
Send Orders for Reprints to reprints@benthamscience.net

12 The Open Cybernetics & Systemics Journal, 2014, 8, 12-16

 1874-110X/14 2013 Bentham Open

Open Access

Solution of UI based on the Large-Scale Embedded System

Wang Tiantian and Li Honglian*

Department of Electronic Information and Engineering, Beijing Information Science & Technology University, Beijing,
100103, China

Abstract: This article aims to provide a solution of UI (User Interface) of large-scale embedded systems which depends
on the PEG library. UI implementation of embedded systems requires a good portability, that no matter what kind of
target hardware, it does not require any software components with graphical output capability. PEG is abbreviation of
portable embedded GUI, which is a class library. As long as our environment with a C++ compiler and hardware which
can output graphics, you can run PEG, and this precisely is the most important point of the development of embedded
system. This article describes the PEG application in the embedded system, and aim to the large-scale embedded systems
we provides a solution, make the system has good portability, stability and maintainability.

Keywords: Embedded system, PEG, portable embedded GUI, UI solution.

1. EMBEDDED SYSTEMS AND PEG

 With the rapid development of science and technology,
embedded systems are being widely used in various
industries and fields of life. In the development of embedded
systems, the ultimate goal is a user-friendly system which
can make the human-computer interaction more efficient and
productive. The UI (user interface) of embedded systems
enables the users in achieving real-time output with good
portability. The PEG can reflect these characteristics,
irrespective of the kind of target hardware. It does not
require any software component as well as it demonstrate
graphical output capabilities, substantially reduce the burden
on the hardware, saving the cost of embedded systems, and
can be flexibly used in various systems.

 PEG is abbreviation of portable embedded GUI, which is
a class library. The PEG class library provides building
blocks for a powerful and extensible graphical user interface.
PEG is a library that is fully capable of supporting all of the
advanced GUI features we need today, while also
accommodating future enhancements.

 Due to the embedded system hardware constraints, such
as limited memory, memory recall mechanism is particularly
important [1]. PEG provides garbage collection mechanism
to efficiently ensure the memory is not leaked. The human-
computer interaction design need a lot of pictures and text,
in embedded systems, we call these pictures and text as
resource.

 For large-scale embedded systems, how to ensure good
management of resources, as well as system maintainability
and scalability, are we want to study. In this paper, we

*Address correspondence to these authors at the Department of electronic
information and engineering, Beijing Information Science & Technology
University, Beijing, China, 100103; E-mails: wangtiantian109@gmail.com
and lihonglian@bistu.com.cn

propose a solution of UI for the large-scale embedded system
design [2].

2. BASIC WORKING MECHANISM OF PEG

2.1. Widgets of PEG

 Since PEG is a class library for human-computer
interaction, hence the widget library is the core part of PEG.
PEG provides a set of widgets for our use containing a
button, label, radio button and text box (Fig. 1). These
widgets are almost always inherit PegThing, including our
most commonly used operations and needs.

Fig. (1). Relationship of widgets.

 PegThing is the base class from which all viewable PEG
objects are derived. While you may never create an instance
of an actual PegThing in your application, it is very possible
that you will derive your own custom control types from
PegThing. In any event, every window and control you use is
based on the PegThing, thus you will be using the public
functions of PegThing when programming with PEG.

 A basic precept in the design of PEG is that all graphical
objects, from the most complex tabbed notebook or table to
the simplest bitmapped button, share a small but significant
set of properties. Some of these basic properties include:
whether or not the object is visible; if the object has a parent

Solution of UI based on the Large-Scale Embedded System The Open Cybernetics & Systemics Journal, 2014, Volume 8 13

and who that parent is; if the object has children and who
those children are; if the user should be allowed to interact
with an object. These and other properties define how each
object will participate in your graphical presentation (Figs. 2
and 3). Class PegThing maintains this information about
each PEG object.

Fig. (2). Example of check boxes.

Fig. (3). Example of spread sheet.

 Widgets are all inherited PegThing, through overriding
the Draw() function to achieve what you need to draw,
through overriding the Message() function to define a certain
message that you need your program to do something. It is
this mechanism that allows us to customize for our needs and
style of their own parts.

2.2. About Portability

 We hope that applications or device drivers can be well
compatible in different plat-forms [3], which requires PEG
to take transplantation into account. In different operating
systems, the word length of the basic data type may not be
the same, so in PEG library, basic data types are redefined.
In the programming, you need to replace the corresponding
data types, such as we have to declare an integer, should be

written PEGINT num = 0; declare a Boolean type:
PEGBOOL is Right = TRUE;

 The following simple data types are used instead of the
intrinsic data types defined by the compiler to avoid conflicts
when running on CPUs with differing basic word length and
data manipulation capabilities. In all cases, longer bit length
types on those machines that do not accommodate 8 or 16 bit
data values may replace shorter bit length types. The
following definitions, contained in the file pegtypes.hpp,
may need to be modified [4] to match the word length of
your target CPU. The comment next to each data type
describes the storage requirements PEG requires for each
type:

PEGBYTE signed 8-bit value
PEGUBYTE unsigned 8-bit value
PEGINT signed native int (size unspecified)
PEGUINT unsigned native int (size
unspecified)
PEGSHORT signed 16-bit value
PEGUSHORT unsigned 16-bit value
PEGLONG signed 32 bit value
PEGULONG unsigned 32 bit value
PEGCHAR 8 or 16 bit character storage type
PEGBOOL TRUE/FALSE value

2.3. About Real-Time

 PegMessage is a data structure used to send and receive
messages. PegMessageQueue is the coordinator of message
transport in your PEG application. PegMessageQueue is a
simple encapsulated FIFO message queue with member
functions for queue management. PegMessageQueue provides
functions for sending and receiving PegMessage formatted
messages. PegMessageQueue also performs timer maintenance
and miscellaneous housekeeping duties.

 PEG uses the message management mechanism to
achieve real-time. When user interacts with the machine,
PEG send the user's actions in the form of message, and the
message queue will process it by sending this message to a
widget which is needed to response. For example, the most
common situation is when a user clicks button. When a user
clicks a button, it will generate a corresponding message,
this message includes the source widget which sends this
message, the target widget which needs to receive this
message, as well as some of the necessary parameters, and
then the message queue will distribute it according to the
information [5].

 How do messages get into the PegMessageQueue? These
are placed in the message queue from one of the three
sources:
• Input devices, such as a mouse, touch screen, or

keyboard.
• Any other task in the multitasking system.
• From PEG objects themselves.

 The messages placed in PegMessageQueue are the
driving force behind the graphical interface. These messages
contain notifications and commands which cause the

14 The Open Cybernetics & Systemics Journal, 2014, Volume 8 Tiantian and Honglian

graphical elements to redraw themselves, remove themselves
from the screen, resize themselves, or perform any number
of various other tasks. Messages can also be user-defined,
allowing you to send and receive a nearly unlimited number
of messages whose meaning is defined by you. For example,
it would be very common to have a graphical element send a
message to another task in the system requesting data for
display. The target task receives the request and responds,
sending the response message back to the graphical element.
[6].

 PEG defines its own message format. The PEG message
format never changes from one operating system to another
or when running on the desktop vs. running on your target.
When running with a real-time operating system, PEG
implements the PegMessageQueue by utilizing the
underlying operating system services. To your application
level software, it always appears simply as PEG messages
running through the PegMessageQueue, regardless of the
underlying implementation. This of course helps to make
your application software completely portable across
operating systems.

 Integrated versions of PEG provide PegMessageQueue
functionality based com-pletely on the underlying RTOS
message services. This implementation is invisible to the
external system software, allowing PEG applications to be fully
portable between development and real-time environments.

 The following example creates and sends a new
PegMessage. The message will cause the target object to
resize.

void SomeObject::ResizeWindow(PegWindow
*pTarget, PegRect NewSize)
{
 PegMessage NewMessage(pTarget, NewSize);
 MessageQueue()->Push(NewMessage);
}

 The following example window creates a periodic timer
when the window is made visible, receives periodic timer
messages, and destroys the timer when the window is
hidden:

MyWindow::Message(const PegMessage &Mesg)

{
 switch(Mesg.Type)
 {
 case PM_SHOW:
 SetTimer(TIMER_1, 100, 100);
 PegWindow::Message(Mesg);
 break;
 case PM_HIDE:
 KillTimer(TIMER_1);
 PegWindow::Message(Mesg);
 break;
 default:
 return PegWindow::Message(Mesg);
 }
 return 0;
}

3. ADVANTAGES OF WORK ON THE LARGE-
SCALE EMBEDDED SYSTEM

 In the face of large-scale embedded systems, such as
complex industrial embedded applications, PEG can
highlight some of its advantages. On the one hand, PEG has
its own working mechanism for making our program
structure clearer and easier to manage. On the other hand, the
mechanism of processing resources that contains the text and
pictures determines [7] when the program is large-scale
those resources will also be well managed.

3.1. Advantages of Programing Mechanism

3.1.1. Parent, Child, Sibling

 These terms refer to the relationship between the
windows, controls, and other items that are all part of your
interface. A control that is attached to a window is termed a
Child of that window. Likewise, the window that contains
the control is termed the Parent window. If there are several
controls attached to the same window, those controls refer to
each other as siblings.

 While we have just described the most common case,
there is nothing internal to PEG that prevents a window class
such as PegWindow from being the child of a control, such
as a PegButton. In fact, it is often very useful to construct
custom objects using exactly this type of parent-child
relationship.

 Some GUI platforms place restrictions on the number of
parent-child generations that can be nested within the same
window, or even within a single application. PEG imposes
no such restrictions, nor will anything prevent an object that
is a parent ob-ject in one case from becoming a child of
another object in a different case [8]. This is a powerful
feature of PEG, because it allows you to re-use custom
objects that you create in a variety of different ways.

3.1.2. Garbage Collection Mechanism

 Dependent on the PEG library, we will add some widgets
on the window by Add() function, by default those widgets
such as buttons are child widgets of the window, and while
we destroy the window, the garbage collection mechanism of
PEG will make all the widgets which add on the window
destroyed out. This can ensure unnecessary memory leak.
[9]. We know that in the embedded systems development,
especially in some industrial applications, the problem of
memory leaking is immeasurable. For example, some
machines used in measuring the density or the gas
composition, once started, it will not be possible to shut
down or restart for ten years, if it has been running a
memory leak. It would lead to insufficient system memory
collapse after a long run, bringing huge economic losses.

3.2. Management of Resources

 The fonts, bitmaps, strings, and colors we utilize in our
application are called Resources. In many ways resources are
independent of the application. We can change and modify
our resources to change the user interface without making
any changes to the application software. We can even change

Solution of UI based on the Large-Scale Embedded System The Open Cybernetics & Systemics Journal, 2014, Volume 8 15

our resources “on the fly” when the system is running. An
example of this would be to change the active language or
color theme of the application [10].

 PegResourceManager manages the system resources.
PegResourceManager allows us to add, remove, and modify
resources at compile and runtime. Resources are registered
with the ResourceManager, where they are assigned a
resource ID. The application software always refers to a
resource using the resource ID rather than using a direct
reference to a font or bitmap or string. This abstraction is
what makes it possible to easily modify your resources
without requiring any changes to the application software
[11].

 When the project is large enough, we can still intuitively
and objectively manage and control resources by
WindowBuilder. WindowBuilder is a graphical user
interface tool [12], which allows to type any ID name
desired for each instance of each resource type (Fig. 4).

4. CURRENT & FUTURE DEVELOPMENTS

 Since PEG has good portability and real-time, making the
PEG library can be applied to UI development of embedded
systems.

 In addition, the PEG has a special garbage collection
mechanism and a unique resource management capacity for
large-scale embedded systems, we have therefore suggested
a solution depending on a PEG library which demonstrate
better performance.

CONFLICT OF INTEREST

 The authors confirm that this article content has no
conflicts of interest.

ACKNOWLEDGEMENTS

 Declared none.

REFERENCES
[1] P. Koopman, “Embedded system design issues (the rest of the story),

in Proc. IEEE Int. Conf. Computer Design. VLSI Computers
Processors, Austin, TX, pp. 310-317, October 1996.

[2] P. Brelet, A. Grasset, P. Bonnot, F. Ieromnimon, D. Kritharidis,
and N. Voros, “System level design for embedded reconfigurable
systems using morpheus platform,” in [VLSI (ISVLSI), 2010 IEEE
Computer Society Annual Symposium on], pp. 500-505.

[3] J. Saib and A. Suzuki, “GUI resource editor for an embedded
system”, U.S. Patent 6,429,885. 2002-8-6.

[4] J.A. Morgan, and C. Venkatraman, “Embedding web access
mechanism in an appliance for user interface functions including a
web server and web browser”, U.S. Patent 5,956,487. 1999-9-21.

[5] K. Hines, and G. Borriello, “A geographically distributed
framework for embedded system design and validation”, in
Proceedings of the 35th annual Design Automation Conference.
ACM, 1998: 140-145.

[6] J.G. D'Ambrosio, and X.S. Hu, “Configuration-level hardware/
software partitioning for real-time embedded systems”, Hardware/
Software Codesign, 1994, Proceedings of the 3rd International
Workshop on. IEEE, 1994, pp. 34-41.

[7] F. Slomka, M. Dörfel, R. Münzenberger and R. Hofmann,
“Hardware/software codesign and rapid prototyping of embedded
systems”, IEEE J. Des. Test. Comput., vol. 17, no. 2, 2000, pp. 28-
38.

[8] S.R. Lewallen, “Method, system, and program for generating a
graphical user interface window for an application program”, U.S.
Patent 6,801,224. 2004-10-5.

Fig. (4). PEG window builder.

16 The Open Cybernetics & Systemics Journal, 2014, Volume 8 Tiantian and Honglian

[9] G. Panarello, J.W. Bermann, A. Koifman, and J.C. Scano,
“Platform independent enhanced help system for an internet
enabled embedded system”, U.S. Patent 6,289,370[P]. 2001-9-11.

[10] R.J. Wolf, “User interface with embedded objects for personal
computers and the like: U.S. Patent 5,838,321[P]. 1998-11-17.

[11] A.R. Allouche, “Gabedit-a graphical user interface for
computational chemistry softwares”. J. Comput. Chem., vol. 32, no.
1, 2011, pp. 174-182.

[12] L.J. Farrugia, “ORTEP-3 for Windows-a version of ORTEP-III
with a Graphical User Interface (GUI)”, J. Appl. Crystallogr., vol.
30, no. 5, 1997, pp. 565-565.

Received: July 23, 2014 Revised: August 13, 2014 Accepted: August 16, 2014

© Tiantian and Honglian; Licensee Bentham Open.

This is an open access article licensed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/)
which permits unrestricted, non-commercial use, distribution and reproduction in any medium, provided the work is properly cited.

