
Send Orders for Reprints to reprints@benthamscience.ae 

1022 The Open Cybernetics & Systemics Journal, 2014, 8, 1022-1026  

 

 1874-110X/14 2014 Bentham Open 

Open Access 

Combinatorial Optimization of Multi-agent Differential Evolution  
Algorithm  

Fahui Gu
1,2,*

, Kangshun Li
1
, Lei Yang

1
 and Yan Chen

1
 

1
School of Information, South China Agricultural University, Guangzhou, Guangdong 510006, China; 

2
Department of 

Electronic Information Engineering, Jiangxi Applied Technology Vocational College, Ganzhou, Jiangxi 341000, China 

Abstract: Combinatorial optimization is often with the local extreme point in large numbers. It is usually discontinuous, 

multidimensional, non-differentiable, constraint conditions, highly nonlinear NP problem. In this paper, according to the 

characteristics of combinatorial optimization problem, we put forward the combination optimization of multi-agent differ-

ential evolution algorithm (COMADE) through combining the multi-agent and differential evolution algorithm, in which 

we designed the competition behavior and self-learning behavior of agent. Through performance testing of strong con-

nected, weak connected and overlap connected deceptive function on the COMADE algorithm, the results show that the 

COMADE algorithm is effective and practical value. 
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1. INTRODUCTION 

Combinatorial optimization is often with the local ex-

treme point in large numbers. It is usually discontinuous, 

multidimensional, non-differentiable, constraint conditions, 

highly nonlinear NP problems. The combinatorial optimiza-

tion is always hot subject in the fields of science and engi-

neering. The traveling salesman problem (TSP) is a famous 

problem in the combinatorial optimization. The combinato-

rial optimization’s solution has not only great academic 

value but important practical value. It has many solutions [1-

3], such as Ant colony Algorithm (ACA), Particle Swarm 

Optimization (PSO) and so on, and the method of intelligent 

optimization is quite efficient. In this paper, a kind of com-

bination optimization of multi-agent differential evolution 

algorithm (COMADE) is proposed. Through performance 

testing of strong connected, weak connected and overlap 

connected deception function on the COMADE algorithm, 

the results show that the COMADE algorithm is effective 

and practical value. 

2. DESIGN OF AGENT FOR COMBINATORIAL OP-
TIMIZATION 

Combinatorial optimization can be described as [4]: 

  
S , f( ) , where S is the search space, and 

 
f  is the objective 

function: 
  
f : S R . The purpose of solving is to find 

  x
*

S  for 
  
f (x* ) f (x) and  x S . Therefore, we can use 

an agent to represent a state of search space. 

 

 
 

 

Now we define that an agent is a candidate solution of 
problems to be optimized, which is expressed as a model 
one: 

  
a = (a

1
, a

2
, , a

n
) S , a

i
= 0or1(1 i n)        (1) 

where n  is the scale of the problem, the energy of agent is 

equal to the value of the objective function, that is 

)()( afaEnergy = .  

In order to calculate the energy of each agent, we put the 

agents into a fixed grid  L  expressed Fig. (1).  

 

Fig. (1). Agent grid model. 

The agents which can interact with 
  
L

i, j
 are determined 

by the parameter of perception range, which can be denoted 

as 
 
R

s
. Thus, the agents which can interact with L

i, j
 are ex-

pressed as the follow model tow.  
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where k  and  l  can be denoted as follows: 

  
k ={

k L
size

,k>L
size

k+L
size

,k<1
, l ={

l L
size

,l>L
size

l+L
size

,l<1
 

The neighborhood of 
  
L

i, j
, which is the range of interac-

tion with 
  
L

i, j
, is denote as 

  
N

i, j
. 

2.1. Competition Behavior 

In competition behavior, the perception scope of each 

agent is set 1, thus, there are 8 agents in the neighborhood, 

which can be denoted as  N
c . When the energy of 

  
L

i, j
 is not 

less than the others of neighborhood, 
  
L

i, j
 will continue to 

survive, otherwise it will die. The procedure of competition 

behavior can be described as following [4, 5]: 

Where 
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)  can be created by 

  
a

max
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First way: when the set D represents the differential bit 

number of 
  
L

i, j
and a

max
, we establish the model three: 

  
c

i
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i
,otherwise

a
i
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where Random(2)  is used to randomly generate 0 or 1. 

Second way: we build the model four: 

c
i
={

1 a
i
,otherwise

a
i
,Random>

1

n , (1 i n)            (4) 

where Random is used to randomly generate the real number 

between 0 and 1. 

The number of set D is equal to Hamming Distance be-

tween 
  
L

i, j
and a

max
. When the number is small, it shows that 

L
i, j

 and 
  
a

max
 are similar, it is hard to generate the offspring 

by the first way. Therefore, we choose the way to generate 

the offspring c  by the parameter of 
  
D

h (0,1) , if 

  

| D |

n
> D

h
, the first way is used, otherwise the second way. 

2.2. Self-learning Behavior 

Each agent can increase energy by self-learning behavior. 

But only when energy of an agent is not less than the any 

one of the learning scope, can the agent can get a chance to 

learn. We define the learning table as matrix (LL)
p 2

, which 

has p  rows and 2 columns, therefore the learning table 

meets the following conditions [4-6]: 
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Therefore, the learning table is (LL)
n(n+1)

2
2

, the several 

lines of the table 

  

(LL)
n(n+1)

2
2

 can be composed of a learning 

sub meter. 

The learning procedure of the agent 
  
(L

i, j
= (l

1
, l

2
,..., l

n
))  is 

described as the following: 

First learning way:  

Step 1: 
  
q 1 ; 

Step 2: generate 
  
(LL)q ; 

Step 3: choose 1 row from 
  
(LL)q , suppose no.

 
j  row, 

generate a new agent (a = (a
1
,a
2
,...,a

n
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the model five: 
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Step 4: if 
  
Energy(a) > Energy(L

i, j
) , then 

Learning(a) False , 
  
L

i, j
a , stop; 

Step 5: delete the 
 
j  row from 

  
(LL)q , if 

  
(LL)q  is null, 

then 
  
q q +1 ; 

Step 6: if 
 
q LL

w
, turn to step 2, otherwise 

  
Learning(L

i, j
) True , stop, where 

 
LL

w
 is expressed the 

learning sub meter number of the total learning table, every 

sub meter table has 
  

n(n+1)

2
/ LL

w
, denote the table as 

  LL
1
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2
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Second learning way:  

Step 1: randomly generate a sequence of integers from 1 

to  n , denote it as 
  
( p

1
, p

2
, , p

n
) , set 

  
q 1 ; 

Step 2: generate 
  
(LL)q ; 

Step 3: choose 1 row from 
  
(LL)q , suppose no. j  row, 

generate a new agent 
  
(a = (a

1
, a

2
,..., a

n
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the model five: 
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Step 4: if 
  
Energy(a) > Energy(L

i, j
) , then 

  
Learning(a) False , 

  
L

i, j
a , stop; 

Step 5: delete the 
 
j  row from 

  
(LL)q , if 

  
(LL)q  is null, 

then 
  
q q +1 ; 
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Step 6: if 
 
q LL

w
, turn to step 2, otherwise 

  
Learning(L

i, j
) True , stop. 

Generally speaking, it is good to take the first learning 

way. When it is failure to learn in the first way and 

  
Learning(L

i, j
) True , we will take the second way to learn. 

3. DESIGN OF COMADE  

The algorithm of COMADE is described as the following 
[4-7]: 

Step 1: initialize population   L
0 , randomly generate 

L
size
L
size

 agents, set Learning(L
i, j
) False , where 

  
i, j =1,2, , L

size
; 

Step 2: evaluate Energy of every agent in 
t
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petition behavior method, if 
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Step 3: evaluate Energy of every agent in 
  
L
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 by the 

self-learning behavior method, if 

a N
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1 ,Energy(a) Energy(L
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Learning(L
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method for 
  
L
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to learn, if 

a N
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1 ,Energy(a) Energy(L
i, j

t+1/2 )  and 

  
Learning(L
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t+1/2 ) = True , take the second self-learning behav-

ior method for 
  
L

i, j
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to learn, then 

  
L

i, j

t+1
L

i, j

t+1/2  ; 

Step 4: differential and crossover operation for each 

agent of L
i, j

t+1
, generate   L

t+1 ; 

Step 5: evaluate Energy of every agent in   L
t+1 , if 

Energy(L
i, j

t+1) > Energy(a
max

t ) , then a
max

t+1
= L

i. j

t+1
, otherwise, 

a
max

t+1
= a

max

t
; 

Step 6: if meet the termination condition, exit, otherwise, 
t=t+1, turn to step 2. 

4. SIMULATION EXPERIMENT  

There are many practical problems of combinatorial op-
timization. In order to test the algorithm performance of 
COMADE, we choose the deception function to test [4, 7-
12]. 

4.1. Experiment of Strong Connected Function 

We use the following tow strong connected functions to 
test COMADE: 

f
1
(a) = f

deceptive3

i=1

n/3

(a
3i 2
,a
3i 1
,a
3i
)  

  

f
2
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n/5

(a
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, a
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, a
5i 1

, a
5i

)  

From the above Table 1, we can know that the calcula-
tion amount of COMADE is about 10% of the others, the 
performance of COMADE is very good. 

4.2. Experiment of Weak Connected Function 

We use the following tow weak connected functions to 

test COMADE: 

f
3
(a) = f

deceptive3

i=1

n/3

(a
i
,a
i+n/2
,a
i+2n/3

)  

f
4
(a) = f
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i
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,a
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,a
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,a
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)  

From the above Table 2, we can know that it is harder to 
solve the weak connected deceptive function than to solve 
the strong connected deceptive function, but we can see that 
it is only millions of evaluation to solve the 90 dimensional 
weak connected cheat function through the COMADE algo-
rithm 

4.3. Experiment of Overlap Connected Function 

We use the following tow overlap connected functions to 
test COMADE: 

Table 1. Comparison of the average function evaluation times of the COMADE test on strong connected function for 50 times in-

dependent and other algorithm. 

Function Dimension COMADE Paper [4] Paper [5] 

n=30 796 842 8500 

n=60 3679 3817 27300 1
f  

n=90 9023 9790 57000 

n=30 805 869 14300 

n=60 3681 4088 41250 
2
f  

n=90 8367 8956 75450 



Combinatorial Optimization of Multi-agent Differential Evolution Algorithm The Open Cybernetics & Systemics Journal, 2014, Volume 8       1025 

Table 2. Comparison of performance based on COMADE through strong connected and weak connected function testing. 

Function Average Times of Function Evaluation Ratio Index Number 

n=30 796 

n=60 3679 

n=90 9023 
1
f  

n=210 65301 

0.33 O(n2.26 )  

n=30 805 

n=60 3681 

n=90 8367 
2
f  

n=210 71642 

0.40 O(n2.25 )  

n=30 65312 

n=60 900218 

n=90 2325892 

3
f  

 

n=210 42865421 

6.52 O(n2.94 )  

n=30 59315 

n=60 1136828 

n=90 7569132 
4
f  

n=210 254689537 

0.028 O(n4.06 )  

Table 3. Comparison of performance based on COMADE through overlap connected and weak connected function testing. 

Function Average Times of Function Evaluation Ratio Index Number 

n=30 796 

n=60 3679 

n=90 9023 

n=510 478941 

n=810 1253853 

1
f  

n=990 2917483 

0.33 O(n2.26 )  

n=30 805 

n=60 3681 

n=90 8367 

n=510 510348 

n=810 1349204 

2
f  

n=990 2184380 

0.40 O(n2.25 )  

n=30 783 

n=60 3587 

n=90 7123 

n=510 319318 

n=810 1019287 

5
f  

n=990 1457625 

0.25 O(n2.26 )  
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Table 3. Contd……. 

Function Average Times of Function Evaluation Ratio Index Number 

n=30 978 

n=60 3754 

n=90 10356 

n=510 456872 

n=810 1236863 

6
f  

n=990 2001358 

0.25 O(n2.29 )  

 

  

f
5
(a) = f
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i=1

n 2

(a
i
, a

i+1
, a

i+2
)  

  

f
6
(a) = f

trap5

i=1

n 1

4

(a
4i 3

, a
4i 2

, a
4 i 1

, a
4 i

, a
4i+1

)  

From the above Table 3, we can know that it is only mil-
lions of evaluation to solve the 900 overlap connected cheat 
function through the COMADE algorithm. 

CONCLUSION  

From the Tables 1-3, we can see that the COMADE algo-
rithm has good performance, especially for solving large-
scale complex combinatorial optimization problem. 
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