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Abstract: This paper proposed a novel adaptive neuro-fuzzy inference system (ANFIS), which combines subtract cluster-

ing, employs adaptive Hamacher T-norm and improves the prediction ability of ANFIS. The expression of multi-input 

Hamacher T-norm and its relative feather has been originally given, which supports the operation of the proposed system. 

Empirical study has testified that the proposed model overweighs early work in the aspect of benchmark Box-Jenkins 

dataset and may provide a practical way to measure the importance of each rule.  
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1. INTRODUCTION 

Takagi, Sugeno and Kang have established what is called 
the Takagi-Sugeno-Kang (TSK) method [5-7]. This neural-
network-based fuzzy reasoning scheme is capable of learning 
the membership function of the “IF” part and determining 
the amount of control in the “THEN” part of the inference 
rules. What’s more, it is nicely suited to mathematical analy-
sis and usually works well with optimization and adaptive 
techniques. Subsequently, many improved algorithms and 
extensions were developed for the TSK model. In particular, 
the adaptive neuro-fuzzy inference system (ANFIS) is an 
important approach to implement the TSK fuzzy system, 
which has been put forward by Jang in 1993 [3]. However 
among all early work, only Iliadis et al. have replaced the 
algebraic product T-norm with other fuzzy T-norms to han-
dle intersection operation [1]. But they have not explained 
the reason why they select the one. Besides, in the case of 
input dimension increasing, the number of rules will increase 
with the input dimension exponentially, which inevitably 
leads the conventional ANFIS structure dimension to disas-
ter. In order to improve the online access speed of ANFIS T-
S rules for complex system, various clustering algorithms 
have been used to construct a new multidimensional struc-
ture of ANFIS, which combined mechanism of T-S fuzzy 
inference and clustering algorithm from the perspective of 
knowledge discover.In this paper, we select Hamacher T-
norm to tackle the intersection operation for two reasons:  

1. Algebraic product T-norm is used widely in ANFIS, 

and when  equals to 1, the Hamacher T-norm is actually 

an algebraic product T-norm, which means it is not conflict-

ing with the regular ANFIS.  

2. Hamacher product T-norm, a clustering of fuzzy prod-

uct T-norms, differs depending on . So, to select the most  

 

 

 
 

suitable fuzzy T-norm by changing the numberical parameter 

 is advisable. Subtract clustering, which could obtain the 

amount and value of clustering center, was used to determine 

the If part of each rule, for its wide application in ANFIS 

center determination.  

The rest of the paper is organized as follows. Section 2 
provides some necessary background information, and the 
proposed system and its essential interference are discussed 
in Section 3. Section 4 presents the simulation results for 
benchmark Box-Jenkins dataset. Finally, the summary of this 
paper is given in Section 5.  

2. BACKGROUND 

In this section, the basic theory of ANFIS model and 
normalization method which has been used in this experi-
ment will be introduced.  

2.1. Adaptive Network Based Fuzzy Inference System 
(ANFIS) 

Both artificial neural network and fuzzy logic are used in 

ANFIS architecture. ANFIS consists of if-then rules and 

couples of input-output. For ANFIS training, learning algo-

rithms of neural network are also used. To simplify the ex-

planations, the fuzzy inference system under consideration is 

assumed to have two inputs (x and y) and one output (f). For 

a regular ANFIS model, a typical rule set with basic fuzzy if-

then rules can be expressed as if x is 1
A  and y is 1

B , then 

  
f
1

= p
1
x + q

1
y + r

1
             (1)  

where p is linear output parameters. The ANFIS architecture 
with two inputs and one output are as shown in Fig. (1).  

This architecture is formed by five layers and nine if-then 
rules:  

Layer-1: Every node i in this layer is a square node with 
a node function.  
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where x and y are inputs to node i, and i
A  and i

B  are linguis-

tic labels for inputs. In other words, i1,
O  is the membership 

function of i
A  and i

B . Usually Ai
μ (x) and Bi

μ
 (y) are chosen 

to be bell-shaped with maximum equalling to 1 and mini-

mum equalling to 0, such as  

))))/((((=)( 2

ii
i
A caxexpxμ

           (3) 

where i
a , i

c  is the parameter set. These parameters in this 

layer are referred to as premise parameters.  

Layer-2: Every node in this layer multiplies the incoming 
signals and sends the product out. For instance,  

1,2=,),()(=1)2,2( jiyxO
j

B
i
Aji μμ+

         (4)  

Each node output represents the firing strength of a rule.  

Layer-3: Every node in this layer calculates the ratio of 
the rule’s firing strength to the sum of all rule??s firing 
strengths:  

,41,2,=),/(=~= 9213, iwwwwwO
iii

+++        (5)  

Layer-4: Every node i in this layer is a square node with 

a node function  

,41,2,=),(~=~= 2,21,14, ixpxpwfwO iiiiii +        (6)  

where i
w  is the output of layer 3 and ,1i

p , ,2i
p , ,3i

p  is the 

parameter set. Parameters in this layer will be referred to as 

consequent parameters.  

Layer-5: The single node in this layer computes the over-

all output as the summation of all incoming signals:  

i

ii

iii
w

fw
fwO =~=

5,

            (7)  

2.2. Hamacher T-norm 

Hamacher T-norm as a kind of T-norms with parameter, 
satisfies boundary conditions ,commutativity, associativity 
and monotonicity. The parameter of Hamacher T-norm is 
also monotonous, and its expression is given below:  

))((1
=),(

xyyx

xy
yxT

++

          (8)  

where >  0. Especially, when  = 1, Hamacher T-norm 

equals to algebraic product T-norm.  

It is easy to recognise that algebraic product T-norm is an 

special Hamacher T-norm which has a constant parameter 

. However, employing a constant parameter  is not al-

ways appropriate. For any rule, there must be a correspond-

ing parameter  suited for it. It is wise to use back-

propagation algorithm to determine the corresponding .  

3. PROPOSED SYSTEM 

The output of layer-2 jiO
+1)2,2(  refers to the result of inter-

section operation between )(x
i
A

μ  and )(y
j

Bμ , which means 

the membership degree that x 1  belongs to i
A  and x 2  be-

longs to jB . It is common to use algebraic product T-norm 

" " to deal with the membership degree in intersection op-

eration, but as is well-known that algebraic product T-norm 

is not proper in any situation. What (8) shows is that, alge-

braic product T-norm is a special Hamacher T-norm whose 

parameter is constant to 1. So modifying the parameter to 

suit to the data pairs is a meaningful way to overcome the 

dilemma. It is not easy to determine the value of  that 

should be served in Hamacher T-norm to handle intersection 

operation. Iliadis et al. have tried to use other constant  to 

obtain better performance but not all always resulted in good 

situation [1]. It is a good solution to make ANFIS to adap-

 

Fig. (1). The structure of regular ANFIS. 
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tively select its own  for each rule. If ANFIS could select 

 for each rule respectively ,according to the training data 

pairs, it is more likely to fit to the performance curve and 

close to the inherent law. Back-propagation Algorithm could 

be adopted in the process of determining the parameter of 

each rule, but this method needs to obtain 
T (x, y)

x
 and 

  

T (x, y)
 which is the gradient of ),( yxT .  

3.1. Multi-input Hamacher T-norm 

Calculating 
  

T (x, y)

x
 and 

  

T (x, y)
 is easy, ANFIS 

may have more than two inputs and how to calculate their 

gradients is a real problem. More attention should be paid on 

how to calculate their gradient with more than 2 inputs. Now 

the definition of multi-input Hamacher T-norm is given be-

low.  

)(
n
AT  is multi-input Hamacher T-norm on 

n
A  which 

has n elements, where n
A  = },,,{ 21 n

aaa  and 

1,0,2
+

i
anNi . )(

n
AT  = )),(( 1 nn

aATT . Especially, 

when n=2, ),(=)( 212 aaTAT .  

The definition given above is recursive definition, in 

other word the meaning of upper layer is corresponding to 

the lower one and the lowest is clarified. To express it 

clearly, a useful tool )( n

j
A  has been used. The definition 

and features of it are given below: )( n

j
A  = 

   
c
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Corollary 1 When nj ,  
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j
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The proof is given in Appendix A.  

Corollary 2 When j = n, 

)(
n

n
A  = )( 1

1

n

n

n
Aa  

The proof is given in Appendix A.  

Corollary 3 

k

n

j

a

A )(  = )\(1 kn

j aA , where j,k  N and 

j,k n. 
kn
aA \ = },,,,,,{ 1121 nkk

aaaaa
+

  

The proof is given in Appendix A.  

One evident feature of multi-input Hamacher T-norm is 

the monotonicity with respect to . After concise proof, the 

feature and the expression of )(
n
AT  are confirmed below:  

Proposition 1 )(
n
AT  is decreasing with respect to . 

Especially, when 1][1, +ni  1
i
a  and 

i
a  0, )(

n
AT  is 

strictly decreasing with respect to .  

The proof is given in Appendix B.  

Proposition 2  

  
T ( A

n
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n ( A
n
)
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The proof is given in Appendix B  

Proposition 3 )(
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n
)   

The proof is given in Appendix B.  

 
Fig. (2). The structure of ANFIS combined with subtract clustering.  
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3.2. Hamacher T-norm and Subtract Clustering 

based ANFIS 

The proposed model differs from regular ANFIS in two 
points:  

1. It makes Hamacher parameter variable and adaptive by 
adopting back-propagation algorithm, and needs to calculate 
the gradient with respect to each parameter and input.  

2. It’s combined with subtract clustering and employ it to 
determine the amount and value of each rule.  

As is given above, the gradient of Hamacher T-norm’s 
parameter and inputs have been achieved by Proposition 3 
and Proposition 4. Different from the regular ANFIS, the 
output of layer-2 for a proposed model which has 3 inputs is 
given below:  

O
2,32 ( i 1)+3( j 1)+k

= T (A
3
)             (9)  

where A
3
= {μ

A
i

(x),μ
B
j

( y),μ
C
k

(z)} .  

Each rule has same position in regular ANFIS, because 

their  have been uniformly set to 1, which hammers the 

system to find the most significant rule adaptively. However, 

proposed model’s each rule with different  in the end can 

lay the foundation for measuring the importance of itself. 

Both the IF part and the THEN part correlate to the  and 

the principle of updating  is to minimize the error, which 

guarantees that updated  is harmonious to the system . i
w

 is 

the weight of i th rule and decreasing with respect to  ac-

cording to Proposition 1 and Equation(9). It means that the 

less  leads to bigger i
w

, then bigger i
w
~

, so the i th rule 

plays a more important role in proposed model.  

In addition, this model involves the field that the others 
have never touched upon. This field is attached to the 
improvement in fuzzy reasoning, and it could be combined 
with the improvement both in fuzzy reasoning and in other 
process, because it provides a new methodology for handling 
intersection operation.  

With the variable and adaptive parameter, the prediction 
ability of proposed model may be improved; the parameter is 
modified according to the gradient and so as to fit to the in-
herent law. Empirical study will be given in next section, 
which proves that the proposed one overweighs the regular 
ANFIS.  

4. EXPERIMENT 

Famous Box-Jenkins dataset is the benchmark dataset to 
validate the performance of fitting method. The Box-Jenkins 
dataset represents the 2

CO  concentration as output, y(t), in 
terms of input gas flow rate, u(t), form a combustion process 
of a methane air mixtrue.Lots of early work has been done 
on fitting Box-Jenkins dataset.Among them 7 input-type has 
been widely used:(A) u(k-4),y(k-1); (B) u(k-3), y(k-1); (C) 
u(k-3), u(k-4), y(k-1); (D) u(k), u(k-1), y(k-1), y(k-2); (E) 
u(k-1), u(k-2), y(k-1), y(k-2); (F) u(k), u(k-1), u(k-2), y(k-1), 
y(k-2), y(k-3); (G) u(k-1), u(k-2), u(k-3), y(k-1), y(k-2), y(k-
3).  

Whole experiment was undertoken in the environment of 
Matlab 7.8.0. The results of proposed model and early work 
are listed in Table 1, where we can find that the proposed 
model has an outstanding performance.  

CONCLUSION 

Hamacher T-norm is one of the most influential T-norms. 
In this paper, we investigate the feasibility of applying AN-
FIS implemented with Hamacher T-norm. While employing 
benchmark Box-Jenkins dataset, the proposed methods have 
a more competitive performance in prediction accuracy 
compared to early work.  

There are two main advantage of proposed model: on the 
one hand, it is the extention of ANFIS in fuzzy reasoning, 
and makes it possible to improve when be implemented with 
other improvement in fuzzification, defuzzification even 
training method and other optimal algorithm such as GA and 
PSO; on the other hand, it provides a very vital parameter  
to infer the importance of each rule, but the normal form of 
inferring and measuring has not been proposed. The study of 
all above expectations is in progress.  

Table 1. The results of each model.  

Model Input-type MSE 

PMDE [4] F 0.1247 

PMGA [4] F 0.3508 

TS-GMDH1 [9] G 0.1299 

TS-GMDH2 [9] G 0.2197 

TS-GMDH3 [9] G 0.3310 

Mejias [3] B 0.3129 

Yue [8] A 0.1480 

Yue [8] B 0.1240 

Yue [8] C 0.1030 

Yue [8] F 0.0460 

Yue [8] G 0.0420 

Proposed Model F 0.0325 

Proposed Model G 0.0301 
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APPENDIX A. PROOF OF COROLLARY 

Proof of Corollary 1 When nj <0 , ni1  
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Which completes the proof.  

Proof of Corollary 2 When nj ,  
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Which completes the proof.  

Proof of Corollary 3 When nj <0 , ni1  
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Which completes the proof.  

APPENDIX B. PROOF OF PROPOSITION 
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Proof of Proposition 3  
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