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Abstract: As one of the core parts of Prognostics and Health Management (PHM) technologies, residual useful life 

(RUL) prediction is a very important concept in decision making and contingency mitigation. With life prediction models, 

researchers could obtain the prediction RUL of different objects. However, since sometimes there will be several available 

prediction models to be chosen, evaluation methods or selection methods) for life prediction models should be proposed 

to help choosing models that suit for certain objects. The most important factors that affect the performance of prediction 

models include prediction accuracy, data fitness, model complexity and parameter sensitivity. This paper presents some 

common evaluation methods for life prediction models that have already been used in this area.  
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1. INTRODUCTION 

Today’s manufacturers face strong pressure on maintain-
ing and supporting their complex, intelligent products since 
it becomes harder and harder to make right decisions. The 
high reliability and long life-circle products nowadays are 
really hard to fail, however, it will be a great disaster if a 
complex engineering system shut down suddenly. Predicting 
the precise failure time becomes more and more important. 
Therefore, Prognostics and Health Assessment (PHM) tech-
nology is proposed to solve these problems from the begin-
ning to the end.  

 Prognostics and Health Assessment (PHM) technology 
mainly consists data acquisition, fault detection, fault diag-
nostics and prognostics, RUL prediction methods. It has al-
ready been widely induced in the area of aerospace and avia-
tion industry, electronic engineering industry and even mili-
tary industry. Prognostics is an engineering discipline fo-
cused on predicting the time at which a system or a compo-
nent will no longer perform its intended function with cer-
tainty [1]. Prognostics predicts the future performance of a 
component by assessing the extent of deviation or degrada-
tion of a system from its expected normal operating condi-
tions [2]. For the RUL prediction methods, prediction mod-
els is the most important part. Different models suit for dif-
ferent objects. There are mainly two kinds of models that 
have already been commonly used in this area: physical 
models and data-driven models. 

 Model selection methods have been developed on the 
condition if there are several prediction models that all work 
for the certain object. An evaluation guideline is needed to 
determine which prediction model is the best one based on 
the requirement. Some common factors that would have in-
fluence on the performance of prediction result include 
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Fig. (1). Degradation data. 

prediction accuracy, data fitness, model complexity, parame-
ter sensitivity and so on.  

2. EVALUATION METHODS BASED ON PREDIC-
TION ACCURACY 

In some real applications, prediction results based on 
NN, ARIMA and SVM etc. are a series of certain values, so 
it’s called point prediction. Fig. (1) presents a sample of the 
point prediction. Every red circle in the plot represents a 
certain prediction value while the blue line represents the 
real life distribution.  

For this kind of prediction methods which have certain 
values as the final results, the prediction accuracy-based 
method is the best way to evaluate the effectiveness of the 
prediction model. The differences between real life distribu-
tion and prediction values could reflect the accuracy. Some 
performance indicators are shown below: 

Root Mean Square Error (RMSE) 

RMSE is a very common indicator for the model predic-
tion accuracy evaluation. The smaller the RMSE is, the bet-
ter performance the model has. Meanwhile, this value also 
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could reflect the dispersion degree of the data. The smaller 
the RMSE is, the smaller the dispersion degree is. 

         (2.1) 

Square Sum Error (SSE) 

SEE is the summary of the square of the prediction error. 

It’s more sensitive to the vibration of the relative error since 

the square enhances the error.  

     (2.2) 

Mean Absolute Error (MAE) 

The purpose of having absolute value here is to avoid the 

positive and negative error offset. This indicator has a great 

value on evaluating the model prediction accuracy. However, 

it can’t reflect the minor changes of the prediction error. The 

sensitivity of the MAE could be improved by increasing pre-

diction error.  

         (2.3) 

Percent Error (PE) 

PE is a percentage value which is the ratio of the true 

value and the prediction value. 

           (2.4) 

Mean Percent Error (MPE) 

MPE is the average value of PE. It could be seen that the 

positive and negative offset makes the final error smaller 

than it should be. 

        (2.5) 

Mean Absolute Percent Error (MAPE) The absolute val-

ue avoids the offset problem so the MAPE is a reasonable 

indicator. 

       (2.6) 

where,  donates the true degradation value that has been 

monitored;  donates the prediction value;  is the number 

of all observation points.  

 The former three indicators above use standard statistical 
metrics, the smaller the indicator is, the better performance 
the model has. However, since there is not a unified guide-
line to judge how small the indicator is, an effective result 
could not be obtained when we evaluate different models. 
The later three indicators use relative guideline. These indi-
cators all have a unified guideline, which is the ratio of the 
true value and the prediction value so that they are not af-
fected by the dimensions.  

 Most of the papers about life prediction models used 
some of these indicators as their evaluation guidelines. For 
the same object, if the indicators of the new model are small-
er than the old ones, it means the model they proposed has 
better performance on that situation. It is noted that a predic-
tion method is not valuable if it only has high accuracy on 

some certain points. Actually, an efficient prediction model 
should have high prediction accuracy on all points.  

 In some other situations, point prediction can not de-
scribe the uncertainty of the prediction, which is the natural 
character of prediction method. In a sense, a prediction mod-
el without considering the uncertainty is meaningless. The 
prediction result of every single point should be an interval. 
Commonly, the uncertainty could be derived from model 
structure or Monte-Carlo Bootstrap method. The research 
about the prediction uncertainty have been discussed in some 
papers [3-5]. Fig. (2) presents a sample of prediction model 
of uncertainty prediction. The red circle is the mean value of 
prediction while it also shows the interval of every predic-
tion point.  

Saxena A, et al. [6] presented several indicators for eval-

uation of life prediction models. The  indicator is the 

most widely used one. It’s could be defined as: 

   (2.7) 

         (2.8) 

 

Fig. (2). Example of uncertainty prediction. 

where,  donates the real life of sample ;  donates 
the first observation point;  is the window controller and  
is precision controller. Fig. (3) shows this indicator when 

.  

 

Fig. (3).  indicator when  

 In Fig. (3),  means the real RUL of sample  at time 

 while  donates the prediction value. We can see that 

this indicator allows larger error when the sample in its early 

time and the later the smaller it allows. In real application, 

prediction value larger than real RUL always leads to worse 



Review of Common Evaluation Methods for Life Prediction Models The Open Cybernetics & Systemics Journal, 2014, Volume 8       1221 

results. Base on this, T.Y. Wang [7] presents another rule in 

their life prediction method. It’s defined as below: 

           (2.9) 

     (2.10) 

where, , . It is obvious that 

this indicator gives more punishment when the prediction is 

larger that real value.  

3. INFORMATION CRITERION 

Information Criterion is a model selection approach. It’s 
a measure of the relative quality of a statistical model for a 
given set of data. Information Criterion (IC) deals with the 
trade-off between the goodness of fit of the model and the 
complexity of the model. Both of these two indicators could 
be used to evaluate the prediction model.  

 Akaike et al. [8] proposed the first information criterion 
method called Akaike Information Criterion in 1974. On the 
basis of AIC, N. Sugiura [9] proposed another method 
named as AICc in 1978. For any statistical model, the AIC 
value is defined as: 

           (3.1) 

The AICc value is defined as: 

         (3.2) 

where,  donates the number of the parameters in the model; 

 donates the sample size and  is the maximized value of 

the likelihood function for the model. Thus, the AICc is AIC 

with a greater penalty for extra parameters in the statistical 

model.  

 Also in 1978, the Bayesian Information Criterion (BIC) 

was developed by G.E. Schwarz [10], who gave a Bayesian 

argument for adopting it. The BIC could be describe as: 

      (3.3) 

when  is large, the BIC could be approximately equal to: 

         (3.4) 

 The Deviance Information Criterion (DIC) is a hierar-

chical modeling generalization of the AIC and BIC. 

 Define the deviance and expectation as: 

        (3.5) 

            (3.6) 

where  are the data,  are the unknown parameters of the 

model and  is the likelihood function.  is a constant 

value that cancels out in all calculations that compare differ-

ent models, which does not need to be known. There are two 

calculations in common usage for the effective number of 

parameters of the model, described by Spiegelhalter et al. 

[11] and Gelman el al. [12] respectively: 

            (3.7) 

           (3.8) 

 Then, the DIC is described as: 

        (3.9) 

 The Focused Information Criterion (FIC), unlike most 

model selection strategies, does not attempt to assess the 

overall fit of candidate models but focuses attention directly 

on the parameter of primary interest with statistical analysis 

for which competing models lead to different estimates for a 

certain model. It was first developed by Gerda Claeskens  

et al. [13] and Nils Lid Hjort et al. [14] in two discussion 

articles.  

 Take Akaike Information Criterion as an example to il-

lustrate how to apply the information criterion into real ap-

plication for model selection. Starting with a set of candidate 

prediction models, and then find the corresponding AIC val-

ues of each model. Since there will almost always be infor-

mation loss due to using on of the candidate models to repre-

sent the real model, which generates the data, the one model 

that could minimize the loss will the best one among all oth-

ers. Because of different requirement, the model cannot be 

chosen with certainty but it should minimize the estimated 

information loss in this single situation.  

 Donate the AIC values of all candidate models as AIC1, 

AIC2, AIC3,…,AICN. AICmin is the minimum of all values. 

Then the relative probability that the ith candidate model 

minimizes the estimated information loss  can be de-

scribed as below:  

        (3.10) 

 Although the model with the minimum AIC value is the 

best one among all others, it still should be considered if 

there are any other  values are very close to 1. The closer 

the  value to 1, the fewer information loss that the model 

could have. Then there are three choices: 

Gather more data to distinguish the top models more 

clearly; 

Simply conclude that the data is insufficient to support 

selecting one model among the top models. 

Take a weighted average of the top models based on the 

 value of each model. Then do statistical inference based 

on the weighted multiple models [15]. 

 It should be noted that if all candidate models have the 
same numbers of unknown parameters, the result of using 
AIC method might at first be very similar to using likeli-
hood-ratio test.  

4. PARAMETER SENSITIVITY ANALYSIS 

Parameter sensitivity means that the model results can be 
highly correlated with an input parameter so that small 
changes in the parameter could result in significant changes 
in the output [16]. Crick et al. [17] made a distinction be-
tween important parameter, whose uncertainty contributes 
substantially to the uncertainty in assessment results, and 
sensitive parameter, which have a significant influence on 
assessment results. For life prediction models, it will be 
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much harder to get a good result if the model has too many 
high sensitive parameters.  

 One method for parameter sensitivity is called partial 

sensitivity analysis. It tests the changing of the model output 

by changing a single parameter value. Since it only analyzes 

one parameter, this method is relatively easy to accomplish. 

The partial parameter sensitivity of  in model  at  

could be obtained from: 

           (4.1) 

 However, partial sensitivity analysis does not consider 
the output changing caused by the parameters interactions 
since most models have more than one parameter. The natu-
ral limitation of this method makes it not suit for many pre-
diction models that have many parameters. The global sensi-
tivity analysis method could solve this problem. The main 
differences between partial method and global method are: 

Global method considers the effect of different value of 
one parameter for sensitivity analysis, which is more reason-
able. 

Global method can obtain the integrated sensitivity of all 
parameters.  

 Since the global sensitivity analysis is more practical in 
real applications, many methods have been proposed. Mckay 
et al. [18] proposed a multiple regression method; M.D. 
Morris [19] named his method as Morris method; Cukier et 
al. [20] proposed a Fourier Amplitude Sensitivity Test 
(FAST) method.  

CONCLUSION 

RUL prediction has already had more and more attention 
from the academia and engineering. A good evaluation 
method for these prediction models could help people find 
their most suitable models faster. This paper presents some 
common evaluation methods that had already been used in 
some papers. However, they all just consider only one factor 
that could have influence on prediction model performance. 
Therefore, a method that could consider all factors is still 
needed to be built in the future. 
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