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Scattering from a Metamaterial Hemispherical Boss on an Infinite Plane
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Abstract: An exact solution is presented to the problem of scattering of a plane electromagnetic wave from a metamate-
rial hemispherical boss located on an infinite conducting plane, using the method separation of variables. The formulation
is based on an image technique, where the original problem is replaced by that of scattering of two plane waves by the
corresponding sphere in the absence of the infinite plane. The solution is obtained by expressing all the electromagnetic
fields associated with the problem in terms of vector spherical wave functions, and then imposing the appropriate bound-
ary conditions. Numerical results are presented as normalized backscattering cross sections for hemispherical bosses of
different sizes and types, for both transverse electric and transverse magnetic polarizations of the incident wave.

INTRODUCTION

Analyses pertaining to the scattering of a plane wave
from a semi-cylindrical boss, a hemispherical boss [1-4] and
a hemispheroidal boss [5], and scattering of a Gaussian beam
from a hemispherical boss [6] have been presented in the
literature, when the boss is located on an infinite conducting
plane. These analyses have been carried out using the
method of separation of variables and the image theory, and
serve as benchmarks for validating solutions obtained using
other approximate and/or numerical methods. The main mo-
tivation for these solutions has been the ability to model a
rough surface using a distribution of such bosses [1]. All of
the bosses considered in the above mentioned analyses have
been either perfectly conducting or non-lossy dielectric. In
this paper, we analyze the scattering of a plane electromag-
netic wave from a metamaterial hemispherical boss located
on an infinite perfectly conducting plane, also using the
method of separation of variables.

Since recently, there has been a lot of interest in metama-
terials, as a result of the peculiar properties associated with
these materials [7-9]. A metamaterial is categorized accord-
ing to whether its permittivity and permeability are positive
or negative. If permittivity and permeability are both posi-
tive, it is known as a double positive (DPS) metamaterial,
and if both of them are negative it is known as a double
negative (DNG) metamaterial. If the permittivity is negative
and the permeability is positive the material is called an epsi-
lon negative (ENG) metamaterial and if the permittivity is
positive and the permeability is negative, the material is
called a mu negative (MNG) metamaterial [10].

In this paper, we will be considering the scattering effects
of hemispherical bosses made up of all four kinds of meta-
materials, when they are illuminated by a plane wave.

FORMULATION OF THE PROBLEM

Consider a monochromatic plane electromagnetic wave
incident at an arbitrary angle on a hemispherical boss made
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up of a metamaterial substance of permittivity € and

permeability u, , located on an infinite perfectly conducting

plane. The center of the boss of radius a is assumed to be
located at the origin O of a Cartesian coordinate system as
shown in Fig. (1), so that the infinite conducting plane is the
x-y plane. The medium in which the boss is located is
assumed to be free space with permittivity &;and perme-

ability u,. Without any loss of generality, they =0 plane

can be assumed to be the plane of incidence of the arbitrary
polarized plane wave, with the incident propagation
vector k; making an angle 6, with the z axis. A time

dependence of exp(jot) is assumed throughout, but
suppressed for convenience.
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X

Fig. (1). Geometry of the hemispherical boss located on the infinite
plane.

If image theory is used, then the solution to the above
problem shown in Fig. (1) can be obtained by solving the
alternative problem of scattering of two plane waves by the
corresponding full sphere, in the absence of the infinite per-
fectly conducting plane, as shown in Fig. (2).

One of these plane waves is the original incident wave
while the other is its image on the infinite conducting plane,
in the absence of the boss. The arbitrarily polarized incident
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wave can be resolved into transverse electric (TE) and trans-
verse magnetic (TM) components.

Fig. (2). Geometry of the equivalent problem.

EXPANDING THE FIELDS IN TERMS OF VECTOR
WAVE FUNCTIONS (TE CASE)

For TE polarization, the electric field of the original inci-
dent wave can be written as
E, =ye " @
where Y is the unit vector along the positive y axis, and K,
is the incident propagation vector given by
k;, =—k,(sin6,X +cos6,2) )

in which k, = w,/,€, is the wavenumber in free space.

The electric field corresponding to the image of this incident
wave on the infinite conducting plane in the absence of the
boss, is given by

E/ = —je ik 3)
with
ki =—k,[sin (= — 6,)X +cos (7 — 0,)Z]. 4

The image wave is the corresponding plane wave re-
flected by the infinite perfectly conducting plane in the ab-
sence of the boss, such that the tangential components of
E, +E are zero on this plane.

The electric field of the original incident wave can be
expanded in terms of vector spherical wave functions as [11,
12]

ﬁMz

2 M (Ko, 1) + 0 Nito (kg , 1] (5)

where MY and N/ are the vector spherical wave func-

tions given in the Appendix, r denotes the spherical coordi-
nate triad (r,6,¢), and c,,, d,, are the incident field ex-

pansion coefficients given by

2n+1)(n—m)! dP," (cos6;)

= —(2—50m)jn n(n+1)(n+m)! de,

(6)
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4 = 2int 2n+1)(n—m)! mP," (cos6;) @)
m = <l n(n+Y(n+m)!  siné,

where §,,,is the Kronecker delta function and P," (u) is the
associated Legendre function of the first kind of order m,
degree n and argument u.

The expansion of the magnetic field corresponding to the
original incident wave in terms of vector spherical wave
functions can be obtained from that of the original incident
electric field by using Maxwell’s equations as

H,= —Z Z[Qm Nean (Ko, 1) + by M) (Ko, )] ®)
om 0n=m
where 1, = \/1,/€, is the free space wave impedance. The

unknown scattered and transmitted electric and magnetic
fields due to E; and H, can similarly be expanded in terms

of vector spherical wave functions as

E, =33 oM (ko 1)+ B NI (ko 1] ©
m=0n=m

= niZ 3 [N (ko 1)+ B MO (ko] (10)

£ =3 3 [ ML 1)+ 8N e, 1) (11)

3
1
o

[n Nen (ko) + G Mo (k)] (12)

omn

M
M

H, =

= |._.
3
11
o

n

with k, =o\/pe, and n, =i, /€ being the wave-
number and wave impedance of the medium inside the sphe-
roid.

I
3

The expansions of E] and H’ in terms of vector spheri-
cal wave functions can be obtained from those of —E; and
H, , respectively, by replacing 6, by = —6,. Thus, we have

=, 2 [6 M (ko )+ NG (kg 1)] (13)
m=0n=m
H; ——ZZ[%H Newn (Ko, 1) + Ay Mo (Ko, 1] (14
om 0n=m

where q:m = (_1)n—m Cmn and dr:m = (_1)n_m+1dmn

The unknown scattered and transmitted electric and mag-
netic fields due to E! and H? can similarly be expanded in

terms of vector spherical wave functions as

[t M (Ko 1) + B Noge (Ko 1] (15)
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2 [0, NED (Ko, 1) + B M) (Ko, 1)] (16)
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2 N [V MeD (k1) + 87 NES (K, 1)] (17)
H=d S SN )+ MO k0], (18)
n m=0n=m

EXPANDING THE FIELDS IN TERMS OF VECTOR
WAVE FUNCTIONS (TM CASE)

For TM polarization, the electric field of the original in-
cident wave can be written as

E, = (—cos@,x +sin@,z)e 1" (19)
and that of the image wave as
E; =[-cos(m ~6,)% +sin (7 ~6,)2]e”"" (20)

The electric and magnetic fields corresponding to the
original incident wave can then be expanded in terms of vec-
tor spherical wave functions as

=i 3 3 (6N Oy, 1) + A MI® (Ko )] (21)

m=0n=m

H, ——Z Z[Qm Mase (o 1) + Aoy o (Ko, 7)) (22)

omOnm

and the unknown scattered and transmitted electromagnetic
fields due to the original incident wave as

=i 3 [ NO(Ky 1) + B MO (K 1)] (23)

m=0n=m
H, ——ZZ[% 59 (Koo 1)+ B Na ko, )] (24)
0 m=0n=m
=i Y NG (k1) + 8, ML (K, )] (25)
m=0n=m
H=— 2 Z[Ymn (9 (ko 1) + 8 NE (K, 1] (26)
t m=0n=m

The electric and magnetic fields corresponding to the
image wave can now be expanded in terms of vector spheri-
cal wave functions as

_J Z Z [ch'm e';'r(\:\)(kOY r) + ar"r:nMorn%) (kO' r)] (27)
-'Zl—ii[ G M (o, 1) + 4 NED (Ko, )] (28)

with & =(-1)"™,, d’ =(=1)""d, , and the unknown
scattered and transmitted electromagnetic fields due to the
image wave as

== i3 S [ NIk, 1) + BLMID (K, )] (29)

m=0n=m

H - z Z[ Oy errr(1:11) (ko ' r) +ﬁmn Norrgﬁ)(ko ' r)] (30)

omOnm
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—JZ Z[Ymn i (k1) + 8 M (k)] (31)
m=0n=m

(= = i i[?m'n'\/lﬁﬂ (Ko 1)+ 8 Ne (K, 1] (32)
t m=0n=m

BOUNDARY CONDITIONS

The boundary conditions require that the tangential com-
ponents of the total electric and magnetic fields be continu-
ous at the surface of the sphere. These can be expressed for
the scattering due to the original incident wave as

[(E +E) xf]|_, = (33)
[(Ho +H,) x F1| _ =[H x ]| _, (34)
and for the scattering due to the image wave as

[(E. +E) x F (35)
[(H,+H)) x ©1|_ =[H;x F]] _, (36)

where T is the unit normal to the spherical surface. Substi-
tuting for the different electric and magnetic fields in (33)-
(36) from (5)-(12) and (13)-(18) for TE polarization, and
from (21)-(26) and (27)-(32) for TM polarization, integrating
over the surface of the sphere, and using the orthogonal
properties of the associated Legendre functions and the
trigonometric functions, a set of linear equations can be ob-
tained. These equations corresponding to TE polarization of
the incident wave are given by

k) hP(ka) _
mn J (k a) amn m_cmn (37)
" [ktaj:n(kta)],,:u_o_ ) [koah_rEZ)(koa]:: ) (38)
(o iy (Koa)] ™ [koa y (oa)]
i, kal Ky o [ah® (pal _
b Toah al k™ Ioajoay @9
J. (k) Mo _ h(z)(k a) _ _ 40
Tk 4o
, k) hOka) .
T k) )
, kel g, kah®kal _ )
™ e ia ()l ™ Tho iy (o)l ™
| kaikal ko kah@kal _
" ea h ko) k™ [ g koa)] 43
o bk W) _ u
e e o

and those corresponding to the TM polarization of the inci-

dent wave are given by
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5 jn(kta) Mo .~ hrEZ)(kOa) - (45)

" jn(koa) 77: " jn(koa) "

- Dajkal ko loah®Gal )
[koa j, (ko@)]" k; [koa j, (koa)]

5 kaia)l g5 Tkah®(al o -

" koa (ko) e Tkoa (k)] ™
i ~ (2

mn !n(kta) ~ Pmn hn (koa) = dr'nn (48)
Jn(koa) Jn(koa)

=’ jn(kta) nO _&’ hrEZ)(kOa) = (49)

mn - mn~ . Chm
Jn(koa) 77: Jn(koa)

. ’ () ’

o Dead,(a)l ks ah®(eal _ 50)
o byl k™ [ Jy (ko))

5 @b ka)l s 7 kah® (al _

"o (@)l " oo ()l

5 dalkd) 5 (k)
Jn(koa) Jn(koa)

with j, (ka), h{? (ka) being the spherical Bessel function of

the first kind and the spherical Hankel function of the second
kind, respectively, of order n and argument ka.

Ay (51)

=d, (52)

The solution of these equations yields the unknown
expansion coefficients, which can be expressed in matrix
form for the case of TE polarization as

amn Sﬂ 0
ﬁmn _ 0 tn Cmn
Ymn - un O |:dmni| (53)
5mn O vn
where

_ M @IP i (P = Ho Jn (PG ]a (@) (59)
" = J, (@I hP ()] + peh® (P, (@)
¢ = —Eda(@IPin (P + &, (P9, (@] (55)
" e, @IphP (P - e hP(P)Iaj, (@)
u,= - @ /jp& ) - 7 (56)

—t Jo @I (P + wohy” (P)A], (a)]

_ —jop”* -
T @I ()] — e NPl @7 &)
and
ar:m Sﬂ 0
ﬁr;n _ tn Cr:m
v |l o L:J 9
o 0 v

mn
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in which g=k,a and p =k,a. The solution for the case of
TM polarization can be expressed in matrix form as

Oy t, O

B bl &
_5mn _0 n |

and

2l ] &
_5m'n_ 10 u, |

FAR FIELD

The scattered electric field in the far zone is obtained by
considering the asymptotic forms of the vector spherical
wave functions, which are dependent on the asymptotic
forms of the spherical Hankel function and its derivative.
These asymptotic forms can be written as [13, 14]

. ) e—jkr
lim [0 (kn)] - = —

— jkr

19 n €
lim{———[krh{® (k .
rIﬁnl{kr akr[ i r)]}—” kr

Thus, the scattered electric field in the far zone can be
written as E_(r,0,¢) + E.(r,6,¢) , where

K o e . .
E(r0.0)=5—Y Y[F,0.06+F,0.006]  (61)
m=0 n=m

in which

_ np_ MPR,"(cos8) oP." (cos6)
F59(91¢) - J [ sin@ mn + 80 ﬁmn]
xsin(mg) (62)
F,(0.0)= '] dP" (cos0) . mP." (cos8) B

96 om sinf
xcos(mae) (63)

in the case of TE polarization, and

Fy(0.0) = ' O (050) 5+ L0 5y
xcos(me) (64)
Fo0.0) = AT 005 o, {500 5,01
xsin(me) (65)

in the case of TM polarization, and

e—jkr 00 oo

EL(r,0,0) ==~ > D [F,(0.0)0 +F;,(0.9)9].  (66)

m=0 n=m
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Explicit expressions of functions F;, (6,¢) and F;,(6,¢)
can be obtained from the corresponding expressions of
F(0,9) and F,(6,0) , respectively, by replacing the coeffi-
Cients amn' mn'&mn’ and an by ar:'m' r,nn’&:nn’and B‘T;]ﬂ 1
respectively.

The magnitude of the scattering cross section o (0,¢) is
given by

[E,(r.6,9) +E.(r,0,0)
|Ei (r19:¢)|2

where|E;(r,0,¢)|is the magnitude of the incident wave,

which is unity in this case. After substituting from (61) and
(66) in (67), we can write the magnitude of the normalized
scattering cross section as

(67)

c(0,¢) =lim4nr?

+[Ri@.0)| (68)

o (0,¢) e 2
— —IRi.9)]

where F, =F,,(0,0)+F,,(0,9) for y =6,¢.

The normalized backscattering cross section is obtained
from (68) for 6 =6,and¢ =0:

7o (6, ” 2 ” 2
O) - e; 0,00 +[50.0]" (69)
NUMERICAL RESULTS

Results are presented as normalized backscattering cross
sections for spheres of different sizes made of DPS, DNG,
ENG, and MNG materials. Since the expressions for the
various electromagnetic fields and the normalized backscat-
tering cross section are in the form of infinite series, to ob-
tain numerical results, these series have to be truncated ap-
propriately. From the numerical experiments performed, we
have found that for all the results that we have obtained, it is
sufficient to consider the index m in the series from 0 to
(ka+4), with ka being the radius of the sphere a multiplied by
the wavenumber, and the index n to be from m to m+8, to get
a two significant digit accuracy.

To verify our analysis and the accuracy of the results
obtained, we have calculated the normalized backscattering
cross sections for a sphere of size ka=0.1 for both TE and
TM polarizations of the incident wave, and compared these
results with those obtained from [1]. The expressions of the
backscattering cross-section magnitudes as obtained from [1]
are

&(29‘) = 201l0g,, (0.001c0s%9,) dB
for TE polarization, and
7o (6;) .
PE =201log,,[0.001(2sin’g, +1)] dB

for TM polarization.

These magnitudes are plotted in Fig. (3), together with the
corresponding magnitudes of the backscattering cross section

Hamid and Cooray

calculated using our  analysis, by  substitut-
inge, =¢, /e, =10, u, =p, /u, =10"°. The results are
in very good agreement, verifying our analysis and the accu-
racy of the results.
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Fig. (3). Normalized backscattering cross section magnitudes ob-
tained from our analysis (SWF) and from [1].
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Fig. (4). Variations of normalized backscattering cross section

magnitudes with the angle of incidence, for spherical bosses made

of different DPS metamaterials, for (a) TE and (b) TM polarization
of the incident wave.
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Fig. (4) shows the variations of the normalized backscat-
tering cross section magnitudes with the incident angle for
spherical bosses of radius ka=2 made of DPS materials of
relative permittivity (g;) 2.0, 3.0, 4.0, and relative permeabil-
ity (w,) 2.0, 3.0, 4.0, for both TE and TM polarizations of the
incident wave. As g, increases with |, remaining constant at
2.0, we find a sharpening of the minima, for both polariza-
tions. On the other hand, when ., increases with ¢, remaining
constant at 2.0, the sharpening of the minima is much less.
When the angle of incidence is larger than about 60 degrees,
the magnitudes of the scattering cross sections for TE polari-
zation steadily decreases for all g and p, combinations. But
for TM polarization, this happens only when &= p,=2.

Variations of normalized backscattering cross section
magnitudes with the incident angle for spherical bosses of
radius ka=2 made of DNG materials are shown in Fig. (5),
for both TE and TM polarizations of the incident wave.
Since both ¢, and p, are negative for a DNG metamaterial,
the wavenumber becomes negative within the metamaterial
medium, but the wave impedance remains positive.
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Fig. (5). Variations of normalized backscattering cross section
magnitudes with the angle of incidence for spherical bosses made
of different DNG metamaterials, for (@) TE and (b) TM polarization
of the incident wave.

In this case, for TE polarization of the incident wave, the
magnitudes of all the scattering cross sections steadily de-
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crease as the angle of incidence increases from 0 to 90 de-
grees, except for that corresponding to relative permittivity
2.0 and relative permeability 2.0. When considering the case
corresponding to TM polarization, we find that the scattering
cross section magnitudes for £=-3.0, u,=-2.0 and &=-2.0,
W=-3.0 are higher than those for £=-4.0, u,=-2.0 and &=-2.0,
w=-4.0 at 90 degree angle of incidence, in contrast to the
opposite in Fig. (4b) for a DPS metamaterial. Also, the mag-
nitudes of the different scattering cross sections at 0 degrees
are almost the same in contrast to those in Fig. (4).

Fig. (6) shows the variations of the normalized back-
scattering cross section magnitudes with the angle of inci-
dence for spherical bosses of radius ka=2 made of ENG
metamaterials, for both TE and TM polarizations of the inci-
dent wave. In this case, since ¢, is negative and |, is positive,
the wavenumber and the wave impedance are both negative
imaginary numbers.
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Fig. (6). Variations of normalized backscattering cross section

magnitudes with the angle of incidence for bosses made of different

ENG metamaterials, for (a) TE and (b) TM polarization of the inci-

dent wave.
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Again for the TE polarization of the incident wave, we
can observe the magnitudes of the scattering cross sections
decreasing steadily with the angle of incidence, except for
the cases ¢=-2.0, 1,=2.0 and &~=-3.0, n,=2.0.

For TM polarization of the incident wave, scattering
cross section magnitudes are more oscillatory with much
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sharper minima and are higher in value when the angle of
incidence is 90 degrees, than for the cases corresponding to
DPS and DNG metamaterials.

Variations of normalized backscattering cross section
magnitudes with the incident angle for spherical bosses of
radius ka=2 made of MNG metamaterials are shown in Fig.
(7) for both TE and TM polarizations of the incident wave.
In this case, since &, is positive and ., is negative, the wave-
number is negative imaginary, but the wave impedance is
positive imaginary.
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Fig. (7). Variations of normalized backscattering cross section
magnitudes with the angle of incidence for bosses made of different
MNG metamaterials, for (a) TE and (b) TM polarization of the
incident wave.
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In Fig. (7a), the magnitudes of the scattering cross sec-
tions are oscillatory for lower values of ¢, and p,. However,
as the values of ¢ and . increase, the oscillatory behavior
becomes reduced. In Fig. (7b), the variations in magnitudes
of the scattering cross sections with the angle of incidence
become less significant as €, and p, increase. In this case, the
magnitudes of the cross sections also remain at a relatively
higher value.

Fig. (8) shows the variations of the normalized back-
scattering cross section magnitudes with the angle of inci-
dence for spherical bosses of different radii, made of a DPS
material with €=3.0 and ,=2.0, for both TE and TM polari-
zation of the incident wave. When referring to these figures,
we find that the scattering cross section magnitudes in gen-
eral become higher for both polarizations as the size of the
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sphere increases. This is due to the area available for scatter-
ing becoming larger for a bigger sphere. Also, for TM po-
larization, we can observe an increase in the oscillatory na-
ture of the patterns with the size of the sphere.
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Fig. (8). Variations of normalized backscattering cross section
magnitudes with the angle of incidence for DPS bosses of different
radii with 3.0, 1,=2.0, for (8) TE and (b) TM polarization of the
incident wave.

Fig. (9) shows the variations of the normalized back-
scattering cross section magnitudes with the angle of inci-
dence for spherical bosses of the same size as those conside-
red in Fig. (8), but made up of a MNG metamaterial with
&=3.0 and p,=-2.0, for both TE and TM polarizations of the
incident wave.

When compared to Fig. (8), we find that the cross sec-
tions in this case are more oscillatory for TE polarization,
but less oscillatory for TM polarization. However, as the size
of the sphere increases, the oscillatory behavior of the curves
increases for both TE and TM polarizations.

CONCLUSION

An exact solution has been presented to the problem of
scattering of a plane wave from a metamaterial boss on an
infinite conducting plane, using the method of separation of
variables. Numerical results have been presented as normal-
ized backscattering cross sections for bosses of different
sizes made up of DPS, DNG, ENG, and MNG metamateri-
als, to show the effects of these on the scattering cross sec-
tions.
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Fig. (9). Variations of normalized backscattering cross section
magnitudes with the angle of incidence for MNG bosses of differ-
ent radii with £=3.0 and p=-2.0, for (a) TE and (b) TM polariza-
tion of the incident wave.

APPENDIX

The vector spherical wave functions M and N used in the
analysis are defined in terms of the spherical scalar wave
function

v (1.0.9) =20 ()P (cos6) _,"mo (710)

where zrﬁ”(kr) is the spherical Bessel function of order n,
kind i, and argument kr with Kk being the wave-number of the
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medium, and P,"(cos@) is the associated Legendre function

of order m, degree n, and argument cos 6.

r(i) = (1 r

Mgmn(r,e,q)) Vyfgmn(r,e,q))xr (71)

where T is the unit position vector, and

N (r,6,0) =k [Vx M (r,6,9)]. (72)

omn omn
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