
Send Orders for Reprints to reprints@benthamscience.net

 The Open Cybernetics & Systemics Journal, 2014, 8, 17-21 17

 1874-110X/14 2014 Bentham Open

Open Access

Configurable Verification Stimulus Acceleration Method Based on
Multicore Processor
Guoteng Pan, Yuxing Tang, Guodong Ou, Li Luo and Qingna Yang1,*

1College of Computer, National University of Defense Technology, Changsha 410073,Hunan, China

Abstract: Functional verification has become a major challenge in the chip design area. To improve the efficiency of
verification, it is necessary to choose appropriate verification method and tools. An important aspect of functional
verification is RTL verification, simulation-based verification is main method in RTL verification. Based on FT-8 multi-
core processor, we developed a configurable test stimulus acceleration method, loading the test stimulus into memory and
L2 cache to speed up the processor instructions fetch, which can shorten simulation cycle and simulation time, reduce the
verification cost and guaranteed the correctness of design.

Keywords: Acceleration, multicore processor, simulation-based verification, test stimulus.

1. INTRODUCTION

The increasing complexity of chip design is creating
many challenges for verification. The success rate of the first
chip was only about 30%, the main reason being the
insufficient verification. Chip verification requires a lot of
resources, accounted for 60% to 80% of the entire design
resources [1]. The “Verification wall” has become the
technical bottleneck of multi-core processor [2]. To improve
the reliability of chip design and shorten the development
cycle, selecting suitable and efficient verification tools and
methods is essential [3-8].

Simulation-based verification [9] and formal verification
[10] are the two main verification techniques and methods
for now. The aim of the formal verification is to prove
design correctness using mathematical certainty, which
divided into three categories: equivalence checking, model
checking and theory proven. Equivalence checking [11] is
used to prove that the two design models have the same
function, which is actually the most widely used formal
verification technology, such as Cadence's Conformal and
Synopsys's Formality. Model checking [12, 13] is used to
prove that a design meets certain attributes, such as
Cadence's Formal Checker. Theorem proving requires the
user deep understanding of the basic logic and formal proof,
which is costly and rarely used. RTL design contains a large
number of latches, formal verification often encounter the
problem of state space explosion, which is not suitable for
large-scale designs. Simulation-based verification is used to
discover errors using simulation method, which has good
scalability and can be easily applied to large-scale design.
However, the speed of the simulation method is not ideal.
Intel used 6000 CPUs running simulation for 2 years, to

*Address correspondence to this author at the College of Computer,
National University of Defense Technology, Changsha 410073, Hunan,
China; Tel: 0731-84573678; E-mail: gtpan.hn@gmail.com

verify Pentium4 processor. The total number of instructions
of running is less than that of a real chip to run for 2 min [14,
15]. For multi-core processors, the simulation speed is
slower, more prominent verification efficiency.

In order to improve the verification efficiency of multi-
core processors, based on our designed FT series processors,
we proposed a configurable verification stimulus
acceleration method, loading the test stimulus into memory
and L2 cache to speed up the processor instructions fetch.
Through performance evaluation, the simulation time can be
reduced about 15%.

2. RELATED WORK

SUN uses a multi-level method in the UltraSPARC T2
verification which provides suitable method according to
different abstract level. Cadence Xtreme hardware emulator
is chosen for use in system level verification which is tightly
linked to software engine to perform hardware and software
co-simulation [16].

The pre-silicon verification of POWER family of
processors developed by IBM was divided into module level,
component level, chip level and system level. IBM has
invested heavily on verification technology for years. They
have developed a series of independent tools which include
cycle-accurate software simulation MESA, hardware
accelerator AWAN, formal tools SIxthSense and RuleBase
[17, 18]. A hybrid RAIM (redundant array of independent
memory) method was used for the IBM zEnterprise
processor verification which contained 80 configurable
cores. This verification environment was based on
combination of formal verification and random verification,
developing configurable stimulus to improve function
coverage [19].

In recent years, with rapid development of the
independent processors, the domestic study and practice in
processor verification is going deeper and deeper. The

18 The Open Cybernetics & Systemics Journal, 2014, Volume 8 Pan et al.

Institute of Computer Technology of Chinese Academy of
Science has made full use of both simulation and formal
verification method in the verification process of the
Loongson 2. Meanwhile, the verification through the FPGA
prototype system has helped them to gain a fast running
speed, but the debugging is a problem [20].

In the verification process of “ShenWei-1”, National
High Performance IC(Shanghai) Design Center established a
complete set of verification environment, accomplished real-
time automatic checker method by simulating instruction
level result and reusable method to generate pseudo random
test based on the reference model, Furthermore, they adopted
a special floating-point component verification, large-scale
test acceleration verification, the FPGA physical prototype
verification method and so on [21].

FT family of processors adopts hierarchical verification
strategy which is divided into module level, cluster level,
chip level and system level. Simulation as the leading
method, and also formal verification, FPGA prototype
system and hardware acceleration simulation are combined
to improve the verification efficiency. Among them, the
configurable verification stimulus acceleration method is
presented to reduce simulation cycle.

3. ARCHITECTURE OF FT-8 PROCESSOR

The main goal of FT-8 processor is high-throughput
computing in large-scale scientific computing applications.
The full chip supports 64 hardware threads executing in
parallel with Parallel SoC multi-thread architecture, as
shown in (Fig. 1).

FT-8 processor has eight cores, connected with on-chip
cache by crossbar. Each processor core has its own integer
unit, floating-point unit, data cache, instruction cache and
other functional units.

In order to alleviate the increasingly prominent problem
of “memory wall” in multi-core processor, FT-8 processor
designed a large capacity shared on-chip L2 Cache, shared
by multicore, reducing the pressure on the off-chip memory
access. The L2 Cache used multi-bank techniques, divided
into eight banks, which help high-speed implementation of
memory on one hand, on the other hand, help to improve the

system memory access bandwidth by concurrent access.
Meanwhile, FT-8 implemented on-chip memory controller
achieving four concurrent accesses, which designed a
optimize memory access scheduling strategy, improved the
external memory access bandwidth, reduced memory access
latency.

In order to reduce inter-chip interconnect delay and
improve the interconnect bandwidth, FT-8 processor
designed specialized inter-processor directly connected
interface, the interface can be achieved 2-4 way processor
directly connected to a tightly coupled shared memory system.

FT-8 processor used system-on-chip design metho-
dology, integrated the PCIE controller and memory
controller on the chip, implemented north-bridge and south-
bridge functions in traditional processor, further increased
the system memory access bandwidth, improved the I/O
expansion capabilities, and reduced the complexity of the
system design.

4. SIMULATION PLATFORM AND ACCELERATION
METHOD

In order to ensure FT-8 processor working properly and
to achieve expected performance, we constructed a full-chip
level simulation-based RTL verification platform, as shown
in (Fig. 2).

During the simulation, the test stimulus compiled through
stimulus loader is loaded into the reference model (RM) and
the RTL Design-Under-Test (DUT). Monitor is responsible
for the information collection of the DUT and sent to the
Checker which determines the function correctness of the
design by comparing the key state information between RM
and DUT. Memory image is generated by compiling test
stimulus and is loaded into memory, accessed by the
processor core issuing normal instruction fetch request.
Because of relatively time-consuming of memory access, we
load the contents of the memory image into L2 Cache before
running test. So there will have not more L2 Cache miss in
simulation, which can shorten the simulation cycle, reducing
simulation time.

L2 Cache loader is implemented using C code, and is
called by the simulator through PLI method. The PLI data

Core

L1 Cache

...

Crossbar

Core

L1 Cache

Core

L1 Cache

B

A

N

K

B

A

N

K

B

A

N

K

B

A

N

K

...
B

A

N

K

L2 cache

MCU MCU MCU MCU

Net

Inf

Sys

Inf

TCU

Flash

Control

ler

PCIE Controller

Coherence

Direct

Interface

Fig. (1). Architecture of FT-8 processor.

Configurable Verification Stimulus Acceleration Method The Open Cybernetics & Systemics Journal, 2014, Volume 8 19

processing flow is divided into three steps: preparing the
data structure, preparing data and storing data into the
Verilog array. TAG, VUAD and DATA arrays not only are
the main three storage structures of L2 Cache, but also the
parameters passed between the C code and Verilog design
code. PLI code requires getting a pointer to directly read and
write the data arrays, so the most critical of PLI function is
the correct description of all three kind of storage structure in
L2 cache, and passed to the corresponding PLI function.

Data array pointer is read through a function interface,
and is saved into appropriate data structure. The main saved
data include of the array width of TAG, VUAD and DATA
array and the storage array data pointer of them. Function is
called to load memory image file into tempdata_s structure
before loading date into l2 cache. Tempdata_s is organized
as a b-tree, each 64-byte data of the memory image file is
inserted into the tree as a b-tree atomic unit. If the address
belongs to the low 128GB of 1TB space, the data address is
added into the address list. All VUAD bits in L2 Cache are
cleared by calling l2load_clear function.

L2load is the main function of L2 cache loader, the input
of l2load are the 64-bit address obtained from address linked
list and the 64 bytes data obtained from tempdata_s structure
by the address. First, the function calculate the L2 Bank
number, L2 Cache index and TAG value in accordance with
the address and the bank configuration (8Bank/4Bank or
1BANK), and splices into “selected” field in l2load_vars
using part of index address of L2 Cache. Then the value of
l2load.way is generated using l2load_vars.blackboard by
random function. If an available way cannot be found with
sixteen consecutive random, the l2load function will exit.
After the value (0:15) of l2warm_vars.way is determined, the
corresponding flag in blackboard is set to 1, the three-
dimensional index of blackboard is [bank] [way] [selected].
Finally, l2load_tag, l2load_vuad l2load_data function are
called to store the data of TAG, VUAD and DATA array
into verilog data structure.

All PLI codes associated with cache are compiled too file
by gcc compiler and a linkable PLI run-time library is
generated by tools. For VCS simulator, a .tab file is used to
describe the correspondence between the verilog call
interface and PLI function. PLI library, tab file, design file
list and verification environment file list are VCS command-

line input. All of .o files compiled by each module in the de-
sign links with PLI library to generate a SIMV execution file.

5. EVALUATION RESULT

In order to evaluate the practical effect of our
acceleration method, we select a few representative test
stimuli for normal memory access, l2 cache, crossbar,
interrupt handling, and memory controller error handling,
and perform evaluation under single-and eight-core design
configuration.

Table 1. Description of test stimulus.

Stimulus Name Description

ld_st normal load and store memory access

l2cache_access L2 Cache data array access

crossbar test packet processing of crossbar

interrupt_INT test interrupt handler

mcu_ecc_err test ecc error handler of memory controller

During the simulation, we monitor the state information
of these tests, get these simulation cycle and simulation time
based on single-core and eight-core environment, and then
calculate the simulation speed. We found that comparing
with the normal method, the simulation cycle and time have
significantly reduced, and the simulation speed is also
increased to varying degrees using the acceleration method
of loading test image into L2 Cache before running test
simulation, as shown in (Figs. 3 and 4).

As can be seen from above two figures, for the single-
core environment, in addition to the simulation cycle of
l2access test did not change, the decrease in the that of other
tests is more than 10%, the simulation time of interrupt
handling is reduced by 20%. The simulation speed of
interrupt handling increased by 10%, but that of
mcu_ecc_err test decreased 3%.

For the eight-core environment, the simulation time of
almost all tests reduced more than 15%, and that of ld_st test

Test

Stimulus
Compiler

Stimulus

Loader

Memory

Reference Model

RTL DUT

Monitor

Checker

Coverage

Report

Fig. (2). FT-8 processor full-chip level simulation-based RTL verification platform.

20 The Open Cybernetics & Systemics Journal, 2014, Volume 8 Pan et al.

even close to 30%. The same with the single-core
environment, the simulation cycle of l2 access test
essentially unchanged.

6. CURRENT & FUTURE DEVELOPMENTS

With the rapid advancement of IC technology and the
increasing complexity of design, the problem of verification
efficiency become more and more prominent, how to
effectively reduce the simulation cycle and time need
carefully considered and to be solved in verification process.
Although, we reduced the simulation time to a certain extent
by pre-loading the test stimulus into L2 cache, with the
development of the FT series processor, how to further
improve the verification efficiency of a larger scale design is
still a problem need for in-depth study and solve. We will
put more strength on the study of coverage-driven test
stimuli intelligent generated based on the perspective of the
full life-cycle and high-level verification.

CONFLICT OF INTEREST

The authors confirm that this article content has no
conflict of interest.

ACKNOWLEDGEMENTS

This work is supported by National Natural Science
Foundation of China (61202123).

REFERENCES
[1] B. Wile, J. C. Goss, and W. Roesner, “Comprehensive Functional

Verification: The Complete Industry Cycle”, Morgan Kaufmann,
San Francisco, 2005.

[2] P. Patra, “On the cusp of a validation wall”, IEEE Des. Test.
Comput., vol.24, no.2, pp. 193-196, 2007.

[3] G. A. Ezer, P. Konas, J. B. Andrews, S. W. Chou, E. M. P. Long
and M. A. Evans, “Method for multiple processor system-on-a-chip
hardware and software cogeneration”, U.S. Patent 8639487 B1,
March 25, 2003.

[4] Z. Qi, and L. Xinhui, “Method and device for verifying SoC (system
on a chip) chips”, CN Patent 101515301 B, May 4, 2011.

[5] Z. Siliang, “SOC (system on chip) verifying method”, CN Patent
102567149 A, July 11, 2012.

[6] L. Xinhui, “Method and system for verifying soc chip”, WO Patent
2013016979 A1, February 7, 2013.

[7] V. Bertacco, and I. Wagner, “System for High-Efficiency Post-
Silicon Verification of a Processor”, U.S. Patent 20110087861 A1,
April 14, 2011.

[8] Y. Xiaolang, F. Kewei and Z. Xin, “Dynamic simulation platform
method for embedded processor function verification”, CN Patent
100562879 C, November 25, 2009.

[9] A. S. Kamkin, and M.M. Chupilko, “Survey of modern
technologies of simulation-based verification of hardware”,
Program comput. Soft.+, vol. 37, no.3, pp.147-152, 2011.

[10] R. Beers, “Pre-RTL formal verification: an intel experience”, in the
45th annual Design Automation Conference, ACM New York, NY,
USA, 2008, pp.806-811.

[11] C. Karfa, D. Sarkar, and C. Mandal, “Formal verification of code
motion techniques using data-flow-driven equivalence checking”,
in proceedings of the IEEE Annual Symposium on VLSI, IEEE
Computer Society Washington, DC, USA, 2010, pp. 428-433.

Fig. (3). Performance evaluation of single core.

Fig. (4). Performance evaluation of eight core.

Configurable Verification Stimulus Acceleration Method The Open Cybernetics & Systemics Journal, 2014, Volume 8 21

[12] G. Singh, and S. K. Shukla, “Model Checking Bluespec Specified
Hardware Designs”, in proceedings of the 8th International
Workshop on Microprocessor Test and Verification, IEEE
Computer Society Washington, DC, USA, 2007, pp. 39-43.

[13] L. Charvat, A. Smrcka, and T. Vojnar, “Automatic Formal
Correspondence Checking of ISA and RTL Microprocessor
Description”, in proceedings of the 13th International Workshop on
Microprocessor Test and Verification, IEEE Computer
Society Washington, DC, USA, 2012, pp. 6-12.

[14] B. Bentley, “Validating a Modern Microprocessor”, in proceedings
of 17th International Conference on Computer Aided Verification,
Springer, Heidelberg, 2005, pp.2-4.

[15] B. Bentley., “Validating the intel pentium 4 microprocessor”, in
proceedings of the 38th annual Design Automation Conference,
ACM, NY, USA, 2001, pp.244-248.

[16] D. L. Weaver, OpenSPARC™ Internals. Sun Microsystems, Inc.
Santa Clara, CA, USA, 2008.

[17] M. Srinivas, B. Sinharoy, R. J. Eickemeyer, R. Raghavan, S. Kunkel,
T. Chen, W. Maron, D. Flemming, A. Blanchard, P. Seshadri, J. W.

Kellington, A. Mericas, A. E. Petruski, V. R. Indukuru, and S.
Reyes, “IBM POWER7 performance modeling, verification, and
evaluation”, IBM J. Res Dev, vol. 55, no.3, pp. 4:1-4:19, 2011.

[18] K. -D. Schubert, W. Roesner, J. M. Ludden, J. Jackson, J. Buchert,
V. Paruthi, M. Behm, A. Ziv, J. Schumann, C. Meissner, J.
Koesters, J. Hsu, and B. Brock, “Functional verification of the IBM
POWER7 microprocessor and POWER7 multiprocessor systems”,
IBM J. Res. Dev., vol. 55, no.3, pp. 10:1-10:17, 2011.

[19] C. A. Krygowski, E. Almog, D. G. Bair, R. Breil, G. Dittmann,
R. M. Gott, W. J. Lewis, A. D. Shah, and B. W. Thompto, “Key
advances in the presilicon functional verification of the IBM
zEnterprise microprocessor and storage hierarchy”, IBM J. Res.
Dev., vol. 56, no.1.2, pp. 13:1-13:16, 2012.

[20] Z. Heng, and Shen Haihua., “Function verification of godson-2
processor”, J. Com. Res. and Dev., vol. 43, no.6, pp. 974-979, 2006.

[21] H. Yongqin, Z. Ying, J. Pengjin, W. Zhiuong, and C. Cheng,
“Functional verification of ShenWei-1 high performance
microprocessor”, J. Software, vol. 20, no.4, pp. 1077-1086, 2009.

Received: July 23, 2014 Revised: August 12, 2014 Accepted: August 17, 2014

© Pan et al.; Licensee Bentham Open.

This is an open access article licensed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-
nc/3.0/) which permits unrestricted, non-commercial use, distribution and reproduction in any medium, provided the work is properly cited.

