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Abstract: In this paper , for the nonlinear Cahn-Hilliard equation, we give its symmetry group by the approximate
generalized conditional symmetry. As the application of approximate generalized conditional symmetry, the initial-value
problem of the partial differential equations can be reduced to perturbed initial-value problem for a system of perturbed
first-order ordinary differential equations. By solving the reduced ordinary differential equations, we obtain the
approximate solutions of the initial-value problem of research equations. At the last, some exaples be given to show the

reduction procedure.
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1. INTRODUCTION

There are many nonlinear partial differential equations
(PDEs) with small parameters or perturbed equations arising
from the real world, so it is of great importance and interest
to find approximate solutions and extend the scope and depth
of the perturbation theory [1, 2]. There are ordinary methods
for studying the approximate solutions of perturbed
equations by the perturbation methods in combination with
the Lie group theory [3]. Recently, several symmetry based
perturbation methods have been developed to deal with the
perturbation properties of perturbed equations [4-8].
Actually, these methods are effective ways investigating
perturbed PDEs [9]. In ref. [10-12], the authors successfully
handle with the initial-value problem by the generalized
conditional symmetry (GCS) which was introduced by
Fushchych and Zhdanov [13], and independently by Fokas
and Liu [14]. In ref. [15], we have solved the approximate
symmetry reduction for initial-value problems of the
extended KdV-Burgers equations with perturbation.

In this paper, we intend to study the initial value problem

of the nonlinear Cahn-Hilliard equation [16] with
perturbation

u, = _(F(u)ux)x _8uxxxx’ 1)
ou(x; €)u, (1, x) + B(x;€)u(ty, x) = Y(x;€). 2

Here ¢, x are two independent variables and ¢ is a

scalar dependent one. The Cahn-Hilliard equation was
propounded by Cahn and Hilliard in 1958 as a mathematical
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model which describes the diffusion phenomena in phase
transition. Then the equation can characterize the process in
the context of the continuum theory of phase transitions, the
nonlinearity F(u) is the derivative of a double-well potential
with wells of equal depth and 0 <& <1 shows the
thickness of an interface separating the two preferred states
of the system. Later, many mathematicians considered the
Cahn-Hilliard type equation and have done lots of
remarkable results [17, 18], such as the perturbation of
solutions [19], the existence, stability and uniqueness of
solutions [20], etc. So this paper mainly researches the
initial-value problem of the Cahn-Hilliard equation by
approximate generalized conditional symmetry (AGCS).

If we treat the perturbed PDE

N, x,u,u,...,u,;€) = O(e”) (3)

as an Nth-order ordinary differential equations (ODEs) with

respect to variable X, where ,, =a_”,u2 _ 97U . then
' ox ox?

its general integral can be expressed (locally) in the form

u(t,x;8) =U (1, %,0,(1), 0, (D....., (1): ©), S

where }, (t),(j =1,..., N) are arbitrary smooth functions.

In order to integrate Eq. (3), it would be natural to
consider higher-order AGCSs which are linear in the

variables u,u,...u, of the form

0= 31Dy = 3 (01,0 + 2 (.5 =
u, =u. )
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After the AGCSs are found, Eq. (3) can be integrated to an
ansatz of the following form

u= Q. (t,x:6)¢,(). (6)

2. MAIN RESULTS

In what follows, the cases N =2.3.4.5 of AGCSs (5)

are studied, and all the possible inequivalent forms of Eq. (1)
which admit AGCSs (5) are described. Here we show the
classification results of Eq. (1) admitting second, third-,
fourth- and fifth-order AGCSs (5) as follows:

Theorem 1. Eq. (1) admits the second-order AGCSs of the

form

__ 9 _ ‘ " o Uo=U
O =n--=[u, - (a,(t,x)+& (o 1=

=0

if and only if it is equivalent to one of the following ones:

(@) u, =—((fu” + fou+ fu,), e, (7
n=u,; ®)
(i) u, =—=((fiu+ f)u,), — € ©)
n=u, —Sblux; (10)

u,= _fluxx —&u

(iii) 77 = uxx - (ao (t’ X) + 8b0 (ta )C))I/l - (al (ta X)
+ &b, (t,x))u.

are arbitrary constants and functions

Here f, 15, /5
a,(t,x),b,(¢,x)(i=0,1) satisfy the following systems of
PDEs respectively.

ay ==2f1a,,ay = f1g

a, =—-fia,, —2fia,, —2faa,,

by, =—6a,a,,.a,—6a,a,,, _8a12xa0 —6a,,.a,,
T Ay T 4a02x = fiby —4a,.4,,, —4a,,.a,
-2fa,b, —4aya,a,, - 4a1xa§ - 4a12a1xa0

—4a,a,.a,, -2 1 b, a,,
b, =-4aa,,, - 4al3a1x —=2fby, — 44y,
-10a,.a,  — 12a1a12x —4a,.a, —6a,a,, .,

— ) — 4404, — 6a12alxx —6a,,.a, —8aya,a,,

-2fab, —12a,.a, —2fa, b - fb,,.

The Open Cybernetics & Systemics Journal, 2014, Volume 8 1043

In the following, we will give the computational procedure.

According to the approximate generalized conditional
symmetry, we obtain the determining equation

Fe'+Fe'+Fe’ +Fe’ +Fe' +F,=0(e)

Eq. (11) stands for infinitesimals of the same order

for€”, so we omit the value of 7, F,, F,, F, . Here

Fy ==F,,u; =5a,(t,x)F,u; —[3a,(t,x)F,
+4a,(t,x)’ F, +4a, (t,x)F,
+6a,(t,x)F, ulu’ —[(7a,(t,x)a,(t,x)
+4a,, (t,x)F,ul+(a, (t,x)+2a,/(t,x)
+2a,(t,x)a, (t,x)F, +a,(t,x)]u,

—lay (,x) = a,, (t,0)F
—2a, (t,x)a,(t,x)Flu—3a,(t,x)" Fu’,

Fy = =Sb, (1, X)F,,u’ ~[6b, (6, ))uF,, +(3b,(t,%)
+4b, (t,x)+8a,(t,x)b,(t,x))F, Tu?
—[(7a,(t,x)b,(t,x)+7b,(t,x)a,(t,x)
+4b, (t,x))F u+10a, (t,x)a, (t,x)
+8a,(t,x)a,(t,x)a, (t,x)
+12a, (t,x)a, (¢,x)+6a,(t, x)’ a, . (t,x)
+4a,(t,x)a,, (t,x)+2Fb, (t,x)
+4a, (t,x)a,(t,x)* +12a,(t,x)a,(t,x)
+2Fb, (t,x)a,(t,x)+b,(t,x)

+4a,(t,x)a, . (t,x)+ Fb,_ (t,x)
+6a,(t,x)a,,. (t,x)+4a,, (t,x)a,(t,x)’
+6a,(t,x)a,  (t,x)+2Fa, (t,x)b,(t,x)
4y, (6,X) + a0 (X)),

—6a, (1, X)by (1, %) f,u” ~[4a,,(t,x)’

+ Fb,, (t,x) +4a,, (t,x)a,,(t,x)
+4a,(t,x)a,(t,x)a, (t,x)+2Fa,(t,x)b, (t,x)
+b,,(t,Xx) +4a,(t,x)a,, (t,X)a,(t,x)’

+4a, (t,x)a,(t,x)a, (t,x)
+6a,(t,x)a,(t,x)a, (t,x)+2Fa, (¢,x)b,(t,x)
+4a,(t,x)a,. (t,x)+4a, (t,x)a,(t,x)’
+a,,. (t,x)+8a,(t,x)a, (tx)°

+6Fa,(t,x)a,, (t,x)+6a, (t,x)a,. (t,x)u,
F,,F, are polynomials of the derivative of u.
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Set
F, =0, (12)
F =o. (13)

In above equations, the coefficients of the derivative of
u are equal to zero, so the theorem 1 is proved.

Theorem 2. Eq. (1) admits the third-order AGCSs of the
form

0=n2 =, —§<a,-(r,x)+sb,-(r,x>)u,-]£l,

U, =u.
if and only if it is equivalent to one of the following ones:
Gy U, =—((fu+ f)u,), —eu., (14)
M=y 15)

() t, = = fitd e = E
N =u, —[a,(t,x)+ &b, (t,x)]u,,

—[a,(t,x)+ &b, (t,x)]u,

—[a,(t,x)+ &b, (t,x)]u.

Here functions

a,(t,x),b,(t,x)(i =0,1,2)

following systems of PDEs respectively.
ay, =—fiag —2/,04a,,,
a, =—fia,, —2fia,a,, =2 faq,,

a, =-fa,, —2fa,a,,,

satisfy the

by, =—4a,a,a,, —6a,a,a,, —4a,a,a,,
—4a,a,.a,, —2fbya,, - 8aoazzx
—-2fiayb,, —4a,a,,, —4a,a,,
—6a,a,, — 4a0a22a2x — fibo
—6a,.a,, — 4a22azxa0 - fib,
—6a,.a,, —4a,.a, —4a,.a,,
T Ao

b, =-2fba, - 4ala2xa22 —-6a,q,,,
—-6a,a,a, . —4a,a,.a, —4a,a,a,,
- 4a12a2x —4a,a,, —4a,a, —8a,.a,,
—-21b,, —64a,a,,-2fab, - fb,,
—4a,a,,, —6a,a,,, —4a,a,a,,
- 8a1a22x - 4“12x —4a,,, —a,.,

- 4a2xa1xx H

Lietal.

b, =-12a,.a,, -2fb, —6a,a,, —6a,a,,
—4a,a,, - 4a1xa§ —4a,a,., —2fba,,
—4a,a,, —4a,a,, - 6a§a2xx —2fa,b,,
- 12a2a22x —-8a,a,a,, —6a,,, — f\b,,
—-10a,.a,, —4a,,, - 4‘1;“2;( D

The computational procedure of Theorem 2 is similar to
Theorem 1, so we omit it.

When Eq. (1) admits the fourth- and fifth-order AGCSs,
the linear equations can be obtained, so we leave out the two
cases. The following examples show the reduction
procedure.

Example 1. Approximate reduction of Eq. (7) to Cauchy
problem.

Integrating Eq. (8) yields the ansatz u(z, x; €)

u(t, x;€) =@, ()x + ¢, (0). (16)

Firstly, by calculating the approximate Lie symmetry of

1 =u,, in the following equation,
d
X =(C, (t,X)+€Cz(t,X))a—+[(m1(t,X)

X
d
+éem,(t,x))u +n,(¢,x)+ €en, (¢, x)]a—
u
so we obtain the following equation

[m2xxu + n2xx + (2m2x - C2xx )ux ]8

2
+ mlxxu + nlxx + (2m1x + Clxx)ux = 0(8 )

Set

m,,, =0,

n,., =0,

2m,, =§,,, =0,
mlxx =V,

. =0,

2m,, - ¢, =0.

Solving above equations, we obtain

m, = h, (t)x+ hg(¢),

m, = hy(t)x+ h, (1),

n, =hy(t)x+h, (1),

n, =h,(t)x+h, (1),

C =h,(O)x* +h, (O)x+h, (@),
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&, = hs(O)x? + hy(H)x + hyy (1),
Set
a(x;€) =&, (8, x) + €8, (1), %),

B(x;€) = —(m,(ty,x) + €m, 1y, X)),

v(x;:€) = n (8, x) + €n, (1, x).
Here h, (t,)=C, and yields the perturbed initial-value
conditions for Eq. (7)
[C,x” + Cx+ Cy, + £(Cox” + Cox + Cy ), (2, X)
—[Cx+Cy +&(Csx + Cy)Ju(ty, x) (17)
=Cx+C,+e(Cix+C,).

By inserting (16) into the initial-value problem (7) and (17),
we have the following Cauchy problem:

do, _ 3
d 2
9 (£ +2£0,(0)8,)’
" (18)

¢1 (to) = A] +£A2 + 0(82)5
0,(t,) = B, +€B, + O(g?).

A;, B,(i=1,2) are the arbitrary constants which are related
to C,(i=1,...,12).

_ C,C, — GG
b ng -C, G+ GG, ’
_C,C,+C,Cs —C,C, —C,Cy
B C82 -GG+ GG,

L GG -CC

(C82 -C, G +C7C12)2
+ 2CCy — GGy + CC, —C Gy, + GG
(ng - C, Gy "'C7C12)2

B = C.C, -GG, -GG

A2

3

1 C82 _Cqu +C7C12

b

B2

— C2C11 +C4C9 _C4C6 _C1C12 _Czcs _C3C10

C82 -GG+ GG,
+ GG, -CGC + GG
(C82 _CIICS +C7C12)2
+ 2C6C8 _C8C9 +C5C12 _C6C11 +C7C10 .
(C82 _CHCS +C7C12)2

The following two approximate solutions are given by
solving the Eqgs. (18)
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¢1(t):_M7(t)’
6.0y = Lo Jo+ 218+ 28 B,
TU2f 2fi(4 +ed)M ()
and

1
¢1(t)_M7(t)’
¢2(t)=_ﬁ+]‘2+2f131+2aﬁBz

2/ 2/ (A +ed)M@)

Kk
(4, +e4,)°

where A7 (y) :\/4f1f_
K= 4f1t0A12 + 8¢ft, 4,4, + 4<€‘2f1t0A22 —-1.

Then the two approximate solutions are obtained by
substituting the above expressions for functions

¢, (2),0,(¢) into (16).

Example 2. Approximate reduction of Eq. (14) to Cauchy
problem.

Integrating Eq. (15) yields the ansatz u(z, X;€)

u(t,x;€) =@, ()x> +,(Dx + ¢, (1) (19)

Applying the above algorithm, we can get the perturbed
initial-value conditions for Eq. (14)

[% Cox” +Ciyx+C,, + 8(% C,x*> +Cx
+Cp)u, (15, %) = [Cox + Cyy + £(Crx + Cy) Ju(?y, X) (20)
= %C4x2 +Cx+Cy + g(% Cx* +Cox+Cy),

By inserting (19) into the initial-value problem (14) and
(20), we have the following Cauchy problem:

de,

dt = _6.f1¢1(t) 5
o, _ _
(ﬁ—6ﬁ%m%m,
do

T;Z_ﬁ¢z(t)2 —2f2¢1(l‘)—2ﬁ¢1(2‘)¢3(2‘), 2]

o, (to) = QI +Q28 + 0(82),

q)z(to) = BI +Bz£ +0(82),
0,(t,) = N, + N,g + O(e”).
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are the constants which are related to

Qi’Bi’Ni
C,(i=1,..14).

CONCLUSION

In summary, the AGCS method is successfully used to
classify and construct approximate solutions of initial-value
problem for Cahn-Hilliard equations which admit certain
types of AGCSs. Therefore, it is interesting to study other
types of nonlinear PDEs with perturbation term by AGCSs
and we believe that some new results will be obtained.
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