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Abstract: The use of genetic algorithms (GAs) to solve combinatorial optimization problems often produces a population 

of infeasible solutions because of optimization problem constraints. A solution pool with a large number of infeasible 

solutions results in poor search performance of a GA, or worse, the algorithm ceases to run. In such cases, the methods of 

penalty function and multi-objective optimization can help GAs run to some extent. However, these methods prevent 

infeasible solutions from surviving in the solutions pool. Infeasible solutions, particularly those that are produced after 

several generations, exhibit some achievements in evolutionary computation. They should serve as a positive function in 

the process of evolution instead of being abandoned from the solution pool. In this study, we extract excellent gene 

segment for infeasible solutions with a function operation to increase the search performance of GAs. Simulation results 

on zero-one knapsack problems demonstrate that applying infeasible solutions can improve the search capability of GAs. 

Keywords: Constrained Optimization, Genetic Algorithm, Infeasible Solution, Artificial Immune Operation. 

1 INTRODUCTION 

 Over the last two decades, as a result of high global 

search performance and robust performance, genetic 

algorithms (GA) have been widely applied to large-scale 

combinatorial optimization problems. Several optimization 

problems have constraint conditions. With respect to the 

constrained optimization problem, GA searches the feasible 

solutions that satisfy the constraint conditions with the 

objective function over the entire genetic space. The 

solutions that do not satisfy the constraint conditions are 

referred to as infeasible solution whose encoding referred to 

as lethal chromosomes (LCs). 

 In the population of GA, due to crossover and mutation 

operations, LCs are sometimes produced at high rates, 

especially in combinatorial optimization problems having 

severe constraints. The greater the number of LCs in the 

population, the worse the search performance of the GA, in 

the worst case, the algorithm ceases to run. 

 Iima Hitoshi [1] (1995) investigated the effects of LCs on 

the performance of the GA but did not propose a method for 

handling these problems. If LCs were found to follow some 

rules, it would be possible to avoid creating LCs. However, 

designing a genetic operation to avoid the generation of LCs 

is generally difficult. Generally, LCs are eliminated from the 

 

 

 

 

population. However, after evolution through several 

generations, the LCs may contain useful traits. Therefore, Z. 

Michalewicz [2] (1995) concluded that "Do not kill 

unfeasible individuals". If a GA uses the LCs instead of 

abandoning them, then the search performance of the 

algorithm may be improved. Mengchun Xie [3] (1996) 

proposed an algorithm model called the double islands 

model to revive the LCs by random crossover and mutation 

operations. Due to its randomness, and without using 

characteristic information, the efficiency of the double 

islands model algorithm must be improved.  

 Research focusing on problems associated with infeasible 

solutions has advanced in recent years. Yu and Zhou [4] 

(2008) theoretically showed that the use of infeasible 

solutions could change the “hardness” of a task. Lyndon 

While and Philip Hingston [5] (2013) proposed new 

empirical and mathematical analyses of the usefulness of 

infeasible solutions in evolutionary search. They also tested 

a multi-objective approach [5] to constraint handling, and an 

additional test problem demonstrated the superiority of this 

multi-objective approach over previous single-objective 

approaches. Deepak Sharma [6] (2013) proposed an 

infeasibility-driven approach for bi-objective evolutionary 

optimization, in which some extreme solutions are allowed 

to recombine only with extreme infeasible solutions. 

Tapabrata Ray [7] (2009) maintained a small percentage of 

infeasible solutions close to constraint boundaries during its 

course of evolution for constrained optimization. Patryk 

Filipiak [8] (2011) and Maristela OliveiraSantos [9] (2010) 
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separately proposed an infeasibility-driven evolutionary 

algorithm and infeasibility-handling approach in genetic 

algorithm (GA). Both techniques use infeasible solutions in 

evolutionary computation. 

 Studies focusing on GA and knapsack problems are 

common [10-19]. In the present paper, we propose an 

immune genetic algorithm (IGA) to revive and use the LCs, 

which combine the evolutional information of the 

chromosome with the characteristic information of the 

problem. Applying the proposed algorithm to the typical 

multidimensional knapsack problem (MDKP) and 

comparing the results to those obtained by a GA without 

immune operation (SGA) reveals the validity of the proposed 

method. 

2. DESIGN OF MDKP 

 The proposed algorithm, IGA, is mainly composed of a 

GA and an immune operation module and runs on the double 

islands model. Immune operation is used to replace the 

means of performing the genetic operations again to obtain 

non-lethal chromosomes. Immune operation involves 

extracting the useful features from the LCs, training a 

vaccine during evolution, and vaccination of LCs. We 

introduce these operations one by one in the following. 

2.1. Multidimensional Knapsack Problem 

 The MDKP is first described so that we can explain the 

proposed algorithm using the MDKP as an example. The 

MDKP is an NP-hard problem that has several practical 

applications, such as processor allocation in a distributed 

system, cargo loading, stock cutting, project selection, or 

capital budgeting. The goal of the MDKP is to find a subset 

of objects that maximizes the total profit while satisfying 

some resource constraints, which can be formulated as: 
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where n is the number of objects, m is the number of 

resources, vj is the value associated with object j, wij is the 

consumption of resource i for object j, ci is the available 

quantity of resource i (capacity of knapsacks for the i
th

 

resource), and xj is the decision variable with object j and is 

set to 1 if j is selected (and is otherwise set to 0). Constraints 

ci (i = 1,…,m) described in Eq.(2) are referred to as knapsack 

constraints, so the MDKP is referred to as the m-dimensional 

knapsack problem. A number of authors also include the 

term zero-one when referring to the problem, e.g., the 

multidimensional zero-one knapsack problem. 

2.2. Algorithm Model 

 The proposed GA, which uses LCs based on immune 

operation, has two types of chromosome pools, namely, the 

living island, which contains chromosomes, referred to as 

non-lethal chromosomes, that satisfy all constraints, and a 

lethal island, which contains LCs. In the living island, 

chromosomes are evolved by genetic operations, and in the 

lethal island, LCs are revived by immune operations. 

 In the IGA model, after initializing the population, the 

population is divided into two islands according to whether 

the chromosome is lethal or non-lethal. In the living island, 

LCs are created by genetic operations and are moved to the 

lethal island. In the lethal island, chromosomes are revived 

by the immune operation and are moved to the living island. 

A flowchart of the double islands model is shown in Fig. (1). 

 

 

 

Fig. (1). Flowchart of the double islands model. 

 

 As shown in Fig. 1, in the double islands model, the 

process of the algorithm consists of two main process lines, 

one is the process of GA and the other is the process of the 

immune operation. Section 2.3 describes the immune 

operations in detail. 

 Binary value coding is adopted in the present paper as a 

general method. Binary value encoding has been proven to 

be well suited for different combinatorial optimization 

problems. We do not present the proof here. Since the 

proposed IGA faces primarily constrained combinatorial 

optimization problems, we explain the problem using an 

example of the MDKP. In the initial population, we perform 

the initialization for each chromosome using following 

algorithm: 

(Algorithm: initialization for chromosomes) 

1: let: I=(1,2,…,m); 

2: set: chromosome l1l2…ln (0,0,…,0); 

3: Wi 0, i I; 

4: while(Wi<ci, i I) do: 

5: select one lk=0 randomly; 

6: if (Wi+wik ci, i I) then 

7: set (lk 1; Wi Wi +wik, i I); 
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8: else break while; 

9: end if 

10: end while; 

 The initial population and the initial lethal island contain 

no LCs at the beginning of process of the GA. The LCs 

primarily appear as the process of the GA evolves the 

population through genetic operations. The closer the 

solution is to the optimal solution, the more LCs will be 

produced by genetic operations when forming the next 

generation. The following is the definition of fitness for 

chromosome l1l2…ln, 
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Where f  0 when the chromosome is non-lethal, and f = 0 

when lethal. 

2.3. Deal with the LCs through Immune Operations 

 In order to facilitate the description, we first present 

several definitions. A chromosome is denoted by a binary 

value string composed of n items, each of which is referred 

to as a gene. Some genes can make up an incomplete 

chromosome, which is a part of all genes in the chromosome. 

We refer to these genes as a chromosome block. The useful 

traits contained in the LCs are blocks of LCs. We refer to 

such a block as an excellent block of an LC. An excellent 

block that has been extracted from an LC is referred to as an 

extracted excellent block. 

 In solving the MDKP, the GA would produce a number 

of LCs, which produces an unsatisfactory solution. However, 

in the evolution process, the LCs contain a number of useful 

traits, which are similar to the parts of the optimal solution 

and should be used for resource conservation. In order to use 

these traits, we should first determine methods by which to 

these traits and vaccinate the LCs with a trained vaccine. 

(1) Extract the Useful Traits of the LC 

 In order to extract the excellent block from the LCs, 

l1l2…ln, a three-value string f1f2…fn is used to denote the 

block of l1l2…ln, where i (1,2, … ,n), fi = 0 or 1 denotes 

the original value li of the LC, and fi = * denotes the i
th

 gene 

that does not belong to the block. For example, 

“01*0*001*0**110*00*1” is a block of chromosome 

“01101001001011010001”. Each chromosome has several 

blocks. We provide an estimate for the block as basis for 

extracting the excellent block from the LC: 
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different from the fitness value of the chromosome and is not 

bounded by ci of the knapsack, and k is the number of 0 or 

1(except *) in the block f1f2…fn and is also referred to as the 

length of block. 

 There exists at least one optimal solution (chromosome) 

to a combinatorial optimization problem. The purpose of 

extracting the excellent block is to obtain a block from LCs 

that is similar to a corresponding block of an existent optimal 

chromosome. The shorter the length of the block, the higher 

probability of being identical to corresponding block of 

optimal chromosome. However, the longer block is helpful 

for improving the speed of the immune operation in dealing 

with the LC. Since a randomly generated gene has a 50% 

probability of being identical to the corresponding gene of 

the optimal chromosome for binary value coding, a 

randomly generated chromosome has a greater likelihood to 

obtain half of the genes of the optimal chromosome. In the 

present paper, the excellent block is searched the block with 

the length of block from n/2 to n. 

The steps for extracting the excellent block from the LCs are 

outlined as follows: 

(Algorithm: extract the excellent block from the LCs)  

1: r 0; 

2: for (j=n/2 to n) do: 

3: t1t2…tn l1l2…ln; 

4: select n-j genes randomly from t1t2…tn and set them as 

*; 

5: if(e(t1t2…tn)>r) then 

6: f1f2…fn  t1t2…tn; 

7: r e(t1t2…tn); 

8: end if 

9: end for 

10: get the f1f2…fn as the extracted excellent block form 

l1l2…ln; 

(2) Vaccine Training 

 By extracting the excellent block, we introduce the 

immune theory to the GA to revive the LCs created by the 

genetic operation. According to immune theory, it is 

necessary to train the vaccine during evolution. As a result, 

we can vaccinate the LCs when they appear during the 

evolution of the GA. 

 In the beginning of the evolutional process, we construct 

vaccine schema, s1s2…sn, and set si = 0 (i = 1,…,n). During 

evolution, when each LC, l1l2…ln, appears as a genetic 

operation, the following operations are performed to train the 

vaccine: 

(Algorithm: train vaccine with lethal chromosomes) 

1: for i=1 to n do: 

2: if li =1 then 

3: si si+1; 

4: end if 

5: end for 
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 Therefore, the vaccine is actually composed of the 

statistics of the genes from the LC, where si(i = 1,…,n) will 

increase as the evolution progresses, and si and sj(i j) are 

usually different from each other. We refer to s1s2…sn as the 

vaccine, which plays an important role in vaccination. 

(3) Vaccination 

 Both of excellent block and vaccine can be used as 

available resources to revive a valuable LC. The immune 

operation extracts the excellent block from the LCs and 

then restructure the remaining genes marked as * in the 

extracted excellent block. To restructure the remaining 

genes, immune operation sets the remaining genes, with 

the exception of the genes of the extracted excellent block, 

to 1 firstly, and then, according to the tendency of the 

vaccine to set the genes one-by-one to 0 until the LCs 

become to non-lethal chromosome. The pseudo-code is 

explained as follows: 

(Algorithm: vaccination with vaccine) 

1: set the LCs for vaccination as l1l2…ln ; 

2: extract the excellent block and record it with f1f2…fn ; 

3: for i=1 to n do: 

4: if(fi=*) then li 1; 

5: end for 

6: while(l1l2…ln is still lethal) do: 

7: in l1l2…ln select one gene from all genes whose 

value=1 and corresponding fi=* by roulette according to 

the value of si in the vaccine s1s2…sn; 

8: Set the selected gene to 0; 

9: end while; 

 The vaccination of the LCs keeps the genes of the 

extracted excellent block unchanged, and resets residual 

genes (fi = *) by immune operation based on the vaccine. 

2.4. Steps of the IGA 

 The IGA is a GA with immune operation, which uses the 

immune operation of reviving the LCs to replace the means 

of retrying the genetic operations repeatedly to obtain non-

lethal chromosomes. In order to use the LCs, the immune 

operation first extracts the excellent block of LCs, and then 

vaccinates LCs with vaccine. The IGA works under the 

framework of the GA. Under the double islands model, the 

steps of IGA are summarized as follows: 

(Algorithm: steps of the IGA under the double islands 

model) 

1) Initialize population 

 Move the non-lethal chromosomes into the living island 

and the lethal chromosomes into the lethal island. 

2) Evolve population 

(In the living island): 

 All of the chromosomes in the living island evolve into 

the next generation by genetic operations, and the new lethal 

chromosomes move to lethal island. In this process, the 

vaccine must be trained. 

(In the lethal island): 

 Each chromosome in the lethal island is revived by 

immune operations and is then moved to the living island. 

3) Repeat step 2 until the termination conditions of the GA 

are satisfied. 

3. COMPUTATIONAL EXPERIMENTS 

 In order to check the practical performance of the IGA, 

we tested the IGA on the classical constrained combinatorial 

optimization problem, the MDKP. A set of standard test data 

of the MDKP was proposed by Chu and Beasley [10] and is 

publicly available from the OR-Library. For the experiment, 

we adopted instances of the MDKP from the OR-Library and 

changed its constraint conditions, i.e., the knapsack 

capacities, by following way: 

ci ci*l, i=(1,2,…,m) 

Where l is a variable used to control ci. To describe the 

tightness ratio of the constraints condition, we introduce the 

parameter  for the MDKP instance, which is defined as 

follows: 
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Where ci and wi,j are as defined in Section 2.1. The purpose 

of the present paper is to obtain a method for the GA using 

the LCs, so we would rather observe the effects of the LCs 

by changing the tightness ratio  of the constraint condition 

to the same test instance. We present the results of the 

experiments for small- and large-scale problems with 

different . 

 The present research proposes a method by which to deal 

with the LCs, replacing the present means of retrying genetic 

operations to obtain non-lethal chromosomes for the GA. 

This does not contradict other methods which are reported to 

improve the performance of the GA in other literatures [11-

19]. Therefore, we compare the proposed IGA with the GA 

without using the LC and the SGA, in order to investigate 

the ability of the IGA. 

3.1. Experiments on the Small-scale MDKP 

 We performed computer experiments for the IGA, taking 

the instances of the MDKP from the OR-Library and 

changing the tightness ratio , and compared with the 

experimental results of the SGA. Ordinarily, the evolutional 

curve of the GA is plotted with respect to the number of 

generations of the GA. In the case of the present study, since 

the IGA has greater time complexity for one generation than 

the SGA, we set the terminating CPU time and plotted the 

evolutional curves with respect to the CPU time instead of 

the generation in order to compare the results of the IGA and 

the SGA and examine their performances. We refer to this 

type of evolutional curve as the time evolutional curve. 

 Table 1 summarizes the results of the experiments on the 

IGA and the SGA for a small-scale MDKP for the cases of  
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= 0.5, 0.25, and 0.125. The time evolutional curves are 

shown in Figs. (2), (3), and (4). The problem parameters for 

each case and the experimental parameters of the IGA and 

the SGA are summarized in Table 1. 

 In Table 1, the experimental data were obtained by 

applying several algorithms to the same problems. The item 

“average number of completed generations” indicates the 

average number of generations completed by the IGA and 

the SGA in a given CPU time. The “average of number of 

LCs” indicates the average of the sum of the LCs for all 

completed generations for several simulation runs. The 

“average CPU time for LCs” indicates the CPU time spent to 

revive the LCs with the immune operation in the IGA. The 

item “average of best solutions” is the average fitness value 

of the best solutions obtained for all simulation runs of the 

algorithm. The items “range of best solutions” and “SD of 

best solutions” are the range and standard deviation of the 

fitness value of the best solution for all runs. The “number of 

exact solutions obtained” indicates how many simulation 

runs converge to the exact solution. 

 For the SGA, the “average of number of retries for LCs” 

indicates the average number of rerun operations of the GA 

to obtain a non-lethal chromosome when the LCs appeared 

in the chromosome pool after the genetic operations. The 

“average CPU time of retry” indicates the CPU time spent on 

the above rerun operations of the GA for the LCs. The other 

items have the same meaning as those described for the IGA. 

 
 

Fig. (2). Time evolutional curve of  = 0.5 on the small-scale 

MDKP. 

 

 From Table 1, the IGA evolves generations no faster than 

the SGA. In the other words, the immune operations to 

revive the LCs in the IGA require more CPU time than 

rerunning the genetic operations to obtain the non-lethal 

chromosome in the SGA. However, during the given CPU 

time, the IGA can find a better solution than the SGA and 

has a smaller SD of the best solution compared to the SGA, 

especially for small values of .  

 In order to investigate the ability to obtain an exact 

solution, we select test instance as possible as large scale for 

Table 1. Experimental results for the small-scale MDKP. 

Experimental parameters Population size: 30, termination time: 20 s, number of simulations: 30 

m = 5, n = 39 

 0. 5 0.25 0.125 problem 

value of exact solution 8,244 4,296 2,562 

average number of completed generations 7,308.83 5,763.77 4,907.6 

average number of LCs 201,840 199,646 223,696 

average CPU time for LCs 17.5098 (s) 17.9638 (s) 18.3162 (s) 

average of best solutions 8,238.97 4293.97 2559.97 

range of best solutions 8,181~8,244 4,285~4,296 2,501~2,562 

SD of best solutions 12.4592 3.72812 10.9498 

IGA 

number of exact solutions obtained 14 20 29 

average number of completed generations 23,789.8 14,634.1 4,577.63 

average of number of retries for LCs 754,389 714,875 480,826 

average CPU time of retry 12.368 (s) 15.266 (s) 18.509 (s) 

average of best solutions 8,209.93 4,263.5 2,519.27 

range of best solutions 8,144~8,244 4,244~4,296 2,505~2,562 

SD of best solutions 33.2174 23.6203 16.8225 

SGA 

number of exact solutions obtained 8 8 4 
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which the exact solution can be obtained using the branch 

and bound method (BBM) within the available CPU time. 

For the three cases of  = 0.5, 0.25, and 0.125, the BBM 

requires CPU times of 200, 60, and 8 hours, respectively, to 

obtain the exact solution. 

 

 
 

Fig. (3). Time evolutional curve of  = 0.25 on the small-scale 

MDKP. 

 

 
 

Fig. (4). Time evolutional curve of  = 0.125 on the small-scale 

MDKP. 

 

3.2. Experiments on the Large-scale MDKP 

 For the large-scale MDKP experiments, we selected an 

instance with m = 30 and n = 500 from the OR-library and 

applied the IGA and the SGA. We also change the value of  

to 0.5, 0.25, and 0.125. In the GA simulations, we set the 

population size of the chromosomes to 50 and the 

termination CPU time to 3,600 seconds, and we performed 

the simulations 10 times to obtain the results for each case of 

the MDKP for the IGA and the SGA. 

 Table 2 summarizes the results for the IGA and the SGA 

at different constraint ratios . Figs. (5), (6), and (7) show 

the average time evolutional curves for different values of . 

 When  = 0.5, within 3,600 seconds, IGA finished, on 

average, no more than 1,200 generations, in contrast to the 

SGA, which finished, on average, over 32,000 generations. 

Approximately 67,000 LCs were generated by genetic 

operations in the IGA, most of which were revived by 

immune operations, whereas over 1.6 million LCs were 

generated by genetic operations in the SGA. Furthermore, 

the SGA retried the genetic operations 4.5 million times, i.e., 

approximately three times (  4.5/1.6) per LC, to obtain a 

non-lethal chromosome. 

 

 
 

Fig. (5). Time evolutional curve of  = 0.5 on the large-scale 

MDKP. 

 

 
 

Fig. (6). Time evolutional curve of  = 0.25 on the large-scale 

MDKP. 

 

 
 

Fig. (7). Time evolutional curve of  = 0.125 on the large-scale 

MDKP. 

 

 In the SGA, the average probability of an LC being 

generated from one chromosome in the child generation pool 
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by the crossover and mutation operation is approximately 0.5 

[  (1.6 10
6
 LCs)/(3.2 10

4
 generations)/(50 chromosomes)/ 

(2 child chromosomes)], which is less than 0.58 (  

67,689.9/1,158.7/50/2)in the IGA. In addition, for the cases 

of  = 0.25 and 0.125, the probability of LCs appearing is 

larger for the IGA than for the SGA, which implies that the 

population of the IGA is closer to the boundary of the 

constraints of the problem, making the generation of LCs by 

genetic operations easier than that for the SGA. The 

computational complexity of the IGA is greater than that of 

the SGA, and the IGA requires more CPU time to process 

one generation than the SGA. However, the performance of 

the IGA for obtaining higher fitness chromosomes is high. 

 For small , the constraints are more severe, so the 

genetic operations break down the non-lethal chromosomes 

to the LCs more easily than for large . For small , the SGA 

could finish less than 700 generations, which is a significant 

decrease from over 32,000 generations for  = 0.5, whereas 

the IGA could finish almost the same number of generations, 

over 500, which is over 50% of the generations processed for 

the case of  = 0.5. The ability of the IGA is clear for the 

case in which  is small, i.e., the case in which the 

constraints were severe. These facts are shown in Figs. 6 and 

7. As shown in Fig. 7, when  = 0.125, the SGA could not 

evolve the chromosomes in the pool after 300 seconds, 

whereas the IGA could evolve the chromosomes gradually as 

the generation progresses. In addition, the SD of the best 

solution of the IGA for 10 iterations was smaller than that of 

the SGA, which also shows the higher performance of the 

IGA. On the whole, the IGA is significantly different from 

the SGA, which works especially well for the optimization 

problem with very severe constraints. 

 The experiments discussed in subsections 3.1 and 3.2 

showed the role LCs in the evolutionary process; thus, we 

tested various data for LCs and then compared IGA with 

SGA on a single test case. As an algorithm to solve the 

MDKP, IGA should be tested on a large number of 

experiments rather than an individual test instance. IGA 

should also be compared not only with SGA, but also with 

other approaches to solve MDKP. We tested IGA on all 270 

large-scale MDKP instances provided by the OR-library 

[10]. We also compared the results with those of other 

algorithms for solving the MDKP [10-19]. These algorithms 

include GA with H1 and GA with H2 proposed by Günther R. 

Raidl [11], Swap and Insert from Jens Gottlieb [12], and the 

Improved GA also proposed by Günther R. Raidl [17]. The 

quality of a solution is measured by the percentage gap of 

the objective value, fitns, with respect to the optimal value of 

the LP-relaxed problem, f
LP

max: %-gap = 100 (f 
LP

max  fitns) 

/ f 
LP

max. 

 Consistent with the representation in literature [10-19], 

various approaches were tested in different running 

conditions and with different objectives data. Comparing 

IGA with each of the other techniques directly is difficult. 

Nonetheless, IGA obtains an average %-gap of 0.54 on 270 

instances, whereas those of other algorithms are between a 

%-gap of 0.64 and 0.54. IGA shows preliminary superiority 

in searching for optimal solutions. In another paper, we will 

report exclusively detailed test results on a large number of 

large-scale problems, and then compare the results of IGA 

with those of other algorithms under different running 

conditions. 

 

Table 2. Experimental results for the large-scale MDKP. 

Experimental parameters Population size: 50, termination time: 3,600 s, number of simulations: 10 

m = 30, n = 500 
Problem 

 0. 5 0.25 0.125 

average number of completed generations 1,158.7 572.9 566.4 

average number of LCs 67,689.9 54,805.6 55,510.2 

average CPU time for LCs 3,574.95 (s) 3,590.16 (s) 3,589.05 (s) 

average of best solutions 193,506 97,272.3 48,097.7 

range of best solutions 192,530~194,788 96,528~98,230 47,278~48,827 

IGA 

SD of best solutions 700.4 460.6 436.8 

average number of completed generations 32,857.7 630.5 672.3 

average of number of retries for LCs 4.50658 e+06 7.61905e+05 8.11378e+05 

average number of LCs 1.65185e+06 55,975.6 63,363.8 

average CPU time of retry 2,833.5(s) 3,586.49(s) 3,587.31(s) 

average of best solutions 192,413 94,064.4 46,493.1 

range of best solutions 190,855~193,369 92,991~95,351 45,112~47,559 

SGA 

SD of best solutions 668.9 811.4 865.7 
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4. DISCUSSION 

 In recent decades, several studies reported improvements 

in the performance of the GA. Various improvements were 

applied to the GA to solve a wide range of optimization 

problems. The IGA was proposed as a method to replace the 

retrying operations of the GA to obtain a non-lethal 

chromosome when an LC appeared as a result of the immune 

operation. The IGA does not contradict other methods 

[11~19] reported to improve the GA. The immune operation 

can be applied with other methods simultaneously. 

4.1. General Ability of the IGA 

 Based on the results of the experiments, we can conclude 

that the IGA is better suited to problems with severe 

constraints than the SGA. 

 In general, for MDKP combinatorial problems, the 

constraints of the problem bound the solution space into two 

parts, namely, the feasible space, where all of the constraints 

are satisfied, and the infeasible space, where at least one of 

the constraints is not satisfied. Moreover, the exact solution 

of the problem generally exists near the boundary on the 

feasible space side. When applying the GA to such 

problems, the chromosomes in the pool evolve toward the 

exact solution. If the chromosome coding method in the GA 

could take all of the constraints into account and the genetic 

operations would be designed so as not to generate any LCs 

for the child chromosome, all of the chromosomes in the GA 

pool were non-lethal and should evolve within the feasible 

space. However, in general, it is difficult or too sophisticated 

to design such a coding method and genetic operations. 

However, when the simple coding method, such as the {0,1} 

coding system, is adopted, the genetic operations generate 

the LCs at a high rate, especially for severe constraints. 

Moreover, in the later stage of the GA, when the 

chromosomes evolve and approach the exact solution, and 

near the border of the constraints, the genetic operations tend 

to generate LCs at a high rate, and, in the worst case, the 

generated chromosomes are all lethal. The GA without using 

the LCs works on only one side of the boundary, the frequent 

appearance of the LCs impairs the ability of the GA to reach 

the exact solution within the feasible space. 

 The LCs in the infeasible space, that are generated from 

the non-lethal chromosomes in the feasible space by genetic 

operations, must possess blocks that correspond to valuable 

parts composing the chromosome of the exact solution. In 

the double islands (non-lethal and lethal islands) model 

proposed in a previous study [3], the genetic operations 

applied to the LCs in the lethal island can revive an LC and 

migrate it to the non-lethal island. In the IGA, the immune 

operations can revive the lethal chromosomes at a fairly high 

rate compared with the double islands model. Immune 

operations provide more channels that lead to optimal 

solutions for the LCs. 

 For small , the constraints are more severe, so the 

genetic operations more easily break down non-lethal 

chromosomes into LCs than for the case of large . For the 

MDKP, when  is decreased from 0.5 to 0.25, and then to 

0.125, the feasible solution space shrinks significantly as 
m
. 

As  decreases, the “average number of completed 

generations” of the SGA decreases rapidly, which indicates 

that the performance of the SGA is reduced as  decreases, 

i.e., under the severe constraints. However, the IGA 

maintained the “average number of completed generations” 

despite the large decrease in , which indicates that the IGA 

is weakly affected by  and shows a more excellent ability 

even under the severer constraints. The IGA has an 

advantage in searching the exact solution for problems with 

severe constraints. 

 For the large-scale MDKP with m = 30, as  decreases, 

the feasible space shrinks significantly compared to the 

small-scale MDKP with m = 5. The performance of the SGA 

to search for a better solution is reduced and evolution was 

not possible after 300 seconds when  = 0.125, whereas the 

IGA was able to evolve chromosomes when  changed from 

0.5 to 0.25 or 0.125. This suggests that the constraints do not 

significantly affect the immune operation to revive the LCs, 

and the IGA may be insensitive to the strength of the 

constraints. The IGA can show more remarkable ability in 

the cases of severe constraints. 

4.2. Vaccine and Vaccination in the IGA 

 With the vaccine, the vaccination operation transforms 

the LCs in the infeasible space and offers higher fitness 

values so that the chromosomes will move not only to the 

feasible space but will also approach the optimal solution. In 

this manner, the IGA expands the search space to the other 

side of the boundary and increases the ability of the GA to 

reach the optimal solution. 

 The method by which to train the vaccine and to 

vaccinate the LCs is important in the IGA. As for the method 

described in Section 2.3, the trained vaccine records the 

statistics information of the LCs. Other types of information 

can also be used to compose the vaccine, e.g., the 

information of the excellent chromosomes, such as the best 

chromosome in the chromosome pool of each generation. 

This type of vaccine records the excellent genes of the best 

chromosome of every generation. 

(Algorithm: train the vaccine with excellent chromosomes) 

 Before starting the evolution process, set s1s2…sn 

(0,0,…,0). Whenever a new best chromosome l1l2…ln 

appears to replace the old best chromosome, perform the 

following training steps: 

1: for i=1 to n do: 

2: if li =1 then 

3: si si+1; 

4: end if 

5: end for 

 Here, si(i = 1,…,n) will also increase as the GA evolution 

progresses, and si and sj(i j) will usually be different. Note 

that s1s2…sn can also be regarded as the vaccine. We refer to 

this as vaccine #2, and the vaccine introduced in the 

preceding sections is referred as vaccine #1. We performed 

computer simulation experiments using the IGA and vaccine 
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#2. Since vaccine #2 can provide more rapid immune 

operations than vaccine #1, the IGA with vaccine #2 can 

generate more generations within the simulation time and 

sometimes obtains better solutions than the IGA with 

vaccine #1. However, compared to the IGA with vaccine #1, 

the IGA with vaccine #2 failed to obtain better solutions for 

all cases. Moreover, compared the IGA with vaccine #2 had 

a larger SD of best solutions, despite it obtains a better 

solution sometimes for some problems. 

5 CONCLUSIONS AND FUTURE RESEARCH 

 The present study proposed a method for reviving the 

LCs to replace the means of retrying the genetic operations 

repeatedly to obtain non-lethal chromosomes based on 

immune operations. Applying the IGA to the MDKP 

revealed that, in some cases, especially for optimization 

problems with severe constraints (small ), the IGA is more 

effective for dealing with the LCs than the SGA. In addition, 

this IGA improved the search performance of the GA in 

solving optimization problems with severe constraints. Since 

the extracted vaccine is related to the characteristic 

information of the problem, for other optimization problems 

the vaccine should be extracted according to the 

characteristics of the problem. 

 In the future, in addition to further improving the double 

islands model, the method of immune operations must be 

researched further. If the proposed immune operations are 

improved to decrease the time complexity and allow rapider 

operation, the IGA will be applicable to a wider range of 

constraint optimization problems. 
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