
Send Orders for Reprints to reprints@benthamscience.ae 

1038 The Open Cybernetics & Systemics Journal, 2014, 8, 1038-1041  

 

 1874-110X/14 2014 Bentham Open 

Open Access 

Two Methods for Solving Constrained Bi-Matrix Games  

Fanyong Meng and Jiaquan Zhan
*
 

School of Management, Qingdao Technological University, Qingdao, 266520, China  

Abstract: In real life there are game problems in which players face with certain restrictions in the choice of strategy. 

These decision problems lead to constrained games. The quadratic programming problem equivalent to a constrained bi-

matrix game is shown which provides a general method solving constrained bi-matrix games and shows a perfect corre-

spondence between games and programming problems. Besides, a two-step method for constrained games is proposed 

whose theme is transforming the constrained game into an equivalent ordinary game. In the end, an example is shown to 

illustrate consistency of the two methods. 
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1. INTRODUCTION 

There are game problems in real life where the strategies 
of players are constrained to satisfy certain linear equations 
or inequalities rather than being in whole strategy space. 
These decision problems lead to constrained games first in-
troduced by Charnes [1, 2]. He proved that constrained 
games can be solved by solving a pair of mutually dual lin-
ear programming problems and extended the concept to n-
person constrained games. Later it was studied by Kawa-
guchi and Maruyama [3] in somewhat more generality which 
widens the scope of game-theoretic approaches. It is shown 
that the proposed approaches can handle uncertainty in the 
inequality constraints. More recently, constraints have been 
introduced in NTU coalitional games and Markov games [4, 
5]. Also, a certain constrained dynamic game is shown to be 
equivalent to a pair of symmetric dual variational problems 
by Husain and Ahmad [6]. Various duality results are proved 
under convexity and generalized convexity assumptions on 
the appropriate functionals. Slightly different from the 
above-mentioned study, following Charnes’s chart, we are 
more concerned about whether constrained bi-matrix games 
exist similar results as in constrained matrix games. 

2. PRELIMINARIES ON MATRIX GAMES AND BI-
MATRIX GAMES 

In this section, we present certain basic definitions and 
preliminaries with regard to matrix games and bi-matrix 
games. 

Let n
R denote the n-dimensional Euclidean space and 

n

+
R  

be its non-negative orthant. Let 
m n

A R  be m n real matrix 

and e
T
 = (1, 1, …, 1) be a vector of ‘ones’ whose dimension 

is specified context. By a two person zero-sum matrix game 

we mean the triplet MG = (S
m
, S

n
, A) where  

 

 

 

 

{ },  1
m m T
S x e x

+
= =R  and { },  1

n n T
S x e y

+
= =R . In the ter-

minology of game theory, S
m
 (respectively S

n
) is called the 

strategy space for Player I (respectively Player II) and A are 

called the pay-off matrix. Usually two person zero-sum ma-

trix game is abbreviated as matrix game. If Player I chooses 

i
th

 pure strategy and Player II chooses j
th

 pure strategy then 

aij is the amount paid by Player II to Player I. The quantity 

( , ) T
E x y x Ay=  is called the expected pay-off of Player I by 

Player II since elements of S
m
 (respectively S

n
) can be 

thought of as a set of all probability distribution over I = {1, 

2, …, m} (respectively J = {1, 2, …, n}). 

Definition 2.1 (Solution of game). Let MG = (S
m
, S

n
, A) 

be the given matrix game. A triplet (x
*
, y

*
, v

*
) m n
S S R  is 

called a solution of the game MG if 

E(x
*
, y)  v

*
, n
y S , 

and 

E(x, y
*
)  v

*
, m
x S . 

Here x
*
 is called an optimal strategy for Player I, y

*
 is 

called an optimal strategy for Player , v
*
 is called the value 

of the game MG. 

Theorem 2.1 (Existence theorem). Let MG = (S
m
, S

n
, 

A). Then 
  
max min
x S

m
 y S

n

x
T

Ay  and 
  
min max
y S

n
 x S

m

x
T

Ay  both exists and 

are equal. 

Theorem 2.1 guarantees that every matrix game has a so-
lution. If there is no solution in the pure form then there is 
certainly a solution in the mixed form. Not long after the 
invention of simplex method, Kuhn and Tucker et al. [7] 
pointed out that solving a matrix game is equivalent to solv-
ing a pair of primal-dual linear programming. 

In matrix game, one player’s gain is just the other 
player’s loss. Obviously there are situations in which the 
interests of two players are not exactly opposite. Such situa-
tions give rise to two person non-zero sum matrix games, 
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also called bi-matrix games. Some well known bi-matrix 
game examples are “The Prisoner’s Dilemma”, “The Battle 
of Sexes” and “The Bargaining Problem”. 

A bi-matrix game is expressed as BG = (S
m
, S

n
, A, B), 

where A and B are m n real matrices representing the pay-
offs to Player I and Player  respectively. 

Definition 2.2 (Equilibrium point of BG). A pair (x
*
, y

*
) 

 m n
S S  is said to be an equilibrium point of the bi-matrix 

game BG if  

x
T
Ay

*
  x

*T
Ay

*
, 

and 

x
*T

Ay  x
*T

Ay
*
, 

for all x S
m
 and y S

n
. 

It’s straight to find that a matrix game MG = (S
m
, S

n
, A) 

is a special case of the bi-matrix game BG with B = A. 

In the context of bi-matrix game, the following theorem 
due to Nash is very basic as it guarantees the existence of an 
equilibrium point of the bi-matrix game BG. 

Theorem 2.2 (Nash existence theorem [8]). Every bi-
matrix game BG = (S

m
, S

n
, A, B) has at least one equilibrium 

point. 

As already mentioned that every matrix game can be 
solved by solving a suitable primal-dual linear programming 
problems, Mangasarian and Stone [9] established a similar 
result to show that an equilibrium point of a bi-matrix game 
can be obtained by solving an appropriate quadratic pro-
gramming problem. 

Theorem 2.3 (Equivalence theorem). Let BG = (S
m
, S

n
, 

A, B) be the given bi-matrix game. A necessary and suffi-
cient condition that (x

*
, y

*
) be an equilibrium point of BG is 

that it is a solution of the following quadratic programming 
problem. 

max  ( )
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Further, if (x
*
, y

*
, 

*
, 

*
) is a solution of the above prob-

lem then 
*
 = x

*T
Ay*, 

*
 = x

*T
By*. 

If let B = A, theorem 1.3 is reduced to a dual pair of lin-
ear programming that is equivalent to a matrix game. 

3. CONSTRA NED B -MATR X GAMES AND 
EQU VALENT QUADRAT C PROGRAMM NG 

There are certain game problems in real life where the 
strategies of players are constrained to satisfy several linear 
inequalities rather than being in S

m
 or S

n 
only. These decision 

problems lead to constrained games. 

Let S1 = {x R
m
, C x  c, x  0}, S2 = {y R

n
, D

T
y  d, y  

0}, where c  R
s
, d  R

t
, A, B R

m n
, C R

s m
, D R

n t
. Then 

the constrained bi-matrix games CBG is denoted as CBG = 
(S1, S2, A, B). Note that e

T
x = 1 or e

T
y= 1 can be rewritten in 

two inequalities. If B = A, then a constrained bi-matrix 
game degenerates into a constrained matrix game. 

Definition 3.1 (Equilibrium point of CBG). A pair (x
*
, 

y
*
)  S1  S2 is said to be an equilibrium point of the con-

strained bi-matrix game CBG if  

x
T
Ay

*
  x

*T
Ay

*
, 

and 

x
*T

By  x
*T

By
*
, 

for all x S1 and y S2. 

A main result due to of Charnes [1] in the constrained 
matrix game theory, as in usual matrix games, assert that 
every CMG is equivalent to two primal-dual linear pro-
gramming problems. 

Then a natural question is coming: Is there a quadratic 
programming problem equivalent to a given CBG? The an-
swer is yes. 

Since the constraints are linear, if not empty, the strategy 
set of Player I, namely S1 (respectively S2) is a convex set on 
S

m
 (S

n
). Let {x1, x2, …, xs} ({y1, y2, …, yt })be the vertices of 

S1 (S2), then we have the following theorem. 

Theorem 3.1 (Equivalence theorem of CBG). Let CBG 
= (S

m
, S

n
, A, B) be the given constrained bi-matrix game. A 

necessary and sufficient condition that (x
*
, y

*
) be an equilib-

rium point of CBG is that it is a solution of the following 
quadratic programming problem (QPP). 

max  ( )
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Further, if (x
*
, y

*
, 

*
, 

*
) is a solution of the above prob-

lem then 
*
 = x

*T
Ay

*
, 

*
 = x

*T
By

*
. 

Proof. Let S be the set of all feasible solutions of the 
above problem. Suppose S  . For any (x, y, , )  S, 

x
T
Ay   = ( aixi)

T
 Ay  ai  = ai(

T

ix Ay )  0. 

Similarly, x
T
By    0 and therefore we have x

T
(A+B)y 

   0. Now suppose that (x
*
, y

*
) is an equilibrium point 

of the CBG. Let 
*
 = x

*T
Ay

*
, 

*
 = x

*T
By

*
, then (x

*
, y

*
, 

*
, 

*
) 

 S and x
*T

(A+B)y
*
 

*
 

*
 = 0. Therefore, (x

*
, y

*
, 

*
, 

*
) is 

a solution of the above quadratic programming problem and 
the optimal value of the QPP is 0. 

Conversely, let (x
*
, y

*
, 

*
, 

*
) be a solution of the above 

QPP, then (x
*
, y

*
, 

*
, 

*
)  S and x

*T
(A+B)y

*
 

*
 

*
 = 0. 

Since * * *
0 and 0

T T

i jx Ay x By , then for arbitrary (x, 

y)  S1  S2, we have 
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*
  

*
 and x
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*
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and 

x
*T

Ay
*
  

*
 and x

*T
By

*
  

*
. 

Notice that x
*T

(A+B)y
*
 

*
 

*
 = 0, it’s straightforward 

to find that x
T
Ay

*
  x

*T
Ay

*
 = 

*
 and x

*T
By x

*T
By

*
 = 

*
. That 

is, (x
*
, y

*
) is an equilibrium point of the CBG. Here ends the 

proof. 

For a given CBG, if there is an equilibrium point of its 
corresponding BG satisfying the constraints then it certainly 
is an equilibrium point of the given CBG. But even if no 
equilibrium point of the corresponding BG satisfies the con-
straints, we can not ensure that the CBG must not have an 
equilibrium point. Here’s a simple example. Consider a bi-
matrix game with the following payoff matrices 

(1, 1) (2, 0) 

(0, 2) (1, 1) 

The game has only one equilibrium point in mixed form, 
i.e., (1/2, 1/2; 1/2, 1/2). For Player I, assume that the prob-
ability of the first strategy being selected must be greater 
than 0.6. It’s not difficult to find the equilibrium point of this 
constrained bi-matrix game. That is, (0.6, 0.4; 1, 0). 

Example 3.1 Consider a bi-matrix game with the follow-
ing payoff matrices: 

 (1, 1) (2, 0) (0, 2) 

(A, B)= (0, 2) (1, 1) (2, 0) 

 (2, 0) (0, 2) (1,1) 

Noting that this bi-matrix game is a modified version of 
the famous rock paper scissors game by adding ‘one’ to all 
players’ payoff in each situation, then it’s straight to find the 
unique equilibrium point, i.e., (1/3, 1/3, 1/3; 1/3, 1/3, 1/3). 
Now suppose that Player I faces with the following restric-
tion: 

x1  0.5. 

Apparently the previous equilibrium point is no longer 
feasible. Now Player I’s strategy space S1 {x R

m
, x1  0.5, 

e
T
x =1, x  0} is a triangle with three vertices, namely, {(1, 

0, 0), (1/2, 1/2, 0), (1/2, 0, 1/2)}. Solving the following quad-
ratic programming problem,  
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+

+
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+ + =
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R

 

we get x* = (1/2, 1/3, 1/6)
T
, y* = (1/3, 0, 2/3)

T
, * = 5/6, 

* = 7/5. 

4. A TWO-STEP METHOD FOR CONSTRA NED 
GAMES 

Consider a constrained bi-matrix game CBG, let {x1, x2, 
…, xs} ({y1, y2, …, yt })be the vertices of S1 (S2), then any x 

 S1 (y  S2) can be expressed by a convex combination of 
{x1, x2, …, xs} ({y1, y2, …, yt }. Given (x, y)  S1  S2, Player 

I’s payoff is 

( ) ( )

( ) ( )

1

1 1 1

1 1

( , , )
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T

T

i i j j

i j

T
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t

TT
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T

x Ay p x A q y

q

p p x x A y y

q

p x x A y y q

p A q

=

=

=

=

… … …

… …

 

where p, q  0 and e
T
p = e

T
q = 1. 

By same operation, Player II’s payoff can be rewritten as 

p
T
B q. So far, the constrained bi-matrix game has been trans-

formed into an ordinary bi-matrix game. 

Example 3.1 (continued). In this example, only Player I 

faces restrictions, hence 

( )

( )

1

1

'

1 1 / 2 1 / 2 1 2 0 1 2 0

0 1 / 2 0 0 1 2 1 / 2 3 / 2 1
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1 0 2
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T
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T

T

s m ns m

A x x A

B x x B

=

= =

= =

…

…

 

According theorem 1.3, solving the quadratic program-
ming problem that is equivalent to the bi-matrix game with 
payoff matrices (A , B ), 

max  ( ' ')

' 0

' 0

1 0
. .

1 0

,  0

,  ,

T

T

T

T

p A B q

A q e

B p e

e p
s t

e q

p q

+

=

=

R/

 

we get p* = (0, 2/3, 1/3)
T
, q* = (1/3, 0, 2/3)

T
, * = 5/6, 

* = 7/5. Not surprisingly, the two methods get the same 

result since ( )* 1/2,  1/3, 1/6
T

i i

i

x p x= =  and y* = q*. 

Just as already seen, ‘unconstrained’ or ‘constrained’ is a 

relative distinction, a constrained game is an ordinary game 

itself. As long as the strategy space and payoff function of a 

constrained game satisfy appropriate conditions, see Glicks-
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berg [10], then this constrained game exists equilibrium. And 

therefore we do not discuss this issue further here. 

CONCLUSION AND DISCUSSION 

In this paper we proposed two methods to deal with con-
strained bi-matrix games. One is solving equivalent quad-
ratic programming problems and the other is transforming 
constrained bi-matrix games into ordinary unconstrained bi-
matrix games. Unlike constrained matrix games, if the con-
straints change continuously, we still can not trace equilib-
rium of constrained bi-matrix games dynamically unless we 
are able to trace the change of strategy set dynamically. 
Moreover, constraints in actual game problems are not nec-
essarily linear. All these need further studies in the future. 
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