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Abstract: Functional verification has become a major challenge in the chip design area. To improve the efficiency of 
verification, it is necessary to choose appropriate verification method and tools. An important aspect of functional 
verification is RTL verification, simulation-based verification is main method in RTL verification. Based on FT-8 multi-
core processor, we developed a configurable test stimulus acceleration method, loading the test stimulus into memory and 
L2 cache to speed up the processor instructions fetch, which can shorten simulation cycle and simulation time, reduce the 
verification cost and guaranteed the correctness of design. 
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1. INTRODUCTION 

The increasing complexity of chip design is creating 
many challenges for verification. The success rate of the first 
chip was only about 30%, the main reason being the 
insufficient verification. Chip verification requires a lot of 
resources, accounted for 60% to 80% of the entire design 
resources [1]. The “Verification wall” has become the 
technical bottleneck of multi-core processor [2]. To improve 
the reliability of chip design and shorten the development 
cycle, selecting suitable and efficient verification tools and 
methods is essential [3-8]. 

Simulation-based verification [9] and formal verification 
[10] are the two main verification techniques and methods 
for now. The aim of the formal verification is to prove 
design correctness using mathematical certainty, which 
divided into three categories: equivalence checking, model 
checking and theory proven. Equivalence checking [11] is 
used to prove that the two design models have the same 
function, which is actually the most widely used formal 
verification technology, such as Cadence's Conformal and 
Synopsys's Formality. Model checking [12, 13] is used to 
prove that a design meets certain attributes, such as 
Cadence's Formal Checker. Theorem proving requires the 
user deep understanding of the basic logic and formal proof, 
which is costly and rarely used. RTL design contains a large 
number of latches, formal verification often encounter the 
problem of state space explosion, which is not suitable for 
large-scale designs. Simulation-based verification is used to 
discover errors using simulation method, which has good 
scalability and can be easily applied to large-scale design. 
However, the speed of the simulation method is not ideal. 
Intel used 6000 CPUs running simulation for 2 years, to  
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verify Pentium4 processor. The total number of instructions 
of running is less than that of a real chip to run for 2 min [14, 
15]. For multi-core processors, the simulation speed is 
slower, more prominent verification efficiency. 

In order to improve the verification efficiency of multi-
core processors, based on our designed FT series processors, 
we proposed a configurable verification stimulus 
acceleration method, loading the test stimulus into memory 
and L2 cache to speed up the processor instructions fetch. 
Through performance evaluation, the simulation time can be 
reduced about 15%. 

2. RELATED WORK 

SUN uses a multi-level method in the UltraSPARC T2 
verification which provides suitable method according to 
different abstract level. Cadence Xtreme hardware emulator 
is chosen for use in system level verification which is tightly 
linked to software engine to perform hardware and software 
co-simulation [16]. 

The pre-silicon verification of POWER family of 
processors developed by IBM was divided into module level, 
component level, chip level and system level. IBM has 
invested heavily on verification technology for years. They 
have developed a series of independent tools which include 
cycle-accurate software simulation MESA, hardware 
accelerator AWAN, formal tools SIxthSense and RuleBase 
[17, 18]. A hybrid RAIM (redundant array of independent 
memory) method was used for the IBM zEnterprise 
processor verification which contained 80 configurable 
cores. This verification environment was based on 
combination of formal verification and random verification, 
developing configurable stimulus to improve function 
coverage [19]. 

In recent years, with rapid development of the 
independent processors, the domestic study and practice in 
processor verification is going deeper and deeper. The 
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Institute of Computer Technology of Chinese Academy of 
Science has made full use of both simulation and formal 
verification method in the verification process of the 
Loongson 2. Meanwhile, the verification through the FPGA 
prototype system has helped them to gain a fast running 
speed, but the debugging is a problem [20]. 

In the verification process of “ShenWei-1”, National 
High Performance IC(Shanghai) Design Center established a 
complete set of verification environment, accomplished real-
time automatic checker method by simulating instruction 
level result and reusable method to generate pseudo random 
test based on the reference model, Furthermore, they adopted 
a special floating-point component verification, large-scale 
test acceleration verification, the FPGA physical prototype 
verification method and so on [21]. 

FT family of processors adopts hierarchical verification 
strategy which is divided into module level, cluster level, 
chip level and system level. Simulation as the leading 
method, and also formal verification, FPGA prototype 
system and hardware acceleration simulation are combined 
to improve the verification efficiency. Among them, the 
configurable verification stimulus acceleration method is 
presented to reduce simulation cycle. 

3. ARCHITECTURE OF FT-8 PROCESSOR 

The main goal of FT-8 processor is high-throughput 
computing in large-scale scientific computing applications. 
The full chip supports 64 hardware threads executing in 
parallel with Parallel SoC multi-thread architecture, as 
shown in (Fig. 1). 

FT-8 processor has eight cores, connected with on-chip 
cache by crossbar. Each processor core has its own integer 
unit, floating-point unit, data cache, instruction cache and 
other functional units. 

In order to alleviate the increasingly prominent problem 
of “memory wall” in multi-core processor, FT-8 processor 
designed a large capacity shared on-chip L2 Cache, shared 
by multicore, reducing the pressure on the off-chip memory 
access. The L2 Cache used multi-bank techniques, divided 
into eight banks, which help high-speed implementation of 
memory on one hand, on the other hand, help to improve the 

system memory access bandwidth by concurrent access. 
Meanwhile, FT-8 implemented on-chip memory controller 
achieving four concurrent accesses, which designed a 
optimize memory access scheduling strategy, improved the 
external memory access bandwidth, reduced memory access 
latency. 

In order to reduce inter-chip interconnect delay and 
improve the interconnect bandwidth, FT-8 processor 
designed specialized inter-processor directly connected 
interface, the interface can be achieved 2-4 way processor 
directly connected to a tightly coupled shared memory system. 

FT-8 processor used system-on-chip design metho-
dology, integrated the PCIE controller and memory 
controller on the chip, implemented north-bridge and south-
bridge functions in traditional processor, further increased 
the system memory access bandwidth, improved the I/O 
expansion capabilities, and reduced the complexity of the 
system design. 

4. SIMULATION PLATFORM AND ACCELERATION 
METHOD 

In order to ensure FT-8 processor working properly and 
to achieve expected performance, we constructed a full-chip 
level simulation-based RTL verification platform, as shown 
in (Fig. 2). 

During the simulation, the test stimulus compiled through 
stimulus loader is loaded into the reference model (RM) and 
the RTL Design-Under-Test (DUT). Monitor is responsible 
for the information collection of the DUT and sent to the 
Checker which determines the function correctness of the 
design by comparing the key state information between RM 
and DUT. Memory image is generated by compiling test 
stimulus and is loaded into memory, accessed by the 
processor core issuing normal instruction fetch request. 
Because of relatively time-consuming of memory access, we 
load the contents of the memory image into L2 Cache before 
running test. So there will have not more L2 Cache miss in 
simulation, which can shorten the simulation cycle, reducing 
simulation time. 

L2 Cache loader is implemented using C code, and is 
called by the simulator through PLI method. The PLI data 
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Fig. (1). Architecture of FT-8 processor.  
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processing flow is divided into three steps: preparing the 
data structure, preparing data and storing data into the 
Verilog array. TAG, VUAD and DATA arrays not only are 
the main three storage structures of L2 Cache, but also the 
parameters passed between the C code and Verilog design 
code. PLI code requires getting a pointer to directly read and 
write the data arrays, so the most critical of PLI function is 
the correct description of all three kind of storage structure in 
L2 cache, and passed to the corresponding PLI function. 

Data array pointer is read through a function interface, 
and is saved into appropriate data structure. The main saved 
data include of the array width of TAG, VUAD and DATA 
array and the storage array data pointer of them. Function is 
called to load memory image file into tempdata_s structure 
before loading date into l2 cache. Tempdata_s is organized 
as a b-tree, each 64-byte data of the memory image file is 
inserted into the tree as a b-tree atomic unit. If the address 
belongs to the low 128GB of 1TB space, the data address is 
added into the address list. All VUAD bits in L2 Cache are 
cleared by calling l2load_clear function. 

L2load is the main function of L2 cache loader, the input 
of l2load are the 64-bit address obtained from address linked 
list and the 64 bytes data obtained from tempdata_s structure 
by the address. First, the function calculate the L2 Bank 
number, L2 Cache index and TAG value in accordance with 
the address and the bank configuration (8Bank/4Bank or 
1BANK), and splices into “selected” field in l2load_vars 
using part of index address of L2 Cache. Then the value of 
l2load.way is generated using l2load_vars.blackboard by 
random function. If an available way cannot be found with 
sixteen consecutive random, the l2load function will exit. 
After the value (0:15) of l2warm_vars.way is determined, the 
corresponding flag in blackboard is set to 1, the three-
dimensional index of blackboard is [bank] [way] [selected]. 
Finally, l2load_tag, l2load_vuad l2load_data function are 
called to store the data of TAG, VUAD and DATA array 
into verilog data structure. 

All PLI codes associated with cache are compiled too file 
by gcc compiler and a linkable PLI run-time library is 
generated by tools. For VCS simulator, a .tab file is used to 
describe the correspondence between the verilog call 
interface and PLI function. PLI library, tab file, design file 
list and verification environment file list are VCS command-

line input. All of .o files compiled by each module in the de-
sign links with PLI library to generate a SIMV execution file. 

5. EVALUATION RESULT 

In order to evaluate the practical effect of our 
acceleration method, we select a few representative test 
stimuli for normal memory access, l2 cache, crossbar, 
interrupt handling, and memory controller error handling, 
and perform evaluation under single-and eight-core design 
configuration. 

Table 1. Description of test stimulus. 

Stimulus Name Description 

ld_st normal load and store memory access 

l2cache_access L2 Cache data array access 

crossbar test packet processing of crossbar 

interrupt_INT test interrupt handler 

mcu_ecc_err test ecc error handler of memory controller 

During the simulation, we monitor the state information 
of these tests, get these simulation cycle and simulation time 
based on single-core and eight-core environment, and then 
calculate the simulation speed. We found that comparing 
with the normal method, the simulation cycle and time have 
significantly reduced, and the simulation speed is also 
increased to varying degrees using the acceleration method 
of loading test image into L2 Cache before running test 
simulation, as shown in (Figs. 3 and 4). 

As can be seen from above two figures, for the single-
core environment, in addition to the simulation cycle of 
l2access test did not change, the decrease in the that of other 
tests is more than 10%, the simulation time of interrupt 
handling is reduced by 20%. The simulation speed of 
interrupt handling increased by 10%, but that of 
mcu_ecc_err test decreased 3%. 

For the eight-core environment, the simulation time of 
almost all tests reduced more than 15%, and that of ld_st test 
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Fig. (2). FT-8 processor full-chip level simulation-based RTL verification platform.  
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even close to 30%. The same with the single-core 
environment, the simulation cycle of l2 access test 
essentially unchanged. 

6. CURRENT & FUTURE DEVELOPMENTS 

With the rapid advancement of IC technology and the 
increasing complexity of design, the problem of verification 
efficiency become more and more prominent, how to 
effectively reduce the simulation cycle and time need 
carefully considered and to be solved in verification process. 
Although, we reduced the simulation time to a certain extent 
by pre-loading the test stimulus into L2 cache, with the 
development of the FT series processor, how to further 
improve the verification efficiency of a larger scale design is 
still a problem need for in-depth study and solve. We will 
put more strength on the study of coverage-driven test 
stimuli intelligent generated based on the perspective of the 
full life-cycle and high-level verification. 
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