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INTRODUCTION 

 Volterra type integral equation has been arisen in many 

mathematical and engineering field, so that solving this kind 

of problems are more efficient and useful in many research 

branches. Analytical solution of this kind of equation is not 

accessible in general form of equation and we can only get 

an exact solution only in special cases. But in industrial 

problems we have not spatial cases so that we try to solve 

this kind of equations numerically in general format. Many 

numerical schemes are employed to give an approximate 

solution with sufficient accuracy [1-5]. In this study we want 

to discuss on convergence of projection method with Sinc 

function then present a numerical solution to this type of 

equation. 

 Consider Volterra integral equation of the second kind 

f (s) =
a

s
k(s, t) f (t)dt + g(s) < c s d <         (1) 

where ),( tsk  and )(sg  are known functions, but )(tf  is 

an unknown function. In the operator form of this equation, 

we have 

 
(I K) f = g             (2) 

where I  is the identity operator and K  is an integral 

operator defined by 

 K : X X  

 
K f =

a

s
k(s, t) f (t)dt  

with X  is a normed space. 

 

 

*Address correspondence to this author at the Department of Mathematics, 

Iran University of Science & Technology, Narmak, Tehran 16846 13114, 

Iran; E-mail: maleknejad@iust.ac.ir 

 

Background 

 Sinc function is defined on the whole real line by 

sinc(x) =
sin( x)

x
, x 0

1 x = 0.
 

 Now, we define the sequence of Sinc basis function for 

positive h  by 

S(k,h)(x) =
sin( (x kh) / h)

(x kh) / h
 

where k  is an integer. 

 Definition 1 Let h > 0 , and let W (
h
)  denote the family 

of functions f  that are analytic in  C  (set of all complex 

functions), such that 

| f (t) |2 dt <  

and for all z  in  C  (set of all complex numbers) 

| f (z) | ce
|z|

h  

with c  a positive constant. 

 Definition 2 Let d > 0  and Dd  denote the domain 

 
Dd = { C : | Im( ) |< d}  

 Now for every positive ,  we define 
 
L , (Dd )  is a 

space of functions f  that are analytic in Dd  such that for 

some c > 0  and all z Dd  we have 

| f (z) | c
| e z |

(1+ | ez |) +
. 
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 If = , we have 
 
L , (Dd ) , but for simplicity we 

denote 
 
L (Dd )  instead of 

 
L , (Dd ) . 

 Theorem 1 Let h > 0 , the sequence {h
1

2S(k,h)}k=  is 

complete orthonormal sequence in W (
h
) . Every f  in 

W (
h
)  has the cardinal series representation 

f (x) = C( f ,h)(x) =
k=

f (kh)S(k,h)(x)  

 Proof. [6] page 91. 

 For h > 0 , the series C( f ,h)(x)  is called the whittaker 

cardinal expansion of f  whenever this series converges [6]. 

PROJECTION METHOD 

 In projection methods such as collocation method for 

solving Eq.(2), we assume that 
 
Xn X = L  and 

{ i} i =1,...,n  are basis functions for Xn . By this 

assumption we try to solve integral equation of the second 

kind in a space with finite elements [7, 8]. 

 In this paper, X  is W (
h
)  for every positive h  which is 

defined in next section and 
n
X  is a space constructed by 

Sinc basis functions. By using Whittaker cardinal expansion 

we can approximate every function in this space. 

 Now, we assume Xn  is a subspace of W (
h
)  constructed 

by orthonormal sequence {h 1/2S(k,h)}k= N
N

 [6]. Thus, we 

approximate an unknown function )(sf  by this 

orthonormal sequence, so by sampling theorem we have 

f (t) CN ( f ,h)(t) =
k= N

N

f (kh)S(k,h)(t) h > 0  

then by substituting this in integral equation we get 

k= N

N

f (kh)S(k,h)(s)

=
a

s
k(s, t)

k= N

N

f (kh)S(k,h)(t)dt + g(s).

 

 Now, we define residual equation by 

RN (s) =
k= N

N

f (kh)S(k,h)(s)

a

s
k(s, t)

k= N

N

f (kh)S(k,h)(t)dt g(s)

 

for determining the unknown coefficients f (kh) 's we select 

some collocation points such that 

RN (si ) = 0 i = 0,1, ..., 2N  

in this paper collocation points are 

si = a +
i(d a)

2N
i = 0,1, ..., 2N  

so that we have a system of linear equations AN X = bN  

where 

AN = [S(k,h)(si ) a

sik(si , t)S(k,h)(t)dt]k= N
N

         (3) 

bN = [g(si )] i = 0,1, ..., 2N           (4) 

XT = [ f (kh)]k= N
N

            (5) 

 In this system of linear equations we need to determine 

a

sik(si , t)S(k,h)(t)dt . In this paper, we use a known 

numerical integration formula known as Clenshaw-Curtis 

method [9] to estimate this integral term and evaluate the 

elements of coefficient matrix A . 

MAIN RESULTS 

 In this section, we want to investigate the convergence of 

this method for Volterra integral equation of the second kind 

by collocation method. To achieve this goal, firstly, we 

introduce definitions and theorems of Sinc approximation in 

strip [6], then use them to prove the convergence of our 

method. 

 Definition 3 Let > 0  and D  denote the domain 

}|<)(|:{= ImD C  

 Now for every positive ,  we define 
 
L , (D )  is a 

space of functions f  that are analytic in D  such that for 

some c > 0  and all z D  we have 

| f (z) | c
| e z |

(1+ | ez |) +
.  

 If =  we have 
 
L , (D )  but for simplicity we denote 

 
L (D )  instead of 

 
L , (D ) . 

 Theorem 2 Let 
 
f L (D )  for > 0  and taking 

h = (
N
)1/2  then there exists a positive number c1 , 

depending only on f , , , y  such that for s = 2  or s =  

EN ( f ,h)(.+ iy) s

= f (.+ iy)
k= N

N

f (kh)S(k,h)(.+ iy)
s

 

c1N
(1 1/s )/2 exp{ ( )1/2 ( | y |)N1/2}  

 Proof. [6] page 137. 

 In this paper we choose s =  and for the real case we 

can substitute y = 0  so that if ( )1/2 = c2  then 

EN ( f ,h)(.) c1N
1/2exp{ c2N

1/2}.  
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 Theorem 3 By regard to Eq.(1) where k(s, t)  is 

continuous on square [c,d] [a,d]  and 

 
f (t), g(t) L ([a,d])  for > 0 , if we define 

PN
num ( f )(t) =

k= N

N

f num (kh)S(k,h)(t)  

as a Sinc approximation of )(tf  where )(khf num  is the 

solution of linear system of equations constructed by 

collocation method then 

f PN
num ( f )

c1N
1/2exp{ c2N

1/2}{1+ c3 AN
1 2 (3+ log(N ))}

 

 Proof. First of all we define the following projection 

operator 

f (t) PN
num ( f )(t) =

k= N

N

f num (kh)S(k,h)(t)          (6) 

 In this projection operator f num (kh)  is the solution of 

linear system of equations AN X = bN , so that f num (kh)  

contains truncation error and round off error. Another 

projection that we need in this theorem is 

PN ( f )(t) =
k= N

N

f (kh)S(k,h)(t)  

where )(khf  contains only truncation error. Practically, we 

solve 

PN
num ( f )(s) =

a

s
k(s, t)PN

num ( f )(t)dt + g(s)  

to find f num (kh) . So that we have 

[ f num (kh)]k= N
N = AN

1[g(si )] i = 0,1, ..., 2N  

 But if we substitute PN ( f )(t) = k= N

N
f (kh)S(k,h)(t)  

then we define the new right hand side for Eq.(1) that is 

denoted by ĝ  and estimated as follow; 

PN ( f )(s) + f (s) PN ( f )(s)

=
a

s
k(s, t)[ f (t) PN ( f )(t) + PN ( f )(t)]dt + g(s)

 

PN ( f )(s) a

s
k(s, t)PN ( f )(t)dt = g(s) f (s) +

PN ( f )(s) + a

s
k(s, t)[ f (t) PN ( f )(t)]dt

 

then 

ĝ(s) = g(s) f (s) + PN ( f )(s) +

a

s
k(s, t)[ f (t) PN ( f )(t)]dt

 

now we have 

[ f (kh)]k= N
N = AN

1[ĝ(si )] i = 0,1, ..., 2N  

so that 

k SN

sup | f num (kh) f (kh) | AN
1

i SN

sup | g(si ) ĝ(si ) |  

where SN  is all integers belong to [ N ,N ]  and AN
1

 is the 

maximum norm on columns or rows, so 

i SN

sup | g(si ) ĝ(si ) | sup | PN ( f )(si ) f (si ) +

a

s
k(si , t)[ f (t) PN ( f )(t)]dt |

 

i SN

sup | PN ( f )(si ) f (si ) |

+
i SN

sup |
a

s
k(si , t)[ f (t) PN ( f )(t)]dt |

 

c1N
1/2 exp{ c2N

1/2}

+
t [a,d ]
sup | k(si , t) |

t [a,d ]
sup | [ f (t) PN ( f )(t)] || d a |  

c1N
1/2 exp{ c2N

1/2} + M | d a | c1N
1/2 exp{ c2N

1/2}  

where M = t [a,d ]sup | k(si , t) |  and let (1+ M | d a |) = c3  so 

i SN

sup | g(si ) ĝ(si ) | c1c3N
1/2 exp{ c2N

1/2}  

and 

k SN

sup | f num (kh) f (kh) | AN
1 c1c3N

1/2 exp{ c2N
1/2}.  

 Now we have 

t [a,d ]
sup | PN ( f )(t) PN

num ( f )(t) |

=
t [a,d ]
sup |

k= N

N

[ f (kh) f num (kh)]S(k,h)(t) |
 

k SN

sup | f (kh) f num (kh) |
t [a,d ]
sup

k= N

N

| S(k,h)(t) |  

AN
1 c1c3N

1/2 exp{ c2N
1/2}(

2
{3+ log(N )})  

 By regard to the [6] 

t [a,d ]
sup

k= N

N

| S(k,h)(t) |
2
{3+ log(N )}  

 Finally, we have 

f PN
num ( f )

f PN ( f ) + PN ( f ) PN
num ( f )

 

c1N
1/2 exp{ c2N

1/2} +

AN
1 c1c3N

1/2 exp{ c2N
1/2}

2
{3+ log(N )}

 

c1N
1/2 exp{ c2N

1/2}{1+ c3 AN
1 2 (3+ log(N ))}  

and proof of this theorem is completed. 
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NUMERICAL EXAMPLES 

 In this section, we use relations (3),(4),(5) to convert an 

integral equation to system of linear equations, for this result 

we choose =1  and =  so that h =
N

. In this 

procedure we use Clenshaw-Curtis method to estimate 

a

sik(si , t)S(k,h)(t)dt  numerically. In these examples EN  is 

defined by 

EN =
i

max | f (ti ) PN
num ( f )(ti ) | i = 0,1, ..., 2N  

where ti 's are the collocation points. 

 In the following, we present some examples then 

numerical results are shown in Table 1, and these results are 

easily Comparable against other numerical methods which 

were appeared in [5-9] in points of convergence rate and 

error bound. 

 Example 1. In this example we solve Eq.(1) with 

k(s, t) =
(s t)2

1+ t 2
 

g(s) = 1+ s2 s(2
3 1+ s2

2
) + (

1

2
s2 )arcsinh(s)  

where the exact solution is f (t) = 1+ t 2 , and EN  is 

evaluated in [0,1] . 

 Example 2. In this example we solve Eq.(1) with 

k(s, t) = s sin(t + s) t cos(t s)  

g(s) =
1

4
((5 + s2 + 2s cos(2s))sin(s) (2s2 + s) cos(s))where 

the exact solution is f (t) = sin(t) , and EN  is evaluated in 

[0,
2
] . 

Table 1. Numerical Results for Examples 

 

N EN  for Ex.1 EN  for Ex.2 

3 3.8315 10 3
 5.6884 10 2

 

5 8.8190 10 7
 5.1365 10 6

 

7 7.8724 10 11
 1.7283 10 12

 

9 3.2124 10 11
 1.2213 10 15
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