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Abstract: Classification learning problem on hypergraph is an extension of multi-label classification problem on normal 

graph, which divides vertices on hypergraph into several classes. In this paper, we focus on the semi-supervised learning 

framework, and give theoretic analysis for spectral based hypergraph vertex classification semi-supervised learning algo-

rithm. The generalization bound for such algorithm is determined by using the notations of zero-cut, non-zero-cut and 

pure component. Furthermore, we derive a generalization performance bound for near-zero-cut partition with optimal pa-

rameter . 
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1. INTRODUCTION 

Spectral clustering of weighted graph, an important com-
ponent of spectral graph theory and statistic learning theory, 
has been widely used in many fields, such as computer net-
work, data mining, image segmentation and ontology simi-
larity computation (see [1-7]). Hypergraph is a subset system 
for limited set, which is the most general discrete structure, 
and it is the generalization of the common graph. For many 
practical problems, adopting the concept of hypergraph is 
more usefully than adopting the concept of graph. At pre-
sent, the model of hypergraph has been applied in many 
fields, such as: VLSI layout, electricity network topology 
analysis. The goal of classification algorithm on hypergraph 
is to divide vertices into several classes, and spectral method 
may play a key role in it (see [8-11]). Some applications on 
such classification can be referred in [12-18].  

Let V={v1,v2,…,vm} be a limited set, E is family of subset 

of V, i.e., E 2
V
. Then H=(V,E) is a hypergraph on V. the 

element of V is called a vertex, the elements of E is called a 

hyperedge. Let V  be the order of H, E be the scale of H. 

 

e  is basic number of hyperedge e. r(H)=
j

max
 
e
j

is rank of 

hyperedge e, and s(H)= 
  
min

j

e
j

 lower rank of hyperedge e. 

If 
 

e =k for each hyperedge e of E (that is r(H)=s(H)=k), then 

H is a k-uniform hypergraph. If k=2, then H is just a normal 

graph. 

A hypergraph H is called a simple hypergraph or a 

sperner hypergraph, if any two hyperedges are not contained 

with each other. Let '
H =(V, '

E ) is a hypergraph on V, if  

 

 

 
 

 

'
E E, then '

H  is a part-hypergraph of H. For S V, 

H[S]={e E:e S} is called a sub-hypergraph of H induced 

by S. 

Hypergraph H can be represented by graph by using the 

set of vertices to represent the elements of V. If 
j
e =2, using 

a continuous curve which attach to the elements of ej to rep-

resenting ej; If j
e =1, using a loop which contains ej to rep-

resent ej; If j
e 3, using a simple close curve which con-

tains all the elements of ej to represent ej. 

In this paper, we assume H is a weighted hypergraph, 
each edge given a weight w(e). The degree of vertex vj in 
hypergraph H is denoted as  

deg ( )
j
H

 = 

  

w(e)h(v,e)
e E

,  

where,  

( , )h v e  = 
1,

0,

if v e

if v e
. 

Let ( )e =

  

h(v,e)
v V

. Then, the normalized laplacian 

L(H)   
m m

 on hypergraph H is defined by: 

( )
ij
L H = 

w(e)
{i, j} e

1

(e)
i j

deg
j
(H ) otherwise

. 

Fixed m scaling factor Sj (j=1,…,m) (Normally, we can 

choose S=I, or Sj =
  
deg

j
(H ) ), Let S=diag({Sj}). Then S-

normalized Laplacian on hypergraph is given as: 

( )L H
S  =

 1/ 2 1/ 2( )L HS S . 

The corresponding regularization is relying on: 
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f
,k

T L
S
(H ) f

,k
=

1

2

1

(e)
e E

w(e)(
f

j ,k

S
u

f
j ',k

S
v

)2

{ j , j '} e

. 

The definition of function f will be given later. It implies 

that, if vertices j, j’ contained in the same hyperedge, then 

they have higher similarity and it is possible to be classified 

in the same class. 

Now, we give the following definition for component on 

hypergraph: A sub-hypergraph H0=(V0, E0) of H is called 

pure component, if H0 is connected, E0 is induced by restrict-

ing E on V0, and the labels y have identical values on V0. A 

pure sub-hypergraph H’=
1

q

ll
H

=

 of H divides V into q dis-

joint sets V=
1

q

ll
V

=

such that each sub-hypergraph Hl=(Vl, El) 

is a pure component. Denote by ( )
i l
H = ( ( ))

i l
L H the i-th 

smallest eigenvalue of ( )
l

L H . 

For example, if all hyperedges of H which connect verti-

ces with different labels are removed, then the resulting sub-

hypergraph is a pure sub-hypergraph. For each pure compo-

nent Hl, its first eigenvalue 
1( )

l
H  is always zero. The sec-

ond eigenvalue 
2 ( )

l
H > 0 since 

l
H  is connected.  

Let Y be output space, which contain K possible values, 

and each value represents a class. Each vertex vj on hyper-

graph corresponding to a output value yj. Zn={ji:1 i n} is 

n indices random draw from {1,…,m} uniformly and without 

replacement. Manually label the n vertices 
ij
v  with labels 

ij
y Y, and then automatically label the remaining m-n ver-

tices. The aim of transductive classification learning on hy-

pergraph is to estimate the labels on the remaining m-n verti-

ces. 

With fixed y={y1,…,ym}. The goal is to reconstruct it 

from subset of labels. In statistic learning theory setting, la-

bel yj is regarded as vector in K , i.e., yj=k means yj is cor-

responding to vector fj={
,1jf ,…, 

,j Kf }, where k-th entry is 

1, all others are 0. We can decode the corresponding label 

estimation ˆ
j
y  as: 

ˆ
j
y = ˆ( )

j
y f = ,argmax{ : 1, , }j k

k

f k K=
. 

Let yj be a true lable,  

( )I  = 
1,

0,

if is true

if is false
, 

Then, the error for classification is: 

( , )
j

err yjf =
ˆ( ( ) )

j
I y yjf . 

For estimating the concatenated vector f=[fj]= 

[
,j kf ] mK via a subset of labeled vertices, we need to 

impose restrictions using a quadratic regularizer: 

T

Kf Q f = f
,k

T
K

1
f
,k

k=1

K

, 

where, K 
m m

is full rank positive definite kernel matrix, 

,k
f ={

1,kf ,…, 
,m kf }

m

. i.e., the predictive vector for each 

class k is regularized separately. Note that we use K to de-

note the kernel matrix and K to denote the number of classes. 

 For a fixed vector f mK , we use loss function 

( , )
j
yjf  to measure the quality of its component fj 

={
,1jf ,…, 

,j Kf } K . Thus, the empirical risk on Zn, sub-

ject to T

K
f Q f  is given by: 

    

f̂ (Z
n
)= arg min

f mK

[
1

n
( f

j
, y

j
)+ f

T

j Z
n

Q
K

f ] ,       (1) 

where, >0 is a regularization parameter. We are interested 

in the following special class of loss function in this paper:  

( , )
j
yjf =

0 , ,

1

( , )
j

K

j k k y

k

f
=

, 

where,  

,a b= 
1,

0,

a b

a b

=

.  

Let 
1 0 ( , )x y  be a sub-gradient of 

0 ( , )x y with respect 

to x. We need the following assumption: 

Assumption 1： There exist positive constants a, b, and 
c such that 

(1) 
0 ( , )x y  is non-negative and convex in x. 

(2) When y=0,1, and
0 ( , )x y a,

1 0 ( , )x y b. 

(3) c=inf{x: 
0 ( ,1)x a }-sup{ x: 

0 ( ,0)x a }. 

We first give classification error on hypergraph as follows: 

Theorem 1. Consider (1) with loss function satisfying 
Assumption 1. Then for p>0, the expected generalization 
error of the learning algorithm (1) on training samples Zn 
(uniformly drawn without replacement form hypergraph ver-
tices {1,…,m}) can be bounded by: 

   

E
Z

n

1

m n
err( f̂

j
(Z

n
), y

j
)

j Z
n

 

1

1 1
inf [ ( , ) ]

mK

m
T

j j K

j

y
a m =

+
f

f f Q f +
( )

( )
trp p
b

nc

K
, 

where 
n
Z ={1,…,m}-Zm,  

( )tr
p
K = 

   

(
1

m
K

j , j

p

j=1

m

)1/ p
, 

and ,j j
K  denoted as j-th diagonal entry of matrix K. 

2. GENERALIZATION BOUND WITH HYPER-

GRAPH -CUT  

For fixed label y={yj}j=1,…,m on V, the hypergraph cut for 

the S-normalized Laplacian 
   
L

S
(H )  as: 
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( , )Scut L y = 

  

1

2

1

(e)
e E

w(e)(
1

S
j

+
1

S
j '

)
{ j , j '} e

 

+ 

  

1

2

1

(e)
e E

w(e)(
1

S
j

1

S
j '

)2

{ j , j '} e

. 

In this section, we apply Theorem 1 to analyze hyper-
graph learning by using hypergraph-cut.  

The learning theoretical definition of hypergraph-cut pe-
nalizes a normalized version of between-class hyperedge 
weights on one hand, and penalizes within-class hyperedge 
weights when such a hyperedge connects two vertices with 
different scaling factors on the other hand. For un-normalized 
Laplacian, we delete the second term on the right hand side 
of hypergraph-cut definition, i.e., it only penalizes weights 
corresponding to edges connecting the vertices with different 
labels. Under such situation, the learning theoretical defini-
tion corresponds to the hypergraph-theoretical definition: 

( , )Scut L y =
1

(e)
e E

w(e)
{ j , j '} e

. 

According to the learning theoretical hypergraph-cut 
definition, the generalization result for the estimator in (1) 
with K defined is given: 

1 1 1/2 1/2( ) ( ( ))K S L H L H= + = +
S

S I S
.      (2) 

where, > 0 is called a tuning parameter in order to ensure 

that K is strictly positive definite. The corresponding regu-

larization condition can be regarded as: 

   

f
T
Q

K
f = (

f
k , j

2

S
jj=1

m

+
1

2

1

(e)
e E

w(e)(
f

j ,k

S
u

f
j ',k

S
v

)2

{ j , j '} e

)
k=1

K

.

 

Usually, other trick is by setting K
-1

= ( )
S
L G+I . The cor-

responding conclusions are similar to that of (2). 

Note that the bound of Theorem 1 depends on  and K, 

and this inspires us to consider the more detailed bound with 

optimal . The assumption is stated as follows which is 

used for our analysis.  

Assumption 2 Consider (1) with regularization condition 
(2).  is loss function and satisfies Assumption 1 and 

0
(0,0) =

0
 (1,1) = 0. 

The Assumption 2 on the loss function here holds for the 
least squares method and other standard loss functions such 
as SVM. 

Theorem 2 Consider (1) with Assumption 2 is satisfied. 
Then for any p> 0, there exists a sample independent regu-
larization parameter  such that the expected generalization 
error can be bounded by: 

where, s =

  

S
j

1

j=1

m

. 

In the following context, we will give some applications 
of examples for Theorem 2.  

3. ALGORITHM ALAYSIS USING ZERO-CUT IN 
HYPERGRAPH  

In this section, we consider an application of Theorem 2 

for the normalized Laplacian with the zero-cut assumption 

that each connected component of the hypergraph has a sin-

gle label. Under this assumption, our goal is to estimate the 

label for each connected component. 

Theorem 3 Consider (1) such with Assumption 2 and the 

regularization condition is K
-1

 = I+L. Assume that cut(L, y) 

= 0, and the hypergraph has q connected components with 

sizes m1 … mq (
l

l

m =m). For any p>0, let 0, and 

with optimal , we obtain the generalization bound 

1 ˆ( , )
n

n

Z j j

j Z

E err y
m n

f

 

1 1/( 1)

/( 1)
1

( , , )
( ( ) )
q

p p p

p p
l l

C a b c m

n m

+

+

=

+O( ), 

where Cp is defined by (3). More specific, we get 

   

E
Z

n

1

m n
err( f̂

j
, y

j
)

j Z
n

 

1

min[2 , ]
b q b m

ac n ac nm
+O( ). 

Under the zero-cut assumption, when 0, the gener-

alization error can be bounded as O( q

n

). However, a faster 

convergence rate of O( 1

n

) can also be achieved, although the 

bound for generalization error depends on the inverse of the 

smallest component size through 

1

m

m

q. i.e., we can reach a 

better convergence at the O( 1

n

) level under the condition 

that the sizes of the components are balanced. If the compo-

nent sizes are significantly different, the convergence may 

behave like O( q

n
). 

4. NON-ZERO CUT AND PURE COMPONENTS 

We find the assumption that each connected component 

has only one label (i.e., the cut is zero) and it is too restric-

tive, and in many applications, this assumption is not reason-

able. In this section, we relax the assumption and obtain 

similar bounds. 

Theorem 4. Consider (1) with Assumption 2 is satisfied. 

Let H’=
1

q

ll
H

=

 be a pure sub-hypergraph of H. For any 

E
Z
n

1

m n
err( f̂

j
(Z

n
), y

j
)

j Z
n

 

   

C
p
(a,b,c)

np/( p+1)
( s+ cut(L

S
, y)) p/( p+1) tr

p
(K ) p/( p+1) , 

  
C

p
(a,b,c) = (

b

ac
)

p

p+1 ( p

1

p+1
+ p

p

p+1 )   (3) 
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p 1, there exists a fixed tuning parameter  and a sample-

independent regularization parameter , such that 

1 ˆ( , )
n

n

Z j j

j Z

E err y
m n

f   

1/2 1/2

/( 1)
1

( , , ) ( ) /
( ( )

q
p pl

p p p
l l

C a b c s p m
s

n m+

=

 

+

 

1/ 2 1/ 2 2 /( 1)

1 2

( ) /
( , ) ( ) )

( )

q
p p pl

S p
l l

s p m
cut L y

G

+

= , 

where, Cp is defined in (3), ml=
l
V , s =

   

S
j

1

j=1

m

, and sl(p) 

= S
j

p

j V
l

. 

Theorem 4 can be regarded as a natural generalization of 

Theorem 3 for p 1. As common graph, it quantitatively 

illustrates the importance of analyzing hypergraph learning 

by using a partition of the original hypergraph into well-

connected pure components. The second eigenvalue 
2

 (Hi) 

measures how well-connected Hi is. A more intuitive quan-

tity that measures the connectedness of hypergraph H=(V,E) 

is the isoperimetric number 
H
h  defined as 

H
h =

  

inf
S V

w(e)

(e) min( S , V S )j S , j ' V S ,{i, j} e

. 

Similar as standard spectral graph theory [19], we can 

cheek that 
2

 (Hi)  

2

2max deg ( )

iH

j j
j

h

H
.  

If the vertices are well-connected everywhere, then the 

isoperimetric number of hypergraph H is large. Specifically, 

if deg j(H) is of the order V , and w(e)= 1 when e E, then 

w(e)

(e)
j S , j ' V S ,{i, j} e

 is of the order S V S , and 

H
h =O( V ) for a well-connected hypergraph. Let H’ be a 

pure-sub-hypergraph of H with well-behaved, i.e., each pure 

component Hl of H’ is well-connected in the above sense. 

We infer that 2 ( )
l

l

H

m

u(H’),for some constant u(H’) which 

is independent on the vertex number of the pure components 

(but only how well-connected each pure component is). By 

such condition, we replace 

  

m
l 2

(G
l
) p

l=1

q

 by 

  

u(G ') p m
l

1 p

l=1

q

 

in Theorem 4 and get a simplified bound: 

E
Z
n

1

m n
err( f̂

j
, y

j
)

j Z
n

 

C
p
(a,b,c)

np/( p+1)
(

s
l
( p) / m

(m
l
/ m) pl=1

q

)1/( p+1) (
s

m
 

 

2 /( 1)( , )
)

( ')

p pScut L y

u H m

+
+

  

where  

u(H’) = 
2 ( )

min l

l
l

G

m
.  

We consider the following two special situations: p = 1 

and p : 

   

E
Z

n

1

m n
err( f̂

j
, y

j
)

j Z
n

 

1

(1)

( , )
2 ( )

( ')

q

l

l l S

s

m cut L yb s

ac n m u H m

=
+ ,        (4) 

E
Z
n

1

m n
err( f̂

j
, y

j
)

j Z
n

 
max max ( / )

(ll j V j lS mb
s

ac n , 

2( , )
)

( ')

Scut L y

u H m
+

.              
(5)

 

These bounds can be regarded as the generalizations of 

those in Theorem 4. If we take S=I, then the number of pure 

components q affects the O( 1

n

) convergence rate in (4) as 

  

s
l
(1)

m
ll=1

q

= q. If the vertices number of the components are 

balanced, better convergence at the O( 1

n

) level as in (5) can 

be achieved; otherwise, the convergence may just be as 

O( q

n
) level. This fact inspires a scaling matrix S that com-

pensates for the unbalanced vertices number of pure compo-

nent, which we will discuss in the following context. 

5. NEAR-ZERO-CUT PARTITION WITH OPTIMAL 

NORMALIZATION 

We discuss a pure sub-hypergraph H’=
   

H
ll=1

q
 of H. If 

the scaling factors Sj are nearly constant within each pure 

component, then using the Laplacian definition above, we 

infer a small regularization penalty for the hyperedges within 

a pure component and between the vertices with similarly 

output values (i.e., 
,j kf  

'
,j k

f ). Thus, in the next context, 

we focus on finding the optimal scaling matrix S such that Sj 

is constant within each pure component Vl. Assume that we 

use q numbers [
l
s ]l=1,…;q, to quantify S which satisfys Sj = 

l
s  for j  Vl`. 

Consider the following quantity: 
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cut(H ', y) = w(e)
{ j , j '} e,y

j
y
j '

1

(e)
 

  

+
w(e)

2 (e)
{ j , j '} ej V

l
, j ' V

l '
l l '

 

Then, we have 

( , )Scut L y ( ', )

min l
l

cut H y

s
. 

We assume that hyperedge weights are small if it con-

tains vertices between pure components. Then, we can en-

sure that ( ', )cut H y  is small as well. 

 With the O( 1

n

) convergence rate, we obtain from (5) 

that 

   

E
Z

n

1

m n
err( f̂

j
, y

j
)

j Z
n

 

2

1

max ( / ) ( ', )
( )

( ')min

q
l j l l

l l l
l

s m mb cut H y

ac n s u H s=

+

. 

If ( ', )cut H y  is small, then the right hand side of domi-

nating term becomes
max

l
(s
j
/ m

l
)

n

m
l

s
ll=1

q

, which can be op-

timized by choosing 
l l
s m= , and the resulting bound will be 

as follows: 

   

E
Z

n

1

m n
err( f̂

j
, y

j
)

j Z
n

 

  

b

ac

1

n
( q +

cut(H ', y)

u(H ') min s
l

l

)2 . 

i.e., under the condition ( ', )cut H y  is small, we can 

choose scaling factor 
l
s

l
m  for each pure component such 

that the generalization bound is of the order O( 1

n

), which 

approximate to 
bq

acn
. 

6. CONCLUSION 

 In our paper, we consider the semi-supervised learning 

framework, and obtain theoretic conclusions for spectral 

based hypergraph vertex classification of semi-supervised 

learning algorithm. The contribution of this article is two-

fold: first, we deduce the generalization bound for such algo-

rithm in terms of zero-cut, non-zero-cut and pure compo-

nent; second, the generalization performance bound for near-

zero-cut partition with optimal parameter  is yielded. The 

result achieved in our paper illustrates the promising applica-

tion prospects for algorithms using hypergraph model. 
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