles 
i
 are 

easily obtained as the angles between the planes of 

symmetry at the corners. 

 The reference patch divides the total volume of the cell 

into an oil-sided part 
R

OC
V  and a water-sided part 

R

WC
V . If a 

cylinder, sphere or tube3 surface is discussed, we select the 

case where oil is enclosed.  

C.1. Cylinder 

 The quadrilateral reference patch is a square. At its 

corners, the position vectors are  
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 Eight patches form a finite section of the full cylinder. 

Each of the corner angles of a patch is 90 , and hence the 

defect is = 0 . We have 
R 3

O
= / 2

C
V a  and 

R

W
=

C
V . The 

length a  is arbitrary but fixed while the value of the 

characteristic length = 4e R  of the cylinder is an outcome of 

the computation.  

C.2. Sphere 

 The quadrilateral reference patch is a square. At its 

corners, the position vectors are  
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R
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= ae
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 24 cells fill the whole space and the enclosed 24 patches 

form the entire sphere surface. The corner angles of a patch 

are 90 , 90 , 90 , 120 , and hence the defect is = 1 . We 

have 
R 3

O
= / 3

C
V a  and 

R

W
=

C
V . The length a  is arbitrary 

but fixed while the value of the characteristic length = 2e R  

of the sphere is an outcome of the computation. 

C.3. Tube6 

 The quadrilateral reference patch is a square. At its 

corners, the position vectors are  
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 One vertex of the skeletal graph of the oil-sided tube has 

co-ordinates (0, / 2, / 4)e e , thus being located at one corner 

of our cell, where three planes of symmetry meet. The six 

edges of the graph starting from that vertex are characterized 

by the unit vectors 
  
±e

1
,
  
±e

2
, 

  
±e

3
. The corner angles of a 

patch are 90 , 90 , 90 , 60 , and hence the defect is = 1 . 

We have 
R R 3

O W
= = / 96

C C
V V e . The characteristic length e  is 

varied during the computation. 

C.4. Tube4 

 The quadrilateral reference patch is a parallelogram. At 

its corners, the position vectors are  
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 Two vertices of the skeletal graph of the oil-sided tube 

have co-ordinates (0,0,0)  and (0, ,0)e , respectively, each 

being located at one corner of our cell. The four edges of the 

graph starting from the vertex at the origin are characterized 

by the unit vectors 
  

e
2

, 
  
( 2 2e

1
+ e

2
) / 3 , and 

  
( 2e

1
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2
) / 3± 2 / 3e

3
. those starting at the other vertex 

by the opposite vectors. The corner angles of a patch are 

90 , 60 , 90 , 60 , and hence the defect is = 2 . We have 

  
V

OC

R = V
WC

R = e
3 / (9 3) . The characteristic length e  is varied 

during the computation. 

C.5. Tube3 

 The quadrilateral reference patch is a trapezoid. At its 

corners, the position vectors are  
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 The skeletal graph lies in a plane through the origin with 

unit normal vector 
  
(e

3
e

1
) / 2 . The three edges starting 

from the vertex at the origin are characterized by the unit 

vectors 
  

e
2

 and 
  
(e

2
± 3 / 2(e

1
+ e

3
)) / 2 . The corner angles 
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of a patch are 90 , 90 , 90 , 60 , and hence the defect is 

= 1 . We have 
R 3

O
= / 54

C
V e  and 

R

W
=

C
V . The 

characteristic length e  is varied during the computation. 

D. THE NUMERIC SCHEME 

 The following constructions are visualized in Fig. (22). 

We choose r  and s  as integers and endow the rectangle 

(0 ,0 )u r v s  with ( 1) ( 1)r s+ +  grid points at 

( = , = )u i v j  ( = 0,1,2 , = 0,1,2i r j s… … ). The function 

( , )u v  which generates the surface is replaced by discrete 

values 
i j

 at these grid points. The position vectors at the 

grid points are  

 
    
x

ij
= (xR

+ m) (u = i,v = j) = e(x
ij

R
+

ij
m

ij
)  

 We also construct three kinds of points which we call 

nodes. The r s  nodes of the first kind lie in the centre of 

four neighbouring grid points, i.e. at 

( = 1/ 2, = 1/ 2)u i v j  ( = 1,2 , = 1,2i r j s… … ). The 

2( )r s+  nodes of the second kind lie in the centre of two 

neighbouring grid points on a boundary, i.e. at 

( = 1/ 2, = 0 o = )u i v r v s  ( = 1,2i r… ) or at 

( = 0 o = , = 1/ 2)u r u r v j  ( = 1,2j s… ). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (22). Construction of nodes and elements. 

 

 The four nodes of the third kind coincide with the grid 

points at the four corners. Any four neighbouring nodes 

define a region which we call an element. There are 

( 1) ( 1)r s  square elements of area 1, 2( 2)r s+  

rectangular elements of area 1/ 2  and four square elements 

of area 1/ 4 . 

 Next we need the tangential planes at the nodes. If we 

interpolate the values of  x  at four neighbouring grid points 

by a complete quadratic expression, then the tangential 

vectors at the appertaining node of the first kind read  
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 ( = 0,1,2 1, = 0,1,2 1i r j s… … ). They allow the 

computation of  w , ,  n , 
  
g

u
, and 

  
g

v
. The tangential plane 

at a node of the second or third kind is obtained in a different 

manner. We start from 
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+ m  and find  
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 The partial derivatives of   x
R

 and  m  at the nodes can be 

gained from the analytical expressions (20) to (22). 

 First considering the nodes of the third kind, we observe 

that the tangential plane at any corner of our reference patch 

is orthogonal to each of the two intersecting planes of 

symmetry so that the normal vector  n  must coincide with 

the director  m . Because of  
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 Next, we discuss nodes of the second kind and select the 

boundary with = 0v . The outer unit normal vector of the 

symmetry plane there shall be denoted by  e . Making use of  
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we find the representation  
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 The underlined terms vanish since the vectors  m , 
  
g

u
, 

and  w  lie altogether in the plane of symmetry and are 

therefore normal to  e . 

 We obtain 
  
g

u
 at the node by applying quadratic 

interpolation of  x  and find  

 
   
g

u i+1 0
= x,

u
(u = i +1 / 2,v = 0) = x

i+1 0
x

i 0
 

while linear interpolation of  yields the value  
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The latter requires the knowledge of  
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 can be inferred from the statement  
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and reads  
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 At last, we are interested in numerical integration. The 

integral of a function  on our surface patch is computed as 

a sum of integrals over the ( 1) ( 1)r s+ +  elements in the 

,u v -plane. The numerical evaluation of an integral over one 

element uses one point of integration, located in the centre. 

Noting (13), we arrive at  
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 The weight of the element with number k  is  

 =
k u k v k

d d  

where 
u k

d  and 
v k

d  denote the edge lengths of the element in 

the directions u  and v , respectively, which are either 1 or 

1/2. 

 Some of our functions  depend on the curvature 

invariants. So we need the mixed components of the 

curvature tensor  C  at the points of integration. They are  
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T
g = g n,  

 
   
= g w, g w , , = u,v  

where the underlined term vanishes. The curvature invariants 
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 The values of  and 
 
g  at the point of integration are 

taken as the mean of the values of the adjacent nodes, which 

complies with bilinear interpolation. We also need the partial 

derivatives of  w . If we interpolate the values of  w  at four 

neighbouring nodes by a complete quadratic expression, then 

we get, at the point of integration,  
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 Finally, we consider integrals which yield volumes. The 

volume of the oil-sided and water-sided cavities within a cell 

is given by 
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 Here 
R

O/WC
V  denotes those parts of the cell volume which 

lie on the oil side and the water side of the reference patch, 
D

V  is the volume between the plane reference patch and the 

curved surface patch, while the last integral describes that 

part of the film volume which is situated on the oil side and 

the water side of the middle surface, respectively. If the 

displacement ˆ  increases from 0 to the final value  

according to the law  
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then the oil-sided volume decrease is given by the covered 

volume 
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 The values of   x
R

,  m  and their partial derivatives at the 

point of integration are obtained from the analytical 

expressions (20) to (22). The value of  is obvious if the 

point of integration coincides with a grid point, otherwise it 

is generated by linear or bilinear interpolation of the values 

at two or four neighbouring grid points.  
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