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Abstract: Recently, scheduling algorithm which is related to computing tasks and communication transactions is widely 

studied. In multi-core systems, adopting certain scheduling algorithm to execute schedule can decrease scheduling length 

effectively after eliminating intra-iteration dependency of the computing tasks. In this case, regulating execution order of 

computing tasks can make further compression of the scheduling length in consideration of the effect generated by com-

munication tasks. The experiment proved the necessity of decreasing scheduling length by regulating execution order of 

computing tasks according to the specific situation after achieving the initial scheduling length by adopting certain sched-

uling algorithm without the intra-iteration dependence of computing tasks. This study has great significance for the design 

of scheduling algorithm in the multi-core environment. 
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1. INTRODUCTION 

In recent years, scheduling algorithm which contains 
computing tasks and communication transactions has ob-
tained extensive research. For cycle application running on 
multi-core systems, dependency of computing tasks affects 
the parallelism, which reduces the utilization rate of multi-
core [1-3]. Dependency of computing task contains intra-
iteration dependency and extra-iteration dependency [4]. 
Only intra-iteration dependency will produce the fore men-
tioned affection, but extra-iteration dependency will not. 
Therefore the researchers start to consider eliminating intra-
iteration dependency of computing tasks [5], and carrying 
out a large number of scheduling algorithm designs based on 
the elimination of data dependency of intra-iteration [6-9]. 
Computing task execution order can be regulated liberally 
after eliminating the intra-iteration dependency of the com-
puting tasks. The adjustment of computing task execution 
order may affect scheduling length especially when consider-
ing the communication transactions. After eliminating intra-
iteration of computing tasks, whether the adjustment of 
computing task execution order can reduce the scheduling 
length is a problem worth studying.  

2. RELEVANT DEFINITION AND MODELLING 

When infra-iteration dependency of computing tasks is 
eliminated, the definition of scheduling length and the 
scheduling length of data dependency with data iteration is 
different. That is because communication happens in different  
 

 

 

 
 

iteration of the loop. The definition of scheduling length 
without infra-iteration data dependency will be given in the 
following section. 

Definition 1: On considering scheduling of communica-
tion tasks, scheduling length is the latest finish time of all the 
computing tasks and communication transactions in the task 
graph.  

Before the study on computing task execution order, di-

rected acyclic graph standing for application program will be 

introduced first: ( ), , ,G E D C= ,  represents task set, E  

represents the set of directed edge ( ),
i j
e i j n , W represents 

the set of weight of direct edge, that is to say 
i
w  represents 

the execution time of computing task 
i
. ijc C  represents 

the communication time between computing task 
i
 and

j
. 

Fig. (1) shows one task graph instance. In Fig. (1), nodes 

represent computing tasks and the numbers beside the com-

puting tasks represent the number of clock cycles required 

by executing computing tasks. The directed edge connecting 

two computing tasks represents the communication edge of 

the two computing tasks. The computing task from the 

communication edge are father computing task (father node), 

the computing task pointed by the arrows from the commu-

nication edge are child computing task(child node), the 

tagged numbers beside the computing tasks represent the 

number of clock cycles required by executing communica-

tion. The directed edge connecting two computing tasks 

represents the communication edge of the two computing 

tasks. For the situation two computing tasks from connection 

of communication edge are assigned to the same processing 

core, the communication time between the two computing 
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tasks will be zero. In the multi-core system, if intra-iteration 

dependency of computing tasks are eliminated and the origi-

nal computing tasks with intra-iteration dependences map to 

the processing core in accordance with certain scheduling 

algorithm, then scheduling length could be the time of the 

last one computing task finished in all processing core, or 

also could be the time of the last one communication task 

finished on the bus. This is because once the intra-iteration 

dependency of computing tasks are eliminated, the finish 

time of communication tasks and computing tasks may over-

lap, or the finish time of communication tasks may be later 

than the final completion time of computing tasks. Thence 

scheduling length can be calculated by the following for-

mula: 

max(max( ( , )),max( ( )))

( 1,2, , 1, 2, , 1, 2, )

= i k ijmakespan finish p finish e

i n j n k m     (1) 

makespan --scheduling length.  

( , )i kfinish p --the finish time of computing task 
i
 on 

processing core kp  

( )ijfinish e --the completion time of communication 

transaction 
ij
e  

m --the number of the processing core 

The completion time used by computing task 
i
 on the 

processing core kp  is the sum of the start time and execution 

time of this task on the processing core kp , and is expressed 

as follow. 

( , ) ( , )i k i k ikfinish p start p w= +
         (2) 

( , )i kstart p
--start time 

i k
w --execution time  

The completion time ( )i jfinish e  of communication 

transaction 
i j
e  is the sum of the start time and execution time 

of this communication transaction. 

( ) ( )i j i j ijfinish e start e c= +
          (3) 

( )
i j

start e
--start time 

ij
c --communication time 

3. BACKGROUND KNOWLEDGE AND PLATFORM 
INTRODUCTION 

3.1. Principle of Retiming Technique 

Retiming technology principle is put forward by Leisers 

in 1991 and this technique was originally used to optimize 

sequential circuits [10]. While keeping the original function 

elements and their connection way invariable, It will remove 

delays from each of the input side of one node and add to 

each of the output side of the node by rearranging the regis-

ters or in turn so that circuits can be optimized. Later this 

technology is brought in parallelization and schedule of em-

bedded system [11, 12] to optimize data flow diagram gained 

by the abstraction of application program. Actually its es-

sence of the improvement of program parallelism is though 

reassembling the loop body, and making dependency of 

computing tasks in the original task graph exist in different 

iterations. This technology achieves the purpose of optimiz-

ing loop by rearranging the delays under the situation of 

keeping the tasks of the original data flow diagram and de-

pendency among iterations invariable. This technology has 

eliminated the intra-iteration dependency of the original data 

flow diagram. The loop body can be optimized according to 

the retiming data flow diagram after the use of this technol-

ogy on data flow diagram. In the retiming data flow diagram, 

if there is no delay at the directed edge which connects two 

nodes, the intra-iteration data dependency will represent the 

relationship the two computing tasks. Two extra-iterations 

existed in different loops will be represented by the edge 

with delay, “ ”which connects two different nodes repre-

sents delay, the number of “―” represents how many cycle 

times of discrepancy between the two nodes connected on 

one edge. For instance, the number of delay in the edge that 

connects computing task 
i
 and 

j
is ( ) 0

ij
e > , showing the 

result produced by the computing task 
j
 at m-th loop de-

pends on the result produced by the computing task 
i
 at 

( ( )
ij

m e )-th loop. 

Fig. (2a) provides a loop program. Fig. (2b) provides the 

relevant data flow diagram G  of this loop program (one 

node represents one computing task). The tagged number 

beside each computing task represents the periodicity of this 

computing task, here assuming that add operation needs one 

clock cycle, multiply operation requires two clock cycles. 

Fig. (2c) provides one deformational loop program. Fig. (2d) 

provides the relevant retiming data flow diagram
r
G . In this 

retiming data flow diagram, the retiming value of node A is 

3, the retiming value of node B is 2, the retiming value of 

node C is 1, the retiming value of node D is 2, and the retim-
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Fig. (1). An example of task graph. 
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ing value of node E is 0. Fig. (2e) provides the scheduling 

result gained though the data flow diagram G. Fig. (2f) pro-

vides the assembly line scheduling result gained though the 

retiming data flow diagram 
r
G .  

3.2. RDAG 

RDAG algorithm is designed based on retiming principle 
whose aim is to obtain computing task retiming value [4]. 
This algorithm can transform a periodic acyclic graph into a 

For i=1 to n do           

A[i]=i+1;

B[i]=A[i]+8;
C[i]=A[i]+3;

D[i]=B[i]-2;

E[i]=C[i]*D[i];

End
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For i=1 to n do        

A[i]=i+1;

B[i]=A[i-1]+8;

C[i]=A[i-2]+3;

D[i]=B[i-1]-2;

E[i]=C[i-1]*D[i-1];

End
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Fig. (2). (a) A loop program, (b) The relevant data flow graph G , (c) The deformational loop program, (d) The relevant retiming data flow 

graph, (e) The scheduling result obtained by data flow graph G , (f) Assembly line scheduling result gained though retiming data flow 

diagram 
r
G . 
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retiming data flow diagram effectively. In the retiming data 
flow diagram, each node has the smallest retiming value so 
that the intra-iteration dependency among tasks can be 
eliminated effectively. Formula (4) gives the calculation 
formula of retiming values. 

i

i

max{ [ ], [ ] 1 if ô  is parent node of
[ ] (4)

0 if ô  is a leaf node

i j j

i

r r
r

+
=

 
 

The basic idea of RDAG algorithm is that: first the retim-

ing value of each node will be initialized to zero. Then all of 

the leaf nodes found from the original task graph will be put 

in one array named after Q. Link list tail of Q is stored in 

variable named after tail. After that every time one node 

j will come out from array Q, for the father node i of the 

node 
j
,its retiming value can be computed according to the 

formula(4). Finally, determine whether j is tail node, if it is 

not, i will be put in the array again, but if it is, the 

node i will be seemed as the link list tail. When the queue is 

empty, the corresponding retiming task graph can be ob-

tained. In this algorithm, the calculation process of retiming 

is carried out in breadth first manner. 

3.3. List Scheduling Algorithm 

Scheduling of directed acyclic graph in multiproces-
sor/multi-core system is a very complicated problem. Heuris-
tic scheduling algorithm is a good solution. List scheduling 
algorithm is one kind of classic static heuristic scheduling 
algorithm. Lots of heuristic scheduling algorithms are de-
signed on the basis of list scheduling algorithm. The basic 
idea of list scheduling algorithm is that a priority for each 
node which can form a scheduling list will be arranged. In 
this scheduling list, computing tasks are stored according to 
the priority descending order [13]. There are many ways to 
decide the priority of nodes such as HLF (Highest Level 
First), LP (Longest Path), LPT(Longest Processing Time), 
CP (Critical Path) and so forth. The scheduling of list sched-
uling algorithm will be completed in compliance with the 
following two rules [14]. 

(1) Get one node out in accordance with the deposited 
order from the scheduling graph; 

(2) Map this node to the processing core which can make 
this node have the earliest start time. 

This is the executive process of the traditional list sched-
uling algorithm and scheduling list cannot be changed once 
formed in the traditional list scheduling algorithm. In other 
words, the priority of tasks is the pre-determined static prior-
ity. With the further study of scheduling algorithm, some 
improved list scheduling algorithms based on dynamic 
scheduling list have been put forward. In these algorithms, 
after finishing the mapping of each node, the priority of the 
nodes that have not scheduled will be recomputed, then the 
next node will be chose according to the new priority, and 
this process will not stop until every node is scheduled [14]. 

The list scheduling algorithm in the modified TORSHE 
in this paper is based on the maximum completion time pri-
ority. The aim of this priority method is to ensure that the 

maximum completion time is minimal. In this paper, after 
eliminating the intra-iteration dependency, whether the 
analysis of adjustment of computing task execution order can 
reduce the scheduling length is suitable for the scheduling 
result gained by any scheduling algorithms.  

3.4. Platform Introduction 

Multi-core embedded system can be divided into homo-
geneous multi-core embedded system and heterogeneous 
multi-core embedded system based on chip processing core 
style. The method proposed in this paper is applicable to not 
only homogeneous multi-core embedded system but also 
heterogeneous multi-core embedded system. The system 
studied in this paper uses the shared bus as communication 
architecture. All of the processing cores share one bus. In 
this kind communication architecture with multi-core sys-
tem, the data sent by computing tasks will possess the bus 
exclusively. Therefore, it is necessary to set a bus arbiter to 
distribute the use right of the bus when the tasks running on 
different processing cores apply for the bus simultaneously. 
The structure of the bus in this paper is as same as the one in 
literature [15].  

The principle of bus arbitration in this paper is similar to 
the principle in literature [16]: 

(1) If there is no computing tasks possessing the bus, and 
at this time a computing task applying for the use right of the 
bus can gain right to use the bus. 

(2) If one computing task has gained the right to use the 
bus, and other tasks apply for the bus at the same time, the 
bus arbiter will not response until the data transmission is 
finished. 

(3) If there are multiple computing tasks applying for the 
right to use the bus at the same time, the bus arbiter will dis-
tribute the use right to the task with high priority. 

4. RELATED WORKS 

Due to the elimination of intra-iteration data dependency, 
the parallelism and performance can be improved, besides 
that, the energy consumption also can be reduced. Therefore 
the scheduling algorithm without intra-iteration has aroused 
wide concern. Literature [17] proposes a scheduling algo-
rithm which can meet the double restrictions of time and 
resource. With the computing task as the scheduling object, 
this algorithm adopts main loop scheduling strategy to carry 
out the retiming operations for other nodes waiting for being 
scheduled and form the channel without feedback without 
violating the time constraints. Literation [18] proposes a 
method that can realize implicit retiming with cycle rolling 
so that a transfer under the resource constrain can be realized 
though rolling cycle. This scheduling algorithm in the serv-
ice of computing tasks can compress scheduling cycle and 
choose a best scheme from a variety of scheduling scheme 
obtained. Considering the voltage conversion overhead and 
dynamic power consumption, Literature [19] proposes a 
scheduling algorithm which can reduce power consumption 
though combining the technology of dynamic voltage scaling 
and cyclic rotation scheduling. For the purpose of optimizing 
the energy consumption and performance simultaneously, 
Literature [4] puts forward a two-stage algorithm based on 
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overhead perception. In the first stage, intra-iteration de-
pendency will be eliminated by loop body deformation. Then 
in the second stage, task scheduling and voltage selection 
will be adjusted iteratively with spring algorithm

 [4]
. This 

method synthesizes dynamic voltage scaling, dynamic power 
consumption and software pipelining technology to achieve 
the power consumption optimization in multi-core embedded 
system. To optimize computing tasks and communication 
transactions on multi-core system, literature [6] uses retim-
ing technology to adjust computing tasks and communica-
tion transactions simultaneously which provides the possibil-
ity of minimizing the scheduling length. Literature [20] in-
troduces the real-time loop scheduling technology which 
reduces energy consumption by dynamic voltage scaling. 

The technology includes IDVS algorithm and DVLS algo-
rithm. With IDVS algorithm conversion cost can be included 
in the optimization scheduling scheme. And based on rota-
tion scheduling, DVLS algorithm reorganizes the loop body 
repeatedly to achieve the purpose of reducing energy con-
sumption as much as possible within the given time limit. 

It can be seen from the above analysis that the research 
into computing tasks or communication transactions respec-
tively has been done for long, but there is less done on the 
study of both aspects at the same time. Besides, the research 
results are just confined to the homogeneous multicore sys-
tem. However the research result proposed in this paper is 
suitable for not only homogeneous multicore system but also 
heterogeneous multi-core system.  
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Fig. (3). (a) The task graph with 7 computing tasks. (b) The corresponding retiming task graph. (c) The scheduling result on multi-core 

system with 2 processing cores. (d) The scheduling result on multi-core system with 3 processing cores. (e) The scheduling result on multi-

core system with 3 processing cores after adjusting the execution order of computing tasks. 
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Fig. (4). (a) The task graph with 6 computing tasks. (b) The corresponding retiming task graph. (c) The scheduling result on multi-core 

system with 2 processing cores. (d) The scheduling result on multi-core system with 2 processing cores after adjusting the execution order of 

computing tasks. (e) The scheduling result on multi-core system with 3 processing cores. 

5. CHOICE OF SCHEDULING LENGTH AND DE-

TERMINATION OF TASK PRIORITY 

For the application which contains dependency comput-
ing tasks, the most popular multi-core scheduling algorithms 
usually adopt list scheduling strategy, heuristic algorithm 
and so forth to obtain the scheduling scheme and determine 
the priority of the computing tasks. For the tasks eliminating 
intra-iteration dependency, there are no more free time slots 
existing in the processing core, but the communication be-
tween the computing tasks of the father node and the child 
node in different iteration still exists because of extra-
dependency existing among the computing tasks. It is possi-
ble that the scheduling length is the finish time of the last 
communication transaction. For the same application with 
the intra-iteration dependency, the scheduling result can 

make sure that the optimized scheduling length can be ob-
tained within the time limit. But after eliminating the intra-
iteration dependency among the computing tasks, it is neces-
sary to improve the scheduling result and adjust the execu-
tion of the computing tasks to obtain the optimized schedul-
ing length within the time limit. In this paper, we set the ini-
tial priority of the computing tasks the same with the priority 
of the list scheduling algorithm in TORSCHE. After obtain-
ing the initial mapping with list scheduling algorithm, in 
order to make sure the scheduling length is the shortest, it is 
necessary to adjust the execution order of the computing 
tasks. When multiple computing tasks apply for the use right 
of bus at the same time, the execution order of computing 
tasks gained by breadth traversal will determine which 
communication transaction has the right to use the bus. For 
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the communication transactions sent by the same computing 
task, the use right of the bus is determined bases on the 
breadth traversal too. 

6. EXPERIMENTAL RESULTS 

In this paper, we mainly focus on the two task graphs 
based on Gaussian elimination mentioned in literature [23, 
24] and transform the list scheduling algorithm proposed in 
literature [22] based on the maximum completion time 
method, and then install the modified TORSCHE on the 
MATLAB software environment. Firstly, we get the corre-
sponding retiming task graphs of this two task graphs using 
the method in literature [4] and obtain a loop scheduling re-
sult on a respective multi-core system with 2-3 processing 
cores with the modified list scheduling algorithm. Then, we 
will analyze the scheduling result and find out whether the 
scheduling length can be compressed further by adjusting the 
execution order of the computing tasks. In the following ex-
periment, we mainly discuss impacts of execution order on 
scheduling length. Fig. (3a) shows a task graph with 7 com-
puting tasks. For this task graph, firstly use the retiming 
technology to get its corresponding retiming task graph and 
then the scheduling result with the revised list scheduling 
algorithm. Fig. (3b) is the retiming task graph of this task 
graph after eliminating the intra-iteration dependency. Fig. 
(3c) shows the scheduling result for the retiming task graph 
on the multi-core system with 2 processing cores. From Fig. 
(3c), we can see that the scheduling length cannot be com-
pressed by adjusting the execution order of computing tasks. 
From Figs. (3d) and (3e), we can see that the scheduling 
length can be compressed by adjusting the execution order of 
computing tasks on the multi-core system possessing 2 proc-
essing cores. For the task graph with 6 computing tasks, we 
can obtain the scheduling result by its corresponding retim-
ing task graph. Fig. (4a) shows a task graph with 6 comput-
ing tasks. Fig. (4b) is the retiming task graph of the task 
shown in Fig. (4a) after eliminating the intra-iteration 
dependency. Fig. (4c) shows the scheduling result with the 
revised list scheduling algorithm on the multi-core system 
with 2 processing cores. Fig. (4d) shows the scheduling re-
sult after adjusting the execution order of the computing 
tasks. From Fig. (4c) and Fig. (4d), we can see that the 
scheduling length can be compressed by adjusting the execu-
tion order of computing tasks. However, for the multi-core 
system with 3 processing cores, the scheduling length cannot 
be compressed by adjusting the execution order of comput-
ing tasks (shown in Fig. (4e)). 

CONCLUSION 

In this paper, we mainly discuss the influence of comput-
ing task execution order on scheduling length on the multi-
core systems. We respectively test the task graph with 6 
computing tasks and 7 computing tasks on the multi-core 
systems with 2-3 processing cores. The experimental result 
shows that when considering communication transactions, 
we should analyse the necessity for adjusting the execution 
order of computing tasks to reduce scheduling length in view 
of different variable characteristics. The conclusion of this 
article is of great significance to optimize regulating schedul-
ing length after eliminating intra-Iteration dependency on the 
multi-core systems. 
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