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Abstract: This paper is dedicated to the statistical analysis of the chaos, generated by Rössler attractor, based on the so-

called “Degenerated Cumulant Equations” method. The approach is illustrated by the calculus of the first cumulants, 

which are necessary to create an approximation of the Probability Density Function (PDF), applying the Gramm-Charlier 

series, the model distribution method, etc. An approximate method for the variance calculation at the output of the Rössler 

strange attractor is presented as well. The latter is based on the Kolmogorov-Sinai entropy estimated by the Lyapunov 

exponents for a statistically linearized chaotic system. Finally, an application using Rössler attractor output signals to 

model Radio Frequency Interferences (RFI) provided by Peripherical Component Interface express (PCIe) serial bus of 

high speed interconnects of Laptops and Desktops is presented. 
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I. INTRODUCTION 

 In recent times the applications of chaos theory in the 

electrical engineering field has grown considerably [1-5] and 

some fresh and very interesting reviews, related to the 

statistical analysis of strange attractors (continuous nonlinear 

dynamic systems generating chaos) (see [6, 7], and 

references therein) have been published. However, those 

comprehensive reviews of chaos have been written “by 

physicists for physicists” and do not contain the material 

necessary for the engineering statistical analysis of the 

chaotic attractors. For application purposes it is necessary to 

have a simple and rather accurate methodology to evaluate 

the statistical characteristics of the attractors due to their 

circuit parameters, adjusting such parameters to the required 

features of the chaotic models, etc. It is worth to stress here, 

that engineering methods for the statistical analysis of 

attractors are still missing. 

 In an effort to fill this gap and provide an adequate tool 

for the applied statistical analysis of strange attractors, the 

so-called “degenerated cumulant equations method” was 

recently proposed, based entirely on the parameters of the 

corresponding dynamic systems
1
. As it was shown in those 

studies, not only the expressions for the cumulants can be  
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1Certainly, all statistical properties of the attractor can be obtained through 

statistical computer simulation, but it is not the case here. 

found by means of the proposed approach, but also the so-

called “model distributions” for each component of the 

attractors under analysis can be constructed. 

 Compared against the moments, the cumulants have very 

attractive features, which can be exploited for engineering 

applications, as it is carefully explained in [8, 9]; also in 

these works a comprehensive and adequate method for the 

cumulant calculus was presented: the cumulant brackets. 

 Since the first time the cumulants were used in 

applications it was noticed that they are actually a set of 

“independent statistical coordinates” of the random process 

and thus provide a “general view” of the statistical behavior 

of the system due to the system parameters [9, 10], etc. 

 It is interesting to notice that in practical applications the 

“weight” or influence of the cumulants becomes negligible 

as the order of the cumulants grows [9]. For engineering 

analysis this translates to the fact that it is often enough to 

consider only the first four cumulants: 1- 4, and the 

corresponding shape coefficients for the PDF namely, 3 (the 

skewness coefficient) and 4 (the kurtosis coefficient) [9]. 

Notice that the cumulant analysis of the attractors is both 

qualitative and quantitative, and the “balance” between these 

two features highly depends on the type of attractor and its 

parameters. This will be illustrated taking the Rössler 

attractor as an example. 

 Regarding applications, it was recently proved that 

chaotic systems are adequate to model several natural 

phenomena related to the communication field: for example, 

the output signals of some components of well known 

attractors (Lorenz, Chua, etc.) can adequately describe the 
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PDFs of the interferences generated by some digital 

interconnects, and the cumulant analysis provides a good 

coincidence with the measurement data [11]. 

 Certainly, chaotic signals can not be applied for “physical 

“modeling of the radio interference phenomena, but are 

rather adequate for a statistical modeling approach. 

 The improvement on performance of modern digital 

communications, particularly from mobile to mobile PC 

users, has turned so important that, it results highly 

encouraging to continue with the search of other attractors, 

for example, the Rössler attractor, as perspective models to 

characterize the interferences from the digital interconnects 

as well. 

 As it follows from the title, this paper is dedicated to the 

cumulant analysis of the Rössler attractor and its application 

to get a statistical modeling of the RFI produced by digital 

interconnectors of laptops and desktops. The paper is 

organized as follows. Section II contains some basics of the 

chaos and its description, but it is mainly dedicated to the 

degenerated cumulant method. Section III is dedicated to 

theoretical analysis (based on the degenerated cumulant 

equations) of the Rössler attractor. In section IV some of the 

numerical results for Rössler attractor and their comparison 

with analytical predictions are presented. In section V an 

approximate method to evaluate the variance for the Rössler 

attractor and its generalization is shown. Section VI presents 

the material of the applications of the output signals of 

Rössler attractor for the statistical (RFI) modeling from 

PCIe. Finally, some conclusions are mentioned in section 

VII. 

II. BASICS OF THE CHAOTIC ATTRACTORS 
THEORY. DEGENE- RATED CUMULANT 
EQUATIONS APPROACH. 

 It is well known [12], that each dissipative continuous 

time dynamic system (strange attractor) can be defined with 

the following equation: 

    
x = f (x(t)), x R

n , x(t
0
) = x

0
,           (1) 

where f( )=[f1(x),…,fn(x)]
T
 is a differentiable vector function. 

 Chaotic attractors, described by (1) can be classified as 

hyperbolic, quasi-hyperbolic and non-hyperbolic [6, 7]. All 

attractors, which were statistically investigated beforehand 

(see, for example [1, 6-8, 11, 13]) are of the quasi-hyperbolic 

or non-hyperbolic type: (Lorenz, Chua, Rössler, etc.). The 

quasi-hyperbolic attractors (Lorenz attractor with the 

typically considered parameters [1, 6-8, 11, 13]) do not 

actually differ from the hyperbolic (robust, ideal) attractors 

and existence of the invariant measure for them is practically 

guaranteed (see detail at [6, 7]). 

 In the following, we shall explicitly follow the principles 

of ergodic theory for equations such as (1) [12], assuming 

the existence of an invariant measure for solutions of (1). As 

an invariant measure we will take a physical measure (see 

sections II-F and IV-H in [12]), applying the following idea 

of Kolmogorov: in (1) one has to consider a weak external 

noise (t), i.e. 

    
x = f (x(t) + (t)),            (2) 

where (t) is a vector of a weak external white noise with the 

related positive defined matrix of “intensities”  =[ ij]
nxn

, [7, 

8]. 

 Here it is reasonable to give some comments regarding 

the concepts of the invariant and physical measures. 

Invariant measure is a measure for the “space” averaging of 

the chaos realizations: it is independent to initial 

distributions, it completely specifies the statistical 

characteristics of the attractor, and it is not unique [6, 7, 12]. 

Physical measure, which appears from the time averaging for 

each ergodic chaos realization is obviously more reasonable 

from the engineering point of view and as it was mentioned 

before actually it follows from the Kolmogorov's idea (2). 

 Now it is clear, that in the framework of the ergodic 

theory invariant and physical probabilistic measures might 

be synonyms, but physical measure is more relevant for the 

applications. 

 Next, it can be seen that (2) is a stochastic differential 

equation (SDE), generating the continuous Markov process 

with a physical measure (PDF) W (x, t) [9]. 

 The relationships between chaotic continuous processes 

and Markov processes were completely discussed in [6, 7, 

14, 15], etc; we will only stress here, that the linear operator 

for the transient PDF W (x, t) (so-called Fokker-Planck-

Kolmogorov) for SDE (2) has the same properties as the 

FPQ operator [14, 15] for discrete chaos and provides a 

stationary distribution: 
 
limt W (x, t) = Wst (x, t)  when the 

vector function f( ) does not depend on time ‘t’ (sufficient 

conditions, see [9]). 

 Thus, the physical measure Wst(x) has to be taken as: 

 

Wst (x) = lim
ij 0
Wst (x) .           (3) 

 Assumption (3) is important for all subsequent analysis, 

as we expect that when all elements of matrix “ ” equally 

tend to zero, the solution of (1) and (2) has the same Wst(x). 

In other words Wst(x) is defined in asymptotic conditions of 

weak noise in (2). This noise is not certainly a ‘white’ one 

(Kolmogorov mentioned ‘some noise’), thus it might be 

Poisson noise as well, but hereafter we will assume that it is 

a white noise in (2). 

 Now, let us make some particular comments to this 

assumption for (2), if (2) describes the chaotic attractor. The 

Markov process, when noise intensities in SDE (2) tend to 

zero is a so-called “quasi-deterministic” or “degenerated” 

Markov process and it is pretty hard to obtain the closed 

form expression for a physical measure in (3), if “n” in (1) is 

more than one. This issue was somehow briefly touched at 

[16]. 

 Does it mean then, that the Wst(x) do not exist? Of course 

not, it does exist, but the Markov description of the chaos 

simply might not provide us with the adequate closed form 

representation of the physical measure Wst(x). In contrary, as 

it was shown in [8] and will be presented in the following, 
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the “degenerated cumulant equations” approach provides us 

closed form solutions for the “degenerated” case. 

 The non-hyperbolic attractors are rather sensitive to 

variations of their parameters: the character of chaos can 

change drastically (from spiral to punnel [7, 17]), for 

example, for Rössler attractor when the “c” parameter (see 

below) changes from 5.7 to 10. Nevertheless the existence of 

the stationary measure for the Rössler attractor was 

confirmed in [7]. The same matter was checked 

experimentally by the authors for the Chua attractor case. 

 Please note that to the best of our knowledge, the detailed 

study of the existence of the stationary physical measure for 

the non-hyperbolic attractors is rather far from over. Next, it 

is worth mentioning here that the problem of the relaxation 

of output chaotic signals of the attractors to it is stationary 

conditions still remains open [6, 7]. 

 We propose in the following (section V) as a first 

approximation for the time constant to use the inverse of the 

eigenvalues of the statistically linearized matrix of the 

attractor. Sure, this approximation is only valid for the 

experimental evaluation of the first cumulants. 

 The Wst(x), as well as its characteristic function, is totally 

defined by the complete set of cumulants [9] and we will 

show in the sequel, that conditions as in (3) are valid for all 

stationary cumulants of the solutions of (1) and (2). 

 Then: Wst(x)=F
-1

{ (j )}, where (j ) is a characteristic 

function and F{ } and F
-1

{ } are direct and inverse Fourier 

transforms respectively: 

 

( j ) = exp
js

s! m1,m2 ,…,mn
1, 2 ,…, n

1
m1 … n

mn
s=1

.        (4) 

where { i}
  1
n

 are random variables, m1+m2+…+mn=s, 

  m1
,...,m

n

1
,...,

n is the joint cumulant of the s-th order; 

=[  1,…,  n]
T
. 

 As it was stated above and follows from (4), (see also [8, 

10]) the full set of cumulants 
  m1

,...,m
n

1
,...,

n completely represent 

Wst(x), as long as the series (4) converges for all
  
{

i
}

i=1
n . 

 Therefore, the analysis of cumulants renders the same 

results as the analysis of Wst(x) and the advantages of 

cumulant versus moments for this goal are well known [10, 

18]. 

 It is worth mentioning here that the formalism for 

cumulant calculus for random variables and stochastic 

processes was proposed by A. N. Malakhov ([10] see also 

[9]). The idea of applying the cumulant analysis for chaos 

dynamical systems was presented in ([8, 16] see also the 

references therein). In the following, for calculations of 

Wst(x) we will evoke some ideas of Malakhov [10]: model 

distributions, cumulant analysis and cumulant equations. 

 If one assumes that cumulants for all s>m are equal to 

zero, then for the finite set of cumulants { s}
  1
m

, we can 

introduce the “model distribution” 
   
Ŵ

st
(x)  of the m-th order 

and its characteristic function defined by m(j ). 

 For example, for the characteristic function of one 

dimensional model distribution (or model approximation) the 

following representation is valid: 

  

Ŵ
st

(x) = F
1{

m
( j )}

m
( j ) = exp

( j )s

s! ss=1

m ,           (5) 

where s is the cumulant of the s-th order. 

 Note, that the distribution 
  
Ŵ

st
(x) is only an 

approximation of the true PDF and the model distributions 

([9, 10], and references therein) provide an accuracy, better 

than the orthogonal series expansions [9] for the case 4<0, 

but it can also be applied for 4>0. 

 Another option for analytical approximation for Wst(x) is 

the orthogonal series representations, for example, Gramm-

Charlier, Laguerre series, etc. [9]. 

 For example, the Gramm-Charlier series are defined by: 

  
W (x) = W

G
(x)[1+ 3

3!
H

3
(x) + 4

4!
H

4
(x)] ,           (6) 

where 

  
H

n
(x) = ( 1)n exp{

x
2

2
}

d
n

dx
n

exp{
x

2

2
},  

Hn( ) is a Hermitian polynomial of n-order, 

  

W
G

(x) =
1

2
exp{

x
2

2
},  

is a Gaussian distribution, 

 
3
=

3

3
,  

is the skewness coefficient and 

 
4
=

4

4
,  

is the kurtosis coefficient. 

 It is important to mention that for a symmetrical PDF the 

above coefficients satisfy: 

 3
= 0, μ

3
=

3
, μ

4
=

4
+ 3( 2 )2 ,  

with 3 and 4 being the third and fourth cumulants; 4 -2. 

 As it renders from the material presented above, (1) can 

be rewritten in the form of the stochastic differential 

equation (SDE); in other words x(t) is a continuous n-
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dimensional Markov process with kinetic coefficients, given 

by 
   
K

1
i

(x) = fi(x) and K2=[ ij]
nxn

,
2
 [8, 9]. 

 For the SDE representation of the attractor the approach, 

named as cumulant equations for the SDE with the given 

   
K

1
i

(x) and K2 [8, 9], can be successfully applied. 

 Next, let us remind the assumption (as it was proposed 

above), that Wst(x) exists, and that it is a reasonable physical 

measure for (1) and (2), although there exists all cumulants 

that adequately represent Wst(x). 

 Let us present here briefly the procedure to develop the 

cumulant equations from SDE (2) (the interested reader can 

find details at [9, 10]). It is well known, that W(x, t) for the 

solution of (2) follows the so-called Fokker-Plank-

Kolmogorov Equation (FPK, or direct Kolmogorov 

Equation), whose operator is self ad-joint to the operator of 

the so-called inverse Kolmogorov Equation (see [9, 10], for 

definitions and details). This inverse Kolmogorov Equation 

has the following operator for SDE (2) [9, 10]: 

   

L+ (x) = K
1

i

(x)
x

i

+ K
2ij

2

x
i

x
i

,           (7) 

where 
   
K

1
i

(x)  and K2ij(x) were introduced before and L
+
(x) 

is a self ad-joint to FPK operator [9]. 

 Now from (7) it is possible to define the differential 

equation for the average of any function g(x) as: 

   

d < g(x) >

dt
=< L+ (x)g(x) >,            (8) 

where < > is an averaging operator. 

 Here we will present this technique (for simplicity) only 

for one-dimensional case. 

 Let 
  
g(x) = x, x

2 , x
3,...  and substituting it into (8), one 

gets for  t : 

 
  
< K

1
(x)g '(x) > + < K

2
(x)g ''(x) >  

 Then it immediately comes: 

   

< K
1
(x) >= 0

2 < xK
1
(x) > + < K

2
(x) >= 0  

   
s < x s 1

iK
1
(x) > +

s(s 1)

2
< x s 2

iK
2
(x) >= 0  

 Now, with the help of [9] with application of “cumulant 

brackets” (see Appendix) one can get: 

   

< K
1
(x) >= 0

2 < x, K
1
(x) > + < K

2
(x) >= 0

< x, x, K
1
(x) > + < x, K

2
(x) >= 0

     

                                                
2Here we apply the definition for kinetic coefficients in Stratonovich form. 

 Generalizations for multidimensional case are straight 

forward [9]: 

    

< K
ij
(x) >= 0,

2{< x
i
,K

1 j
(x) >}

s
+ < K

2ij
>= 0,

3{< x
i
, x

j
,K

1
(x) >}

s
+ 3{< x

1
,K

2 j
>}

s
,

C
n

l [{< x
1
, x

2
,..., x

n l
,K

1n l+1
(x) >}

s
...

+ < x
1
, x

2
,..., x

n l
,K

2n l+1
>= 0],l=1

n

        (9) 

where i j, =
  1, n . 

 We can evidently see from (9), that if ij 0, then the 

second summand in (9) tends to zero and the equations in (9) 

tend to the so-called “degenerated cumulant equations”. 

Hence, the degenerated cumulant equations have the 

following form: 

    

< K
1i

(x) >= 0,

2{< x
i
,K

1 j
(x) >}

s
= 0,

3{< x
i
, x

j
,K

1
(x) >}

s
= 0,

         (10) 

where i, j, =
  1, n . 

 Equations (9) and (10) are nonlinear algebraic equations 

and <xi, xj,…,x > are the so-called “cumulant brackets” - 

abbreviated representation for any cumulant [9, 10]. 

 A{x,y,…,z}s is an abbreviation of the Stratonovich 

symmetrization brackets (A is an integer) and represents the 

sum of all possible A permutations of the arguments inside 

the brackets ([9] see Appendix A2). 

 Essentially equations (9) and (10) represent a set of non-

linear algebraic equations and this set, in general, is not 

closed, but it is always possible to cut the set of cumulants 

by neglecting all cumulants with order s>m. 

 The equations (10) have to be sequentially solved first for 

each component of x=[x1, x2,…,xn]
T
 (first line), next for 

couples of components {xi, xj }
  i, j=1

n
 (second line), and then 

for triplets {xi, xj, x }
  i, j , =1

n
 (third line), etc. 

 The way to do it is to “open” the cumulant brackets as 

shown in ([9] chapter 4 Appendix A2). To illustrate the 

procedure described above, we apply this material to the 

analysis of the Rössler attractor. 

III. ROSSLER ATTRACTOR 

 Equation (1) for the Rössler attractor has the following 

form: 

   

x = y z,

y = x + ay,

z = b + zx zc,

           (11) 

where a,b,c are the parameters of the attractor, x=[x, y, z]
T
. 

 Thus, the first kinetic coefficients for (11) are: 



Cumulant Analysis of Rössler Attractor and its Applications The Open Cybernetics and Systemics Journal, 2009, Volume 3    33 

   

K
1,1

(x) = y z,

K
1,2

(x) = x + ay,

K
1,3

(x) = b + zx zc.

          (12) 

 Introducing (11) and (12) into (10) for the first 

component “x”, one gets: 

  

1

y
=< y >= < z >=

1

z

1,1

x ,z
=

1,1

x ,y

2,y

x ,y
=

2,1

x ,z

3,1

x ,y
=

3,1

x ,z

4,1

x ,y
=

4,1

x ,z

         (13) 

 Then, for the second component “y”: 

  

1

x
=< x >= a < y >= a

1

y

2

y
=

1

a
1,1

x ,y

3

y
=

1

a
2,1

y ,x

4

y
=

1

a
3,1

y ,x

        (14) 

 Finally for the third component “z”: 

  

1,1

x ,z
=

1,1

z ,x
= c < z >= < z >< x >

2

y
=

c < z > a < z >
2

a

        (15) 

 On the other hand: 

2
y
=

2
x

< z >
.           (16) 

 Then, going on with two components {x, y}, one can get: 

  
3

y
=

2
1,2

y ,x

1+ a
0,  

i.e. PDF of y(t) is asymmetrical. 

 With two components {x, z} it follows: 
  3
z

0, i.e. PDF 

of z(t) is asymmetrical as well. 

 The cumulants: 
  1,1

z ,y , 
  1,1

z ,x
, etc., are very important 

because they show the degree of “similarity” for the chaotic 

signals, x(t), y(t) and z(t). 

 Particularly they are: 

  

1,1

z ,y
= a < y >

2

y < y >

a
a < y >

2

y
;

1,1

z ,x
< z > c,

       (17) 

when c>>a. 

 Together with the previously defined 
  1,1

x ,y
 those two 

cumulants illustrate the measure of linear statistical 

dependence between the components of the attractor. 

 Strictly speaking, as it follows from (13), (14), all 

components of the Rössler attractor have an asymmetry in 

the PDF’s, but the degree of its asymmetry is different: for 

“z” component: 
  3
z

  

2

z

c
,
 while 

  3
x

 0 (see also 
  3
x

0 

above), i.e. 
3

z
 
3

y
0. 

 So, x(t) has practically a symmetrical PDF, but the PDF’s 

for y(t) and z(t) are significantly asymmetric. 

 At the same time, the mean value <x> is less than <y> 

and it is possible for the qualitative calculus to assume, that 

<x>  0. For the case of <y>, the last assumption is not 

valid; the same for 
  

< x >

a
,  etc. 

 Next, it follows, that 
4

x
 (

2

x
)

2
; 

4

y
 (

2

y
)

2
; and 4>0. 

Then W(x) and W(y) are “sharper” than the Gaussian PDF 

WG(x) with the same first two cumulants. Note, that the last 

one shows the importance of the calculus of the variance of 

the chaos as well. 

 So, careful analysis even of the first four cumulants gives 

an interesting qualitative and quantitative knowledge 

regarding the statistical characterization of chaos generated 

from the Rössler attractor. To the best of our knowledge this 

has not been reported previously, 

 In the same way all necessary cumulants of the higher 

order can be found, from (8) (all notations for cumulants 

applied in this section are presented in the Appendix). 

IV. NUMERICAL RESULTS AND DISCUSSIONS 

 Let us consider the results of simulations of the Rössler 

attractor with the following parameters: a= 0.2, b=0.2, c = 

5.7 [14, 17]. 

 Note that as it was commented above, each component of 

the attractor achieves its stationary conditions with different 

time constant. At this step of the research it was empirically 

found (from simulations), that the “x” components reach 

their stationary state faster than “y” and “z” components (it 

also follows from the inverse eigenvalues shown in the 

following section). Therefore for comparison with the 

analytical results it is reasonable to apply data from the 

simulations, when the PDF’s clearly achieve their stable-

state shapes. 

 Keeping this in mind, let us make brief comparisons 

between analytical and simulation results. Based on the 

analytical results, which were presented in section II, we will 

consider mainly the comparisons of the first cumulants, as 

they are very important for practice. 

 From simulations it was found: 

<x>=0.17, <y>=-0.76, <z>=0.75. 

 One can see from (13) and (14) the almost exact 

coincidence with theory. 

 Then, from (15) it follows, 2
y

=17.8 and simulation gives 

y

2
=18.9 (error is about 5.8%). 
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 From (14) <x>= 0.13 and <x> < <y> : <y>=0.17 from 

(16) it comes: when 
y

2
=13.3, 

y

2
=17.8 (simulation gives 

almost the same). 

 Both PDF’s for components “y” and “z” are not 

symmetrical. From (14) it follows, that PDF’s for “x” and 

“y” are in some sense oppositely asymmetric, in contrary to 

Lorenz attractor (see [7]). 

 It can be seen, that besides of a good accuracy of the 

analytical prediction for cumulants, for complete calculus of 

the cumulants it is mandatory to provide the calculus of the 

variances: 
x

2
, 

y

2
, 

z

2
, as high order cumulants depend on 

them and the above presented approach does not allow 

calculating them right away. 

 In Figs. (1-3) the histograms for PDF’s of the “x”, “y” 

and “z” components of the Rössler attractor are represented 

for normalized values. 

 

Fig. (1). “x” component of the Rössler attractor. 

 

Fig. (2). “y” component of the Rössler attractor. 

 One can see, that the components “x” and “y” (contrary 

to Lorenz attractor [8]) are “oppositely” asymmetric, and 

have unimodal PDF’s with 4>0, i.e. the vertices of the 

distributions are “sharper”, than the Gaussian ones. Next, 

one can see that the component “z” can be approximated by 

means of a delta- function. 

 For “x” and “y” components we approximate the PDF 

histograms by means of the Laplace distribution defined by: 

  

f (x) =
1

2
exp

x μ
.  

 

Fig. (3). “z” component of the Rössler attractor. 

 This distribution is characterized by location μ and scale 

 parameters. The use of Laplace distribution allows to make 

a right description for the “x” and “y” components of the 

Rössler attractor as it is observed in the Figs. (4, 5). 

 

Fig. (4). “x” component of the Rössler attractor. 
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Fig. (5). “y” component of the Rössler attractor. 

 Then, as it follows from Figs. (4, 5), the (PDF), for the 

“x” component of the Rössler attractor is approximated by a 

Laplace distribution with the local parameter μ=0 and scale 

parameter =1.1 and for the “y” component with local 

parameter μ=0 and scale parameter =0.85. 

 In Figs. (6, 7), we apply the Kolmogorov- Smirnoff 

goodness of fit test with a significance level  =0.05, in order 

to examine whether the accuracy of the PDF of the “x” and 

“y” components of the Rössler attractor and its 

approximation using the Laplace distribution are adequate or 

not. As it can be seen from the Figs. (6, 7), the 

approximation can be considered as acceptable. Utilization 

of the Chi-Square test gives the same results, which are not 

presented here. 

 

Fig. (6). CDF of the “x” component using the Laplace 
approximation. 

 

Fig. (7). CDF of the “y” component using the Laplace 

approximation. 

 In Figs. (8, 9), the results of the approximation of the 

PDF for the “x” and “y” components of the Rössler attractor 

by means of the Gramm-Charlier series and the model 

distribution (5) (both with 4>0) are represented. 

 

Fig. (8). The “x” component of the Rössler attractor with the 
Laplace and model distribution approximation. 

 

Fig. (9). The “y” component of the Rössler attractor with the 
Laplace and model distribution approximation. 

 One can see, as it was commented before, that for this 

case the Gramm-Charlier approximation is more precise, 

than the expression (5), because of 4>0. 

V. APPROXIMATE APPROACH FOR VARIANCE 
CALCULATION 

 By considering the results presented in previous sections 

we realize that the approximations obtained by applying the 

cumulant method are rather good. 

 As it was mentioned above, the first cumulants for the 

Rössler attractor depend on the evaluation of the variance 2 

and this evaluation can not be performed directly from the 

degenerated cumulant equations approach. 

 Thus, in the following we present an approximate 

approach for the variance evaluation, based on the concept of 

the Kolmogorov-Sinai Hk-s entropy [14]
3
, with the conjecture, 

                                                
3Considering that K-S entropy can not be exactly calculated, it is impossible 

by using this method to obtain an exact result for variance. Nevertheless, 
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that variance as a measure of the “fluctuations” of the process 

has some influence on the information measure as well. 

 The Hk-s entropy is defined by the sum of the Lyapunov 

exponents for the non-linear system of the attractor ([14], page 

122). For a linear matrix A the Lyapunov exponents are 

defined by its eigen-values ([17], pages 542-543). 

 In the proposed methodology first we compare the 

differential entropy obtained from the PDF approximation for 

a component of the Rössler attractor, with the Hk-s entropy 

computed through the parameters of the attractor (Lyapunov 

exponents). 

 Note, (see in the following) that in the framework of this 

analysis Hk-s coincides with the Kolmogorov deferential 

entropy of the PDF ([17], pages 542-543, 839). 

 The proposed methodology can be summarized as follows. 

1. The non-linear system describing the chaotic behavior 

of the Rössler attractor has to be statistically linearized 

([17], page 760). 

2. The eigen-values must be found from the coefficients 

matrix formed by the linearized system. 

3. Once the eigen-values have been obtained, the Hk-s for 

the dynamic system can be estimated as follows [17]: 

 
  
log

max
< H

k s
log

j=1

m

j
,         (18) 

 where, j=1, ,m  j-is the j-th eingen-value of the linear 

matrix and log| j|-is the j-th Lyapunov exponent for 

the linear matrix ([17], page 542). 

4. On the other hand the Kolmogorov deferential entropy 

is: 

  

h
dif

= W (x)log[W (x)]dx ,        (19) 

where W(x) is the PDF of the output signals whose 

parameters have to be represented through 2. 

5. Then, we create an algebraic equation depending on 

the variance according to steps 3 and 4. 

6. Solving equation from steps 3 and 4, we can have now 

a solution for variance. 

 It is worth mentioning, that as long as the whole 

Kolmogorov-Sinai entropy is addressed to the given 

component of the Rössler attractor, then the value of the 

variance obtained from the approach is actually its upper 

bound. The lower bound can be found applying the left hand 

side of the inequality (18). 

 Here we present the results of the application of this 

method for the Rössler attractor considering only the x 

component as an example. 

 From equation (11) we can obtain a linearized system as 

it was mentioned in step 1. From step 2, we obtain the 

coefficient matrix A of this linearized system as: 

                                                                                
assuming that for practical purposes an error about 10-20% is acceptable, 

we are able to apply this method. 

   

A =

0 1 1

1 a 0

0 0 c

 

 Matrix A has a determinant different from zero, for this 

reason we can obtain eigen-values, considering a=0.2 and 

c=5.7. The characteristic equation becomes: 

  
3 (a c) 2 (ac 1) + c = 0 ,  

where 1= -5.7, 2= 0.1 + j and 3= 0.1-j. 

 Note that the main eigen-value 1 is equal to the 

parameter c and its inverse value is the lowest time constant 

(see comments above). 

 Having the results for the eigen-values, and substituting 

1 into (16), we can obtain a numeric value for entropy as Hk-

s 1.74. 

 And for steps 3 and 6 it follows: 

  
2

x
=

exp(3.48)

2e
2

= 2.1.  

 From Fig. (4) it follows, that 
  2

x  2, and the error is 5%. 

 Next, let us make some generalizations. In the previous 

material it was assumed that the parameters of the Rössler 

strange attractor are predefined as well as the PDFs for the 

output signals. 

 Here we will consider a more general case: let us suppose 

that the set of parameters of the strange attractor and the 

PDFs are not predefined, but the chaotic regime of the 

attractor (spiral or punnel chaos) is established. 

 Then one can apply for the PDF choice the so-called 

“Maximum Entropy Method (MEM)” [15]. 

 If the attractor of interest can be characterized by the 

symmetric PDFs, then the Gaussian PDF can be applied as a 

MEM distribution (for “x” component). 

 From the MEM principle it follows, that for a given Hk-s 

for Gaussian PDF, the evaluated 2 has to be a lower 

boundary for its true value. 

 It follows from (18), that the variance 2 obeys the 

following inequality: 

2

102Hk s

2 e
.           (20) 

 For the Rössler attractor 
  2

x 1.8 (the true value is 2 and 

the error is 10 %). 

 Next, let us make some concluding comments regarding 

the material of this section. 

 It was shown that through the ordinary equations of 

strange attractors and their statistical linearization it is 

possible to obtain analytical estimations of the Lyapunov 

exponents of the non-linear dissipative system describing the 

attractor. After the Lyapunov exponents are found it is 

possible to get a well known approximation for the 

Kolmogorov-Sinai entropy Hk-s. 
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 On the other side, applying the attractors PDFs for the 

components of interest with its analytical approximation, it is 

possible to find the Kolmogorov defferential entropy (hdif) 

which practically coincides with Hk-s for the strange 

attractors under consideration. Finally, by solving a simple 

quadratic algebraic equation one can find 2 0. 

 The approach shows acceptable accuracy for engineering 

evaluation of 2 (less than 20%) and it is completely 

analytical. Why it happened? 

 It seems, that all depends on the stochastic set of the 

attractor, the dimension of the phase space of the attractor, 

etc. (for details see [14, 17], etc.). 

 For example if the dimension of the stochastic set D for 

the strange attractor is more that two, almost all phase 

trajectories, that constitute the strange attractor are localized 

in a very thin layer, i.e., it can be approximately represented 

by a one dimensional Poincare mapping (details can be 

found in [14, 18]). It is actually true for Chua, Lorenz, 

Rössler etc. strange attractors as well (see [2, 18], etc). 

 So, any non-linear dissipative system (strange attractor) 

with a dimension D equal or more than two represents a one-

dimensional Poincare mapping (one dimensional dynamics) 

and one of the consequences of this is the similarity between 

Hk-s and the Kolmogorov differential entropy. Therefore, the 

acceptable accuracy of the proposed approach might be, in 

some sense, predicted. 

 We would like to emphasize, that the above presented 

methodology can be applied to arbitrary attractors with some 

caution: first, the variance has to exist (see z-component of 

the Rössler attractor, as an exception, at least in the 

framework of our approximations); next, the attractor has to 

be “strange”, etc. 

 Therefore, the exact variance evaluation approach has to 

take into account the details of the nonlinear dynamics of the 

system (see [15], for example) in a much more explicit way, 

than it was done here. 

 Finally, as it follows from the above comments, the 

problem of establishing the dependence of 2  on the 

parameters of the strange attractors is not trivial at all, and to 

the best of our knowledge no analytical results have been 

reported yet in this regard (only numerical integration for 

(9)). 

VI. MODELING OF RADIO FREQUENCY 
INTERFERENCE OF LAPTOPS AND DESKTOPS 
WITH OUTPUT SIGNALS OF THE RÖSSLER 
ATTRACTOR 

 Now, we present the results of the application of the 

statistical analysis of the Rössler attractor to the modeling of 

RFI caused by the PCIe serial bus of high speed 

interconnects of laptops and desktops. 

 Let us consider a PCIe bus, which is widely used in 

computers to communicate at high speed data rates. 

Specifically, the broadband emissions generated by high 

speed digital interconnects input-output (I/O) bus 

transactions associated with graphics benchmark (SW, 

3Dmark) are a major contributor of the non-Gaussian radio 

interferences to the PCIe platforms. Those interferences were 

experimentally investigated through the Intel measurement 

set up system. 

 The measurement system consists of a high speed data 

capture system: RF gain and analog to digital converter 

(ADC). In addition, a low loss RF cable is used to connect a 

RF horn antenna. 

 The methodology for the measurement can be 

summarized as follows. 

1. The equipment used for measurements is put inside a 

Faraday cage, and then the laptop is wirelessly 

connected to another computer, which is located 

inside a compartment that allows isolation of the 

radio signals; the door compartment can be opened or 

closed at any time and so, the communication is 

intermittent. 

2. The RFI measure originates from a laptop, Device 

Under Test (DUT), with all its system assets 

(hardware/ PCIe buses, LCD/Graphics and wireless 

systems) operating under normal traffic conditions. 

3. The radiated emission level measurement is -100dBm 

over a 20 MHz bandwidth, with an (ADC) 40 Msps. 

This is the minimum required level of the WiFi radio 

subsystem (i.e. 802.11a and 802.11g IEEE 

Standards). Therefore, the modeled statistics are 

representative of the conditions to be experienced by 

the platform’s wireless subsystems. 

4. The measurement conditions are: 

 ON/OFF: The screen graphics of the laptop, where 

the measurement was carried out, are activated and 

deactivated. 

 CLOSED/OPEN: The compartment door (where the 

computer with a wireless card is) is opened or closed. 

 Following the above mentioned procedure for 

measurements the experimental data of the interference of 

laptops and desktops at 20 MHz were analyzed using 

histograms, PDFs and output signals of the “x” and “y” 

components of the Rössler attractor. 

 As before, the data are normalized as a random variable 

x =(x-μ)/  where μ and 
2
 are the mean and variance 

respectively. 

 Considering the application of the “x” component of the 

Rössler attractor as a RFI model with its PDF shown in Fig. 

(10), one can see that the analytical and experimental results 

are practically identical. The analytical approximation 

corresponds to the Laplace distribution function and the 

correspondent cumulants coincide as well. 

 Let us take another example of RFI from PCIe. For this 

example, measurements were taken from PCIe buses at 20 

MHz (again). In this case the “y” component of the Rössler 

attractor was used as a RFI model with its PDF shown in the 

Fig. (11). One may see that analytical and experimental 

results are very similar. 
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 It is necessary to examine whether the accuracy of the 

RFI modeled through the PDFs of the “x” and “y” 

components of the Rössler attractor and the analytical 

approximation of each of them by the Laplace distribution is 

adequate or not. 

 

Fig. (10). “x” component of the Rössler attractor and RFI for PCIe 
with analytical approximation. 

 

Fig. (11). “y” component of the Rössler attractor and RFI for PCIe 
with analytical approximation. 

 In the same way as in section III this was achieved by 

applying the Kolmogorov-Smirnoff and Chi-Square 

goodness of fit test, both tests validate our approximation, 

even though the Chi-Square test indicates a better accuracy. 

 From this material it follows that the output signals of the 

Rössler attractor can be successfully applied for the 

statistical modeling of the RFI in high speed interconnects. 

More detailed study about this will be presented in another 

publication. 

VII. CONCLUSIONS 

 The material presented above allows us to make the 

following conclusions: 

1. The degenerated cumulant equations approach 

applied to statistical analysis of the Rössler attractor 

provide rather accurate results for the predicted 

cumulants; 

2. Almost exact formulas for the first four cumulants, 

which can be applied both for orthogonal and model 

distribution representations of the PDF for the chaotic 

signals were obtained; 

3. The PDF’s for the “x” and “y” components of the 

Rössler attractor were successfully approximated by 

the Laplace PDF and by orthogonal series 

representations, which in turn use results of the 

cumulant analysis; 

4. An original approach for the variance calculation, 

based on the Kolmogorov-Sinai entropy method 

together with the Lyapunov exponents evaluation was 

presented; 

5. Theoretical results of the stochastic analysis of the 

Rössler attractor were applied for the practical 

modeling of the RFI from laptops and desktops. 

 

Fig. (12). “z” component of the Rössler attractor and RFI for PCIe. 
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APPENDIX 

 The concept of cumulant brackets was introduced as an 

abbreviated representation for any cumulant, i.e. 
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where 1 appears inside the brackets m1 times, 2 appears m2 

times, and so on; for example, the third cumulant is 
,
1 2 , ,

1 2 21,2
K =< > . Some useful features for cumulant brackets 

can be found in [9]. 

 By means of cumulants brackets it is possible to 

formalize the operations between random variables and their 

transformations: linear and nonlinear, inertial and non-

inertial (see [10], also [9], for some generalizations). 

 For the above presented material some features for 

cumulant brackets need to be taken into account [9, 10]: 

1. < , ,..., > is a symmetric function of its arguments. 

2. <a , b ,...,g > = a b g< , ,..., >, where 

a,b,…,g are constants. 

3. < , ,..., 1 + 2,..., > = < , ,..., 1,..., > + 

< , ,..., 2,..., >. 

4. < , ,..., ,..., > = 0, if  is independent of { 

, ,..., }. 

5. < , ,...,a,..., > = 0. 

6. <  + a,  + b,...,  + g>=< , ,..., >. 

 In addition to cumulant brackets it is necessary to 

introduce here the concept of Stratonovich symmetrization 

brackets: symmetrization brackets together with the integer 

number in front of the brackets represent the sum of all 

possible permutations of the arguments inside the brackets. 

For example, the operator 3{< 1> < 2, 3>}s means that: 

{ }

,,,

,,3

213322

321321

><><+><><+

><>=<><><
s

     (A.2) 

where {}s is the notation for the Stratonovich symmetrization 

brackets. 

 Rules for manipulations with cumulant brackets can be 

found in A2 [9]. 

 Actually, the relations between moments and cumulants 

for the same distribution W(x) are well known (see, for 

instance, references [9, 10], etc.); the following notation is 

also well known: <g(x)>, < 1 2>, which denotes the 

operator of statistical average for g(x) and for the product of 

two random variables 1 and 2, respectively. Following [9, 

10] we call this operator < > as moment brackets, so the 

formal difference between moment and cumulant brackets is, 

that the first one contains a ‘dot’ between random variables 

(usually it is skipped), and the second one contains a 

‘comma’ between variables. 
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