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Abstract: To support online index and range queries, the Distributed B-tree is adopted to index the mass and rapidly in-
creasing data in cloud computing. But current Distributed B-tree has three defects: low degree of concurrency, frequent 
node splitting and high cost of updates in clients. For above mentioned defects, this paper presents efficient distribute B-
tree index in cloud computing environment, which effectively enhances the performance of the distributed B-tree index. 
First, it improves concurrent access by the distributed B-tree high concurrency access method based on node split history. 
Second, it reduces the splitting frequency by the method of dynamic changing node size. Finally, it reduces node update 
cost in all client buffers by the regional delayed update method. Experimental results show that, this method has high per-
formance in cloud computing environments. 
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1. INTRODUCTION

Now, a lot of Internet applications that are based on mas-
sive data and provide various types of information services 
arise in cloud computing environment, such as Delicious [1], 
Flickr [2], Google Base [3], etc., and these massive applica-
tion data rapidly increase [4]. In these systems, the keys of 
each data are processed by hash method, and accordingly all 
of the data are distributed to multiple storage nodes, so as to 
realize scalable storage for rapidly increasing massive data. 
Therefore, the hash function becomes the main index of data, 
and the required data can be quickly accessed according to 
the hash value of keys [5, 6, 7]. However, in addition to the 
data query via keys, users also turn to other properties for 
point search or range search [8]. For example, in an online 
video system (such as Youtube [9]), each video contains a 
variety of information, including video ID, program name, 
upload time, times of plays. The users can quickly access the 
video via its ID that is the key of each video, but they can 
also search for video by inputting program name or defining 
upload time range. Constructing secondary index is an im-
portant method to improve the query efficiency of non-key 
attribute. At present, in the cloud computing environment, 
inverted index, the commonly used secondary index, can 
scan all storage nodes by multiple MapReduce [10] proc-
esses and generate inverted files. Inverted index is an off-line 
batch process, and it cannot realize timely query of newly 
inserted data [8]. For example, the record inserted into Goo-
gle Base cannot be accessed by users until it is re-indexed 
next time (maybe one day later). Therefore, the application 
system needs to provide an index method with online con-
struction and range queries. 
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B-tree index can realize online indexing and range que-
ries; however, because of the massive data in cloud comput-
ing environment, centralized B-tree cannot meet the demand 
in storage of mass index data, while distributed B-tree [11, 
12] can meet this demand by distributing all nodes into stor-
age servers. But existing method to construct distributed B-
tree shows low performance, for the following reasons: (1) 
low degree of concurrency. For transaction method, when 
multiple users’ concurrently operate B+ tree, these operated 
nodes and their ancestor nodes will be locked, which leads to 
all users serially operating B-tree, seriously affecting the 
operation efficiency. (2) High cost of update. Firstly, the 
node size of existing distributed B-tree is fixed, which will 
cause nodes to frequently split. The existing distributed B-
tree needs to update all internal nodes in client buffers when 
some node is spited, which greatly affects the system per-
formance.  

According to the existing defects of the traditional dis-
tributed B-tree, including low degree of concurrency, fre-
quent node splitting and high update cost, this paper presents 
efficient distribute B-tree (mark as EDB) index in cloud 
computing environment, including distributed B-tree high 
concurrency access method based on node split history and 
the regularly changing method of node size and regional 
delayed update, effectively enhancing the performance of 
distributed B-tree index. 

2. RELATED RESEARCH

2.1. Distributed B-tree 

In a traditional distributed B-tree [12], all nodes are dis-
tributed into multiple servers, and all internal nodes are buff-
ered in each client, to realize multi-user concurrent access 
and improve the access efficiency. With delayed update, the 
node in client buffer can be updated accordingly to the corre-
sponding node in servers, so that the synchronous update 
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costs are distributed to many operations, to reduce delayed 
time for some update operation. 

Similarly, with B-tree in stand-alone environment, con-
current modification will also occur to distributed B-tree, 
namely, when data is inserted to the distributed B-tree, a leaf 
node and its several ancestor nodes may split. For example, 
in the distributed B-tree shown in Fig. (1), when an index 
value is inserted into node h, if the node h is full, then h will 
split, and then an index value will be inserted to node d; if 
the node d is full, then d will split, which may cause the 
nodes b and a to split. Node splitting can cause failure of 
concurrent modification operation. For example, when nodes 
h and i split simultaneously, data x and y will be inserted to 
node d, but it is possible that, node d will split into two 
nodes d and d' (when it is full). d' is distributed to another 
storage node, when y (or x) arrives, because of x (or y) can-
not find the insertion position and fail to complete the insert 
operation. 

2.2. B-tree Concurrency Control Method 

In the stand-alone environment, the link established 
among nodes can eliminate concurrent modifications, but it 
is not suitable for distributed B-tree in cloud computing en-
vironment, because of delayed update mode, in the interval 
when a client visits the same node again, the corresponding 
node in server may split several times. According to the dis-
tribution strategy, the new split nodes may be distributed to 
other storage nodes, therefore, the second visit won’t be real-
ized unless the client passes through multiple server nodes.  

A distributed B-tree concurrency construction method 
based on optimistic transaction concurrency control [13, 14] 
can eliminate the necessity to pass through multiple server 
nodes. But when the index data is inserted each time, distrib-
uted transaction will lock all the nodes distributed from the 
root to a leaf node, so the concurrent ability is low. For ex-
ample, in Fig. (1), client 2 and client 1 insert index values 
respectively into nodes j and o. Client1 will lock node a in 
server 1, node b in server 2, node e in server 3 and node j in 
server 1 in sequence; Client 2 will lock node a in server 1, 
node c in server 3, node g in server 1 and node o in server 1 
in sequence. If the client 1 locks node a first, then client 2 
must wait for a moment.  

By analyzing the process of client 1’s and client 2’s con-
current insert index value, we conclude that the entire path 
will be locked in each insertion operation, so all operations 
request to lock the root node, and the sequentially locking 
root node leads to serial operation of insertion into B-tree, 
leading to quite a low efficiency of construct index.  

2.3. Method of Synchronous Update 

With the lazy update method [15], the operation costs to 
update an object and its copies are distributed into the fol-
lowing subsequent operations, reducing the high costs of an 
update operation. However, for existing distributed B-tree 
when the nodes in client buffer are updated, all nodes buff-
ered will be updated, thus high cost of update is still re-
quired. 

3. THE CONCURRENCY ACCESS METHOD BASED
ON NODE SPLIT HISTORY 

3.1. The Recording Method of Node Split History 

Each server contains a splitting log of B-tree nodes to re-
cord the split history in the server. According to the log 
structure shown in Fig. (2), each split of node is recorded in 
the log, in the structure of <LowValue, UpValue, ServerIP, 
IndexFileName, Version, preRecord>. LowValue and Up-
Value are respectively the minimum and maximum values of 
the index nodes; ServerIP is the machine number of storage 
node; IndexFileName is the name of the index node; Version 
is the version number of the index node; preRecord is a 
pointer pointing to the previous splitting record. In the log, 
the split histories of all nodes are connected into a linked list. 

3.2. High Concurrency Access Algorithm of Distributed 
B-tree 

In a distributed B-tree, each node in server is endowed 
with a version number, and each node in client’s buffer also 
contains corresponding version number. Due to the delayed 
update strategy, the buffer’s version number is smaller than 
that of the corresponding node sometimes, which shows the 
modification of the node in the server is not synchronized to 
the corresponding node in the buffer. 

Fig. (1). Distributed B-tree. 
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In this paper, high concurrent access to distributed B-tree 
is realized according to the version number and node split 
history. Specifically, if the version number of accessed node 
is the same as that of the client buffer, the data of the node 
will be directly accessed to, or, this node’s splitting log is 
accessed for finding the accessed node of next hop and its 
version number, and then transmits the access request to the 
next-hop node. 

Based on the above idea, a <key, pointer> is inserted into 
a B-tree and the access is conducted according to the key, the 
distributed algorithm 1 and 2 are respectively explained 
below: 

Algorithm 1: Insert (Key, Pointer) 

 For client: 

1. Search for insertion position (host, node) and the node’s version num-
ber (v) in the B-tree of client buffer;  

2. Send the insertion request and v to the server host; 

For server:  

1. if (node. version==v) {

2.  insert <key, pointer> into node; 

3.  if (node is full) 

4.  update its ancestor node; 

5. }else{

6.  search for the accessed object’s position (host ', node') and v in the
node’s splitting log;  

7.  send the access request and v to the server host'; 

8. }

Algorithm 2: Lookup (key) 

For client: 

1. Search for index node position (host, node) and its version number (v) 
in the B-tree of client buffer;  

2. Send the search request and v to the server host; 

For server: 

1.search in node;  

2 if (success) { 

3.  return the results to client;

6.  }else{

7.  search for the accessed object’s position (host', node') and v' in the
node's splitting log;  

8. if (success)

9.  send the access request and v to the server 'host'; 

10.  else

11      Return "Not exist" to the client;  

12. }

According to the above algorithm, when modifying B-
tree node, only the leaf node to be accessed is locked, thus 
the trouble that the path from root node to accessed leaf node 
will be locked in each access is eliminated; similarly, if 
modification of leaf node causes the modification of the in-
ternal node, only this node should be locked in each node 
modification, so this algorithm can greatly improve the effi-
ciency of concurrent access. 

4. METHOD TO CHANGE NODE’S SIZE
At present, the node’s size of distributed B-tree (or order) 

is fixed. If the order is set smaller, there are a large number 
of nodes in B-tree, which means more frequent node splitting 

Fig. (2). Structure of node splitting logs. 
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and lower performance of B-tree. Accordingly, the method 
to regularly adjust node size is designed, which contains two 
alternately performing processes, namely node quantity in-
crease and node expansion, which effectively reduces the 
node split frequency and ensures even distribution of data.  

(1) Node quantity increase process 
In this process, fixed capacity (C) leaf node is set. With 

the data insertion, the leaf nodes split, and the quantity of 
leaf nodes (LN) gradually increases, until the quantity of 
new leaf nodes is the same as that of stored nodes (SN). It is 
assumed that this increase process is the ith times, then LN = 
× SN. 

(2) Node expansion process 
This process allows doubled leaf node capacity. It is as-

sumed that this expansion process is ith times, and then the 
capacity of leaf node is C = 2i-1 × CD. Because of incomplete 
data after leaf node expansion, each leaf node can receive data. 
This process won’t terminate until some leaf node will split. 

5. REGIONAL DELAYED UPDATE METHOD

When a client accesses a leaf node, and if this leaf node 
has split or merged after the last visit, the parent node of this 
leaf node in this client should be updated. If the parent node 
in the server also has split or merged, the same update opera-
tion should be conducted. The nodes in client buffer will be 
updated with the following two strategies: (1) if n keys ki+1, 
ki+2,…, ki+n, (split by child nodes on server) are added be-
tween key ki and kj, sub-trees of B (ki+1),… , B (ki+n) with n 
keys as roots will be buffered, and sub-tree B (Ki) and B (Kj) 
individually pointed by ki and kj will be respectively de-
ducted by sub-tree B (ki+1),… B (ki+n); (2) if n keys ki+1, 
ki+2,…, ki+n, (split by child nodes on server) are reduced 
from between key ki and kj, then sub-trees B (ki+1),… , B 
(ki+n) with n keys as roots will be eliminated, and ki sub-tree 
B (ki) pointed by ki will be buffered.  

Below, we prove the correctness of the regional sub-tree 
delayed update method.  

Proof: 
The following four situations to discuss: 
(1) When the nodes in buffer remain in the same state 

with those in server, the user can correctly locate data; 

(2) In the server, node b and its sub node c are updated, 
but in buffer only the node b is updated, which is caused by 
other descendant nodes’ splitting. According to our update 
strategies, the update of node c will cause no changes in 
node b, or, the update of node b in buffer will also cause the 
change of node c. With the help of node splitting history log, 
whether leaf node splits or not, the data can still be correctly 
accessed.  

(3) In the server, node b and its ancestors a are both up-
dated, but in buffer only the node b is updated and the split-
ting of node b does not lead to that of node a. There is one 
path from a to b in buffer, thus a can access to all of b’s leaf 
nodes.  

(4) In the server, node b, its ancestor a and descendant c 
are all updated, but in buffer only the node b is updated, 

which is similar to case (2) and (3), and accordingly, the data 
can be properly accessed to.  

To sum up, regional sub-tree delayed update method can 
guarantee the correctness of access to data in each client.  

Comparative to traditional delayed update method, all of 
the entire B+ tree’s internal nodes in buffer are compared 
and updated; while with regional sub-tree delayed update 
method, only a sub-tree’s nodes are compared and updated, 
with the implication of greatly reduced updated nodes, 
thereby greatly improving the access performance. 

6. PERFORMANCE EVALUATION

6.1. Experimental Environment 

Our testing infrastructure had 126 machines on 4 racks 
connected by Gigabit Ethernet switches. Intra-rack bisection 
bandwidth was ≈14Gbps, while inter-rack bisection band-
width was ≈6.5Gbps. Each machine had two 2.4GHz Intel 
Xeon CPUs, 4GB of main memory, and two 7200RPM SCSI 
disks with 200GB each. Machines ran Red Hat Enterprise 
Linux AS 4 with kernel version 2.6.9.  

There are total 175 pairs of <Key, Pointer> values in 
each node of Tree B. one <key, Pointer> value takes up 22 
bytes, including a Key, which is a 8 byte integer with value 
range of [0,109], and a pointer, which takes up 14 bytes. It 
consists of 2 parts, namely the IP address (4 bytes) and offset 
(8 bytes). Before experiment, B Tree has already had 400 
nodes and 64,000 <key, pointer> pairs in 4 servers. 

The nodes of B Tree are placed in server. Loads are gen-
erated from client, while server and client are located in dif-
ferent computers respectively. The memory of each server 
provides 32M buffer to Tree B and each client runs in 4 
threads. They all access the same Tree B.  

6.2. Concurrency Ability 

We now evaluate the concurrency ability of our EDB 
strategy. For the purpose of comparison, we implement the 
Link strategy and distributed transaction strategy. In the ex-
periment, there are three kinds of loads: 

The inserting load: all operations are inserting operation. 
New keys are randomly generated uniformly at random from 
a space of 109 elements and inserted into the B-tree. 

The searching load: all operations are searching opera-
tions. The starting point skey and ending point ekey of each 
searching range are all randomly picked up from the key set 
in Tree B 

The hybrid load: the operations include inserting opera-
tion and searching operation. The key generation method of 
these two operations is same as the methods mentioned 
above. 

With fixed node quantity, and increased server and client 
amount, the test results of the three loads (shown in Figs. (3-
5)) displays that EDB method is better than Link method and 
transaction method in any of the three cases. EDB method is 
better than the transaction method, because, in each visit, all 
accessed nodes from the root to the leaf nodes deserve dis-
tributed lock, with the latter method, while only the nodes to  
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Fig. (6). Comparison of node splitting times. 

Fig. (7). Comparison of updated nodes. 

be accessed will be locked. EDB method is better than Link 
method, because, with EDB method, the number of nodes to 
traverse is smaller than that with Link method. 

In addition, EDB method and Link method have good 
expansibility, and the throughput increases with the increase 
in the number of servers in all of the three cases. For EDB, 
the growth rate of the throughput decreases with the increase 
in the number of servers in the inserting load and the hybrid 
load, which is mainly caused by the following two situations: 
(1) All of the data modifications are recorded in the log 
which thus then becomes bottleneck; (2) Massive insertion 
causes more frequent internal node splitting, thus more up-
date in client buffer influences the access performance.  

6.3. Split Frequency 

In the experiments, traditional B-tree nodes’ size is de-
fined as 2KB, with EDB, nodes’ original size is 2KB too. All 
nodes in EDB increase by 2KB in each expansion, and all 
data is randomly generated. In different data sizes, node split 
times is shown in Fig. (6). As it is shown, with the same data 
size, node split times with EDB is much less than that with 
traditional method. 

6.4. Cost of Update in Buffer 
In the experiments, the data are simultaneously inserted 

into distributed B-tree by one client, and the other client que-
ries data from the distributed B-tree. In the contrast test, 
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when the same data value is searched, the quantity of up-
dated nodes in client buffer in each query is recorded (Fig. 
(7)). As is indicated, the quantity of nodes to be updated in 
client buffer is significantly reduced with EDB method than 
that with the traditional distributed B-tree. Because, in the 
traditional distributed B-tree, all nodes shall be buffered in 
each update, while only some of them will be updated with 
EDB method.  

CONCLUSION 

Our efficient distributed index EDB is used to eliminate 
the following questions. (1) Low degree of concurrency. 
When multiple users operate nodes, the transaction method 
needs lock operated nodes and all their ancestor nodes, 
which seriously affect the operational efficiency. EDB only 
needs to lock each operated node by recording node split 
history. (2) High cost of update. The node size of the exist-
ing distributed B-tree is fixed, which will cause frequent 
splitting of nodes. EDB decreases frequent splitting of nodes 
by allowing nodes’ size to change regularly. Moreover, tradi-
tional distributed B-tree needs to update all internal nodes in 
client buffers when a node is split. EBD only updates some 
nodes by our regional delayed update strategy. We have de-
scribed our efficient distributed index EDB and given the 
survey of the performance comparisons, and the performance 
results are encouraging. 
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