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Abstract: Automated visual surveillance systems are required to emulate the cognitive abilities of surveillance personnel, 
who are able to detect, recognise and assess the severity of suspicious, unusual and threatening behaviours. We describe 
the architecture of our surveillance system, emphasising some of its high-level cognitive capabilities. In particular, we 
present a methodology for automatically learning semantic labels of scene features and automatic detection of atypical 
events. We also describe a framework that supports learning of a wider range of semantics, using a motion attention 
mechanism and exploiting long-term consistencies in video data. 

1. INTRODUCTION 

 Visual surveillance systems are widely used in public 
places. Traditional surveillance systems consist of cameras, 
storage devices, video monitors and security personnel. Se-
curity staff monitor the activity in the scene, watching for 
suspicious or threatening activities. In addition to online 
monitoring, post-examination of recorded video data may be 
required to identify suspicious persons, vehicles or events. 
Both tasks are tedious, as security staff need to identify spe-
cific and unusual events from a large number of very com-
mon and repetitive events. Unfortunately, human operators 
usually struggle to deal with the required huge cognitive 
overload, even for a small surveillance system of few cam-
eras. 

 Current commercial surveillance systems make use of 
digital technology to capture, store and process video data. 
For example, Video Motion Detectors (VMDs) are able to 
automatically detect scene motion and send a notification 
signal to an operator. However, their operation is still primi-
tive and not sufficiently discriminatory (e.g. in busy envi-
ronments, motion is continuously detected). 

 In general, visual surveillance systems are required to 
minimise the role of human operators. More specifically, 
some of the requirements are automatic detection of suspi-
cious events that eases online monitoring, and context-based 
databases of the observed events that facilitate conceptual 
querying and searching. Cognitive vision systems that evolve 
and adapt to their environments could potentially fulfil such 
requirements. These systems are expected to outperform the 
human operators, as they will be able to operate reliably and 
continuously, without the fatigue constraint. 

 Whilst significant research has been undertaken into the 
problem of low-level vision tasks (motion detection [1, 2],  
 
 

*Address correspondence to this author at the Faculty of Computing, Infor-
mation Systems and Mathematics, Kingston University, UK;  
E-mail: d.makris@kingston.ac.uk 

tracking [3-5], etc.), understanding and interpreting complex 
activities may require a deeper understanding of the events 
occurring within the video data, in order to generate the rele-
vant information to an operator, filtering out the mundane 
activity. 

 For this reason, the research community’s interest has 
shifted to high-level tasks like event analysis, activity analy-
sis and behaviour analysis [6-9]. High-level analysis of the 
surveillance video context can use mathematical models that 
do not necessarily correspond to a human interpretation, e.g. 
Hidden Markov Models (HMMs) [10]. However, because 
the surveillance system is required to interact with its opera-
tors, a cognitive knowledge base is required that will be 
common to both the surveillance system and the human per-
sonnel. A common cognitive knowledge base would allow 
the surveillance system not only to "understand" the video 
context, but also to provide automatic textual description of 
the video context, or answer contextual queries from the op-
erators [11]. It is obvious that such an approach would sig-
nificantly extend the functionality and usability of surveil-
lance systems. 

 Research effort has been invested in providing surveil-
lance systems with a semantic context for the knowledge 
base and the mechanisms that will allow the system to "un-
derstand" the video content and interpreted in terms of the 
semantics [12]. Usually, the semantics and the interpretation 
rules are manually encoded into the surveillance systems, 
endowing them with the ability of "knowing" and "under-
standing", two of the three main features of cognitive vision 
[13]. However, considerably less research has been under-
taken to provide surveillance systems with the third charac-
teristic ability of cognitive vision systems: "learning" [14, 
15]. 

 Adding a learning ability to surveillance systems is not 
just a challenge towards a cognitive vision system, but also a 
practical requirement, because it enables the system to build 
its own knowledge base, automatically adjusted to its envi-
ronment. Also, learning allows the knowledge base to adapt  
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to changes of the environment. The practical consequence is 
manifested if we consider the large number of operational 
surveillance cameras (e.g. over 4 million surveillance cam-
eras are installed in the UK) and the human effort required to 
manually enrich them with a knowledge base consistent with 
their environment. 

 This paper presents our intelligent surveillance system 
and focuses on its cognitive aspects. It discusses how seman-
tic labels of static scene features can be automatically learnt. 
Our approach is to exploit a large number of observations 
derived by lower level modules (motion detection, motion 
tracking) over extended periods of time from an online sur-
veillance system. Details of the motion detection, tracking 
and learning route models, entry/exit zones and stop zones 
can be found elsewhere [16-18]. Learning is performed by 
identifying spatially-related long-term consistencies in the 
data, using a motion attention mechanism. It also discusses 
how typical patterns of activity can be established and used 
for detecting suspicious events. The above methodologies 
are discussed in the context of both single and multiple cam-
era systems. 

 Section 2 introduces the architecture of our intelligent 
surveillance system. Section 3 discusses the types of seman-
tics that are required to describe the activities observed by a 
surveillance system. Section 4 presents how scene and activ-
ity models are learnt from observations. The activity/scene 
models are used to detect suspicious activities in section 5. 
Finally, section 6 summarises the conclusions and discusses 
possible extensions of our work. 

2. BACKGROUND 

 This section presents the Kingston University Experi-
mental Surveillance (KUES) system that we developed. The 
architecture of the system, based on a distributed multi-
camera network of cooperating independent processors, is 
illustrated in Fig. (1). A motion attention mechanism is im-
plemented by the motion detection and tracking modules, 
while high-level cognitive tasks are performed by the learn-
ing and understanding modules. Object classification, the 
interpretation of articulated human motion and the labelling 
of human actions [19, 20] are beyond of the scope of the 
system. 

 Each surveillance camera generates a video stream. The 
motion detection module [16] establishes a pixel-wise back-
ground model for each camera view and identifies pixels in 
each frame where motion is present (foreground), assuming 
that variations on the values of the pixels over time are 
caused by the motion of the targets. Then, the foreground 
pixels are segmented into Binary Large OBjects (Blobs). 

 Motion tracking [16] aims to provide one trajectory for 
each individual target that represents the time sequence of 
the target centroid positions, within the camera view. For 
this reason, motion tracking attempts to correspond blobs in 
consecutive frames and resolve ambiguities caused by mis-
detections or occlusions. Blobs are described by a set of 
characteristics (position, velocity, size, colour) that are used 
as matching criteria. 

 The 3D motion-tracking module aims to encode the 
complete history of individual targets moving within the 

 
Fig. (1). Architecture of the KUES system. 
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entire region viewed by the camera network. Image based 
tracks provided by different cameras are combined according 
to geometric camera models obtained from a one-off calibra-
tion process. The 3D trajectories are usually expressed in 
terms of a common ground plane coordinate system. The 
benefit of using 3D trajectories is that they represent the mo-
tion history of targets in terms of the real scene (ground 
plane). 

 The learning module uses the 2D and 3D tracks to gener-
ate semantic scene and activity models. The scene models 
enable the system to "understand" the motion and respond to 
contextual queries made by the operator. Activity models are 
used to detect “suspicious” events that are not consistent 
with them. 

 The KUES system was operated and recorded data con-
tinuously over a period of several months. A hierarchical 
database [21] contains video recorded data (low level), tra-
jectory representations (mid level) and conceptual descrip-
tors (high level). 

3. SEMANTIC DICTIONARY FOR VISUAL SUR-
VEILLANCE OF VIDEO ANNOTATION 

 We propose a general scheme to describe activity ob-
served by surveillance systems. Specifically, descriptions of 
observed activities can be based on a semantic dictionary 
that contain three main categories: a) moving "targets" (pe-
destrians or vehicles), b) actions [21, 23] and c) static fea-
tures of the scene. 

 According to this scheme, moving targets perform ac-
tions within a scene described by static features, and interact 
either with other targets or with the static features of the 
scene. More formally, video annotation sentences are formed 
using the moving “targets” as subjects or objects of a sen-
tence, the actions as verbs and the static features of the scene 
as objects or part of a locative adjunct or locative comple-
mentary. 

 For instance, textual descriptions like "Mr X enters the 
room from the door" and "A red car stops before the pedes-
trian crossing", contain all three types of semantics: moving 
targets like "Mr X" and "red car", actions like "enters", 
"stops" and static features like "door" and "pedestrian cross-
ing". In the case that targets interact with other targets and/or 
static features (e.g: “Mr X handshakes Mr Y”, and “Mr X 
uses the ATM machine”) the proposed semantic dictionary 
seems adequate. 

4. LEARNING AN ACTIVITY-BASED SEMANTIC 
SCENE MODEL 

 We aim to provide surveillance systems with the ability 
to automatically build a knowledge base of their environ-
ment. We employ unsupervised learning to exploit the vast 
amount of track data, obtained during extended periods of 
time. 

 The scene structure directly restricts or indirectly influ-
ences the way that targets act. Therefore, specific types of 
events may be associated with specific regions. For instance, 
roads constrain vehicles to move along specific lanes in a  
 

particular direction; gates and doors are related to en-
trance/exit events where targets will appear or disappear; bus 
stops indicate where people should wait for the bus to stop. 
Therefore, the proposed learning of spatially-related seman-
tic labels that exploits the motion attention mechanisms of 
the KUES is actually a reverse engineering approach for 
identifying these regions (Fig. 2). 

 
Fig. (2). Scene reconstruction using activity. 

 As a consequence, the semantics that can be learnt are 
activity-based. In [17, 18], we have proposed a scene model 
that describe semantic features such as routes, paths, junc-
tions, entry/exit zones and stop zones. Fig. (3) represents a 
topographical view of the proposed model, while Fig. (4) 
depicts a topological view. Fig. (5) depicts a manually con-
structed model, overlaid on the image plane. Semantic mod-
elling fulfils two requirements: a geometric description of 
the spatial extent of the scene features and quantitative repre-
sentation of the related activity. While the first requirement 
is obvious for spatial-related features, the second require-
ment is necessary to derive models that can support a prob-
abilistic interpretation of "understanding" activity. 

 
Fig. (3). Topographical representation of environment. Entry/exit 
zones (A, C, E, G, H), junctions (B, D, F), stop zones (I, J), paths 
(AB, CB, BD, DF, etc) and routes (ABDFH, ABC, EDFG, etc) are 
depicted. 

 Entry/exit zones are associated with instantaneous events 
of an object entering or exiting the scene and each event can 
be detected and localised. For each trajectory in the database, 
one entry and one exit event can be obtained. The set of en-
try/exit points can be modelled by a Gaussian Mixture 
Model (GMM) and  learnt  by an  Expectation-Maximisation  
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Fig. (4). Topological representation of environment. 

 

 
Fig. (5). Manually defined semantic labelling of a real surveillance 
scene. Entry/exit zones are shown by yellow rectangles, routes by 
green polygons and stop zones by red ellipses. 

 (EM) algorithm [18]. Detected entry/exit zones on the image 
planes of six different camera views are shown in Fig. (7). 
Stop events are also detected and localised where a target's 
speed falls below a threshold value. Similarly, stop zones 
can be modelled by GMM and learnt by EM. 

 
Fig. (6). Spatial-based route model. The central spline represents 
the mean average of the route and the side splines envelope the 
matching trajectories. 

 Routes are associated with the continuous “event” of a 
target’s motion, which is described by a time sequence of 
location points (trajectory). We use a spline-based route 
model (Fig. 6) to capture both the spatial extent and the us-
age of the routes. We have utilised the route model generated 
by an unsupervised learning method [17]. Fig. (1) illustrates 
the detected routes on the image plane of six different cam-
eras. 

 Computational geometry can be used for further analysis 
of the scene routes that results in their deconstruction into 
primitives like paths and junctions. A junction is defined as 
the region of intersection of two routes where their directions 
differ by more than an angle ω. Paths are considered as route 
parts in between junctions and/or entry/exit zones. Because 
two routes may contain a common path (e.g., in Fig. (3), 
routes EDFG and HFG contain the path FG), the union of 
overlapped parts of routes with similar direction is also con-
sidered as a path. 

 The range of scene features that can be estimated is not 
restricted to the proposed scene model. Another example of 
the proposed scene reconstruction scheme is the estimation 
of occlusion areas on the image from occlusion events. An 
occlusion event can implicitly be detected by the motion 
tracking algorithm. If a blob has previously been success-
fully detected but it fails to be matched at the current frame, 
then its position is predicted, using Kalman filter. If the pre-
dicted position is within the scene, then the target is possibly 
occluded. 

 Fig. (10) depicts a scene where a synthetic occlusion 
(tape on the window) was imposed. A histogram Hp of oc-
clusion events is given in Fig. (11) for a 10-hour period. A 
high rate of occlusion is evident in the heavily used area of 
the scene, mainly because of dynamic occlusions among 
vehicles and pedestrians. Although this histogram Hp does 
provide an estimate of the rate of occlusions, the interesting 
question is not “how many objects are occluded” but “how 
likely it is for an object to be occluded”. 

 Therefore, it is necessary to take into account the activity 
in the area. Fig. (12) shows a histogram Hm of successfully 
matched blob positions over the same 10-hour period. Oc-
clusions are represented by a probabilistic function Ho, de-
fined by the following formula: 

Ho(i, j ) =
Hp(i, j )

Hm(i, j )

            (1) 

where i,j are indices to the pixels of the image. Ho is shown 
in the Fig. (13). 

 Although the current implementation allows identifica-
tion of a limited range of spatial features, the principle that 
spatial features are related to specific events can provide a 
much wider range of semantics. For example a number of 
"turn left" events may be associated with a "turn-left" lane on 
a motorway, or a composite event "stop-queue-turn back" 
with accessing an ATM machine. 

 If events are related to classes of targets, then semantic 
labels can be more meaningful. For instance, pavements re-
fer to paths used by pedestrians, or pedestrian crossings are 
junctions between a route used by a pedestrian and a route 
used by vehicles. Similarly, a bus stop can be related to the 
event sequence: "pedestrian stops-large vehicle stops-
pedestrian merges with large vehicle". 

 Most surveillance systems contain multiple cameras and 
integration of the knowledge bases of different cameras is  
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required. The traditional approach is to manually calibrate all 
the cameras, with respect to a common ground plane coordi-
nate system. In this case, scene models can be learnt on the 
common ground plane. For instance, Fig. (14) illustrates the 
routes, detected in the 6 camera views of Fig. (7), projected 
on the common ground plane. 

 However the establishment of the common ground plane 
usually requires manual calibration that is a tedious task and 
if the camera is subsequently moved, the process of calibra-
tion must be repeated. If two camera views are substantially 
overlapped, a homography model of the two views can be 
automatically learnt [16] and is equivalent to the ground 
plane. 
 

  

  

  
Fig. (7). Automatically derived entry/exit zones for the scenes of six camera views, learnt by sets of 16834, 19970, 13598, 6120, 10044, 
30544 points respectively, are visualised by ellipses. 
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Fig. (8). Automatically derived routes for a set of six camera views, learnt by sets of 256, 500, 44, 500, 298 and 500 trajectories respectively. 

 

    
Fig. (9). Segmentation of a set of routes (left image) into junctions (black) and paths (white) (right image). 
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Fig. (10). A synthetic occlusion was produced by sticking some 
black tape on the window in front of the camera. 

 

 
Fig. (11). Log histogram of 53614 occlusion events. 

 

 
Fig. (12). Log histogram of 309380 matched positions. 

 
Fig. (13). Representation of Ho. The black tape areas and the bus 
stop sign are associated with large values of Ho. 

 We have developed a correspondence-free method [24] 
that can automatically learn the connectivity of a network of 
cameras (i.e: determine whether camera views are over-
lapped, adjacent or distant) and can build an integrated activ-
ity model for the entire observed scene. The method is based 
on the temporal correlation of entry/exit events between 
cameras and relates the different camera views in terms of 
transition times and transition probabilities. The method is 
able to relate adjacent cameras, even when their views do not 
overlap. Also, it provides a clue for the existence of "invisi-
ble" paths that are located in the gaps between camera views. 

5. AUTOMATIC DETECTION OF SUSPICIOUS AC-
TIVITY 

 The automatic detection of suspicious activity is a major 
requirement for automated surveillance, because of the in-
ability of human personnel to maintain their attention and 
monitor for suspicious activity over long periods of time. 
Our approach to the problem is similar in spirit with [24]. 
Specifically, we avoid modelling suspicious trajectories due 
to the very large variation of suspicious activity. Instead, we 
model normal trajectories and learn a probabilistic model of 
typical activity. Then, we associate suspicious behaviour 
with the atypical activity, i.e. the outliers of the typical activ-
ity. 

 Because the scene model is constructed from observa-
tions of the activity, it is related to patterns of typical activ-
ity. We have developed a method for automatic detection of 
atypical activity that may be suspicious, based on Route 
Based Hidden Markov Models (RBHMM), i.e. HMM over-
laid on the routes of the scene model. 

 The states of a RBHMM are defined to be the nodes of 
all the accepted route models, plus two extra states: an “out-
of-any-node state”, which indicates activity outside the mod-
elled routes and an “end state”, which indicates the end of 
the observation. It is sensible to derive the nodes from uni-
directional routes, so that directionality information is incor-
porated at each node. 
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 Let assume that a scene contains W route models and 
each route model w=1..W consists of Lw nodes. The number 
of states N of the RBHMM is given by the following for-
mula: 

!
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2             (2) 

 The elements of the RBHMM are: 

S={Si}, i=1..N, the set of states. 

Q={qk}, k=1..M, the sequence of the states. 

A={aij}, i,j=1..N, the transition probability distribution, 
where aij=P(qt+1=Sj | qt=Si). 

π={πi,} i=1..N, the initial state distribution, where 
πi=P(q1=Sj). 

O={Ok}, k=1..M, the sequence of the observations. 

B=[bi(v)], i=1..N, v a position vector and bi(v) is the mem-
bership function of the observation v to the state i. 

 For such models, the HMM parameters are generally 
recommended to be learnt using iterative algorithms [10]. 
However, because of the large number of states, these algo-
rithms are very slow and often impractical, especially for 
online learning. Instead, we use the pdf distributions of ob-
servations across the routes (see [18]) to encode the observa-
tion vector B (3). Then the RBHMM parameters are esti-
mated cumulatively using (4) and (5): 
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where Ol,k is the kth observation of the lth trajectory l=1..L, 
k=1..KL and gi(Ol,k) is the estimate of the probability that the 
observation Ol,k corresponds to the state i. 

 Trajectories can be evaluated according to the HMM and 
characterised as typical or atypical. Usually, suspicious 
events correspond to atypical trajectories, for instance the 
right image of the Fig. (17) that depicts the trajectory of 
someone appearing to climb up the wall. 

 More specifically, the consistency of an observation vec-
tor O (trajectory) with a given HMM λ, is represented by the 
probability P(O|λ). The estimation of the above probability is 
known as the evaluation problem, the first of the three basic 
problems in HMM theory. The solution, as described in [10], 
is given by: 

 
Fig. (14). Routes projected on the common ground plane of the six camera views. They consist of "visible" paths (in camera views 1-6) that 
were learnt from trajectories and "invisible" paths (in gaps a-c) that were determined by correlating entry/exit events. 
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where M is the size of the observation vector O and αM is 
the forward variable used in the Viterbi algorithm. The typi-
cality criterion for the observation vector is given as: 

( )MPl )(log)( !OO =            (7) 

 The typicality criterion l(O) is not related directly to the 
probability P(O|λ), but to its logarithm, because the probabil-
ity P(O|λ), may have too low a value to be represented within 
the arithmetic range of the computer. Division by M is per-
formed to normalise the criterion against the size of the vec-
tor. Atypicality is detected when l(O) is below a threshold. 

 While the criterion defined by (7) indicates the typicality 
of an entire trajectory, the criterion defined in (8) character-
ises a specific sample Ok of the trajectory: 
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 Fig. (15) depicts three trajectories and Fig. (16) and Fig. 
(17) present their evaluation according to the two criteria. 
The first trajectory is a common trajectory that is verified by 
the values of the two criteria. The second trajectory is not so 
unusual, however it contains two samples (crosses) where 
the target speed increases. The criterion l estimates the over-
all typicality of the trajectory; therefore it does not find any-
thing atypical. The criterion l' is able to detect the two suspi-
cious samples. The third trajectory is a clearly an atypical 
trajectory that could represent somebody climbing (cross). 
The suspicious activity of the event is detected by both crite-
ria. 

6. DISCUSSION 

 The KUES Intelligent Visual Surveillance System con-
sists of a variety of vision modules that operate at different 
levels. Additionally, it is required to operate in different en-
vironments and for extended periods and to “understand” the 
scene activity and alert the human operator. Therefore, they 
require being equipped with significant cognitive capabilities 
and it provided an opportunity to study the development of 
cognitive vision systems 

 We have presented a framework for cognitive surveil-
lance systems that is able to derive a high-level understand-
ing of activities. Description of activities is based on three 
main categories of semantics (targets, actions, events). Par-
ticularly, we focus on how a computer vision system can 
automatically learn semantic labels for fixed spatially-related 
entities in the scene, using a motion attention mechanism and 
exploiting the long-term consistencies of the visual data. We 
have built a scene model that includes event-based semantics 
that are learnt automatically from video data. 

 

 

 

 

 
Fig. (15). Three trajectories are shown. The first trajectory (top) is 
very common. The second (middle) contains two rather suspicious 
samples (crosses). The third one (bottom) is a very uncommon one 
of somebody apparently climbing. 

 Automatic learning can also be used to create models for 
targets (e.g: separate pedestrians, vehicles and large vehicles) 
and to automatically identify the types of interesting events 
that take place in a particular scene. Such an approach will  
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Fig. (16). The evaluation of the three trajectories according to the l 
criterion. The first (solid line) and the second (dotted line) trajecto-
ries of the Fig. (15) are in general typical, while the third one 
(dashed line) is clearly atypical. 

 

 
Fig. (17). The three trajectories of Fig. (15) are evaluated according 
to the l’ criterion. All the samples of the first trajectory (solid line) 
are typical; two of the samples of the second trajectory (dotted line) 
are characterised as atypical; the climbing sample of the right 
(dashed line) is clearly atypical. 

not only expand the range of semantics that can be automati-
cally recognised by the surveillance system, covering all 
three categories of a surveillance dictionary, but also provide 
the basis of a system that is capable of distinguishing a wider 
variety of spatially-related semantics. 

 However, there are many open issues till the achievement 
of cognitive vision systems, such as the specification of ap-
propriate knowledge representations and a mechanism to 
determine the interesting “semantics” for each scene. 
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