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Abstract: This paper studies the global synchronization for undirect and direct coupled networks with delay by 

employing Lyapunov functional method and Kronecker product technique. A novel pinning scheme is proposed and some 
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show the effectiveness of the proposed pinning scheme. 
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1. INTRODUCTION 

Various large-scale and complicated systems can be 
modelled by complex networks, such as the Internet, genetic 
networks, ecosystems, electrical power grids, the social 
networks, and so on. A complex network is a large set of 
interconnected nodes, which can be described by the graph 
with the nodes representing individuals in the graph and the 
edges representing the connections among them. The most 
remarkable recent advances in study of complex networks 
are the developments of the small-world network model [1] 
and scale-free network model [2], which have been shown to 
be very closer to most real-world networks as compared with 
the random-graph model [3, 4]. Thereafter, small-world and 
scale-free networks have been extensively investigated. 

The dynamical behaviors of complex networks have 
become a focal topic of great interest, particularly the 
synchronization phenomena, which is observed in natural, 
social, physical and biological systems, and has been widely 
applied in a variety of fields, such as secure communication, 
image processing and harmonic oscillation generation. It is 
noted that the dynamical behavior of a complex network is 
determined not only by the dynamical rules governing the 
isolated nodes, referred to as self-dynamics, but also by 
information flow along the edges, which depends on the 
topology of the network. For a given network with identical 
node dynamics and diffusive coupling, two key factors 
influencing the network synchronization are the network 
coupling strength and the coupling configuration matrix. 
Synchronization in an array of linearly coupled dynamical 
systems was investigated in [8]. Later, many results on local, 
global and partial synchronization in various coupled 
systems have also been obtained in [9-15]. As a special case 
of coupled systems, coupled neural networks have also been 
found to exhibit complex behaviors and their 
synchronization has been investigated by many researchers, 
e.g. [16-23]. 
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In the case that the whole network cannot synchronize by 
itself, some controllers should be designed and applied to 
force the network to synchronize. A special control strategy 
called pinning control [24] is designed to achieve 
synchronization of complex networks by controlling only a 
fraction of the nodes or even a single node [29] over the 
whole network, which has become a common technique for 
control, stabilization and synchronization of coupled 
dynamical systems [25-32]. In [30], both specific and 
random pinning schemes were studied, where specific 
pinning scheme of the nodes with large degrees is shown to 
require a smaller number of controlled nodes than random 
pinning scheme. In [26], an adaptive pinning controller was 
proposed, and it was found that the nodes with very low 
degrees should be pinned first when the coupling strength is 
small. However, the design of pinning control in those 
references was for the undirected network, in other words, 
the interaction topology is bidirectional, thus the coupling 
matrix is symmetrical. In practice, the directed network is 
important and unidirectional communication exists in 
application. This paper aims to investigate the following 
issues for undirected and directed networks:(a) What kind of 
pinning schemes should be chosen for the given undirected 
and directed network to achieve synchronization? (b) What 
type of controllers should be designed to ensure the network 
synchronization? (c) How to choose the coupling strength for 
a network with a fixed topological structure to achieve 
synchronization? 

The rest of the paper is organized as follows. In section 2, 
some preliminary definitions and lemmas are briefly 
outlined. Some synchronization criteria are given and a 
selective scheme is proposed in Section 3. An illustrative 
simulation is given to verify the theoretical analysis in 
Section 4. Conclusions are finally drawn in Section 5. 

Notation.  Throughout this paper, for real symmetric 

matrices X  and ,Y  the notation X Y  (respectively, X > Y ) 

means that the matrix X Y  is positive semi-definite 

(respectively, positive definite). The superscript `` T '' 

represents the transpose. For a matrix A , A  denotes the 
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spectral norm defined by A = max AT A( )( )
1/2

. Matrix 

dimensions, if not explicitly stated, are assumed to be 

compatible for algebraic operations.  

2. MODEL DESCRIPTION AND PRELIMINARIES 

Consider a dynamical network consisting of N  identical 
and diffusively coupled nodes, with each node being an n-
dimensional delayed neural network. The state equations of 
the network are  

 
xi (t) = Dxi (t)+ Af (xi (t))+ Bf (xi (t ))+ I (t) +c

j=1, j i

N

Gij (x j (t) xi (t)) (1) 

where 
 
xi (t) = (xi1 (t), xi2 (t), , xin (t))

T n  is the state vector of 

the i th node; 
 
D = diag(d1,d2 , ,dn ) > 0  denotes the rate with 

which the cell i  resets its potential to the resting state when 

isolated from other cells and inputs; A n n , and B n n  

represent the connection weight matrix and the delayed 

connection weight matrix respectively; 

 
f (xi ( )) = [ f1 (xi1 ( )), f2 (xi2 ( )), , fn (xin ( ))]

T n  is activation 

function; I(t) is the input vector of each node; 1
Rc  is the 

coupling strength; n n  is the inner coupling matrix; 

G = (Gij )N N  is the coupling configuration matrix representing 

the topological structure of the network, where ijG  is defined 

as follows: if there exists a connection between node i  and 

node j , Gij > 0 , otherwise Gij = 0  ( j i) , and the diagonal 

elements of matrix G are defined by  

Gii =
j=1, j i

N

Gij ,  

which ensures the diffusion that 
j=1

N
Gij = 0 . Equivalently, 

network (1) can be rewritten in a form as follows:  

 
xi (t) = Dxi (t)+ Af (xi (t))+ Bf (xi (t ))+ I (t)

 

+c
j=1

N

Gij x j (t), i = 1,2, ,N (2) 

Suppose that the coupled network (2) is connected in the 
sense that there are no isolated clusters. Then the coupling 
matrix G  is irreducible. 

We define the set 

 
 
= {x = (x1

T , x2
T , , xN

T )T nN : xi = x j , i, j = 1,2, ,N}  as the 
synchronization manifold for network (2). 

In addition, the following assumption is needed, 

)(H fk ( ) :  is Lipschitz continuous and 
monotonically nondecreasing, i.e., x, y , there are real 
positive numbers kl  such that  

 

0
fk (x) fk (y)

x y
lk , k = 1,2, ,n.  (3) 

For convenience, we denote 
 
L = diag(l1, l2 , , ln ) . 

Definition 1. Matrix G = (Gij )N N  is said to belong to class 

1A , denoted as 1AG , if 

(i) Gij 0 , ji , Gii = j=1, j i

N
Gij , 

 
i = 1,2, ,N   

(ii) G is irreducible. 

If G A1  is symmetrical, then we say that G  belongs to 
class A2 , denoted as G A2 . 

Lemma 1.[5] If matrix G A1 , then rank(G) = N 1 , i.e. 0  
is an eigenvalue of G, and all nonzero eigenvalues of G  
have a negative real part.  

Lemma 2.[6] If matrix G A1 , then  

1. 
 
1 = (1,1, ,1)T  is the right eigenvector of G  

corresponding to eigenvalue 0  with multiplicity 1 , i.e., 
0=1G ;  

 2. Let 
 
= ( 1, 2 , , N )

T  (without loss of generality, 

assume 
i=1

N

i = 1 ) be the left eigenvector of G  

corresponding to the eigenvalue 0 , i.e. TG = 0 . Then i > 0 , 

Ni ,1,2,= .  

Definition 2. For any positive integers p , q , r , s , we 
define the Kronecker product of two matrices A p q , 
B r s  as follows 

 

A B =

a11B a1qB

ap1B apqB

pr qs .  

Lemma 3. By the definition of Kronecker product, the 
following properties hold:  

 1. (A B)T = AT BT ;  

 2. ( A) B = A ( B) , where  is a real number;  

3. (A B)(C D) = (AC) (BD) .  

Lemma 4 [29] If the matrix R = (rij )
N N  is irreducible, 

0=
jiij

rr , for ji , and 
j=1

N
rij = 0  with rank(R) = N 1 , 

for all 
 
i = 1,2, ,N , then all eigenvalues of the matrix  

 

r11 r12 r1N
r21 r22 r2N

rN1 rN 2 rNN

 

are negative for any positive constant . 

Lemma 5. [7] Let 
 
{ i | i = 1,2, ,n}  and 

 
{μ j | j = 1,2, ,m}  

be the eigenvalues of matrices A  and B , respectively. Then  

 
{ iμ j | i = 1,2, ,n,   j = 1,2, ,m}  

are the eigenvalues of A B .  

3. MAIN RESULTS 

3.1. Undirected Networks 

Note that a solution to an isolated node satisfies  

ds(t)

dt
= Ds(t)+ Af (s(t))+ Bf (s(t ))+ I (t)  (4) 

To realize the synchronization of network (2), pinning 
control will be added to some of its nodes. Here, the pinning 
strategy is applied to a small fraction of the nodes in network 
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(2). Suppose that the nodes 
l
iii ,,,

21
 are selected, where 

Nl < . Without loss of generality, rearrange the order of 
the nodes in the network, and let the first l  nodes be 
controlled. Thus the pinning controlled network can be 
described by  

 
xi (t) = Dxi (t)+ Af (xi (t))+ Bf (xi (t ))+ I (t)  

 

+c
j=1

N

Gij x j (t)+ ui , i = 1,2, ,N ,  (5) 

where Gij = Gji , i.e.,G A2 ,  

ui = cki (xi (t) s(t)),   (6) 

and the feedback gains 
i

k  are positive constants for 

 
i = 1,2, , l  and ki = 0  for 

 
i = l +1, ,N . 

Our objective is then to investigate the synchronization 

of network (5) with respect the isolated node )(ts . Denote 

ei (t) = xi (t) s(t) , then the following error dynamical system is 

obtained:  

 
ei (t) = Dei (t)+ A[ f (xi (t)) f (s(t))]  

+B[ f (xi (t )) f (s(t ))] +c
j=1

N

Gij ej (t) cki ei (t),  

i = 1,2, ,N  (7) 

Theorem 1. Suppose that Assumption )(H  holds. The 
controlled undirected network (5) globally synchronizes to 
(4) if there is a symmetric matrix nn

P R  and a diagonal 
nonnegative matrix 

 
K = diag(k1, k2 , , kl , 0, 0 , 0) N N  such 

that the following conditions are satisfied:  

1.  

=

D P
1

2
A+ L

1

2
B

1

2
AT

+ L In 0

1

2
BT 0 In

< 0  (8) 

and  

2.  

IN P + cG cK < 0.  (9) 

Proof. First, denote  

et = e(t + ), 0.  

Consider the following Lyapunov functional candidate:  

V (et ) =
1

2 i=1

N

ei
T (t)ei (t)+

i=1

N

t

t
gT (ei ( ))g(ei ( ))d ,  (10) 

where g(ei ( )) = f (xi ( )) f (s( ))  (i = 1,2, ,N ) . 

The derivative of )(tV  along the trajectories of (7) can be 
obtained as follows,  

 

V (et ) =
i=1

N

ei
T (t)ei (t) +

i=1

N

[ f (xi (t)) f (s(t))]T [ f (xi (t)) f (s(t))]  

i=1

N

[ f (xi (t )) f (s(t ))]T [ f (xi (t )) f (s(t ))]  

=
i=1

N

ei
T (t) Dei (t)+ A[ f (xi (t)) f (s(t))]{ +B[ f (xi (t )) f (s(t ))]  

+c
j=1

N

Gij ej (t) c
i=1

l

kiei
T (t) ei (t)  

+
i=1

N

[ f (xi (t)) f (s(t))]T [ f (xi (t)) f (s(t))]  

i=1

N

[ f (xi (t )) f (s(t ))]T [ f (xi (t )) f (s(t ))]  (11) 

From the assumption )(H , one has  

[ f (xi (t)) f (s(t))]T [ f (xi (t)) f (s(t))]
[xi (t) s(t)]T L[ f (xi (t)) f (s(t))]  (12) 

Combing (12)and (11), one obtains  

 

V (et )
i=1

N

ei
T (t)( D P)ei (t){ +ei

T (t)(A+ 2L)[ f (xi (t)) f (s(t))]  

+ei
T (t)B[ f (xi (t )) f (s(t ))] +

i=1

N

[ f (xi (t)) f (s(t))]T ( 2In + In )  

[ f (xi (t)) f (s(t))]
i=1

N

[ f (xi (t )) f (s(t ))]T

[ f (xi (t )) f (s(t ))]}  

+eT (t)(IN P + cG cK )e(t)  

=
i=1

N

i
T (t) i (t) +e

T (t)(IN P + cG cK )e(t)  

 < 0,  (13) 

where i (t) =

ei (t)

f (xi (t)) f (s(t))( )
f (xi (t )) f (s(t ))( )

,  

and 
 
e(t) = [e1

T (t),e2
T (t), ,eN

T (t)]T . 

From (13), it is easy to see that the undirected network 
(5)globally synchronize under the given linear feedback 
pinning controllers. The proof is completed. 

Remark 1. The condition (i) depends on the nonlinear 
dynamics of each single node. The condition (ii) shows that 
the key factors influencing the network synchronizability are 
the network inner linking matrix ( ), the network toplogical 
matrix ( G ) and the pinning controller gains matrix ( K ), in 
addition to the matrix ( P ). 

It is noted that the dimension of the matrix condition in 
(9) is nNnN , which can be further reduced as shown in the 
following corollary .  

Corollary 1. Suppose that Assumption )(H  and 
condition (8) hold, and 0> . The controlled undirected 
network (5) globally synchronize to (4) if the following 
condition is satisfied:  

 = IN + c(G – K) < 0 (14) 

where , the matrix P is determined in Theorem 1, 

and PP = . 

Proof. First, from Lemma 5 and PP = , one has  
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IN P + cG cK < ( IN + cG cK )      (15) 

If (14) holds, i.e., IN + c(G K ) < 0  and 0> , then one 
can easily get ( IN + cG cK ) < 0 , which implies (9). 

Thus, conditions in Theorem 1 are satisfied, and the 
proof is thus completed. 

Remark 2. The condition (14) is much simpler, and the 
dimension of matrix  is NN .  

Next, some criteria for choosing an appropriate coupling 
strength are established. 

Corollary 2. Suppose that Assumption (H) holds and  

is a positive definite matrix and  with P = P . 

The controlled undirected network (5) globally synchronize 

to (4) if the following condition is satisfied: 

c >
| max (G K ) |

            (16) 

Proof. By Lemma 4, it is easy to see that *
KG  is negative 

definite, where *
K  corresponds to only one controller, i.e. 

1=l . It is easy to see that max (G K ) max (G K * ) < 0 . From 

(16), c(G K )+ IN (c max (G K )+ )IN < 0 , so (14) is satisfied. 

The proof is completed. 

Remark 3. It is easy to see that the condition for the 
coupling strength given in (16) is conservative, usually much 
larger than the needed value. For example in [29], it requires 
a very large coupling strength in general, which may not be 
very practical. Clearly, it is desirable to make coupling 
strength as small as possible. In [25], the cost function 
c

i=1

l
ki  is introduced to describe the efficiency of the pinning 

controller and the coupling strength. The smaller the cost 
function, the more efficient the strategy to achieve the same 
goal of control, and the easier to be implemented. In order to 
make the coupling strength smaller, here, the adaptive 
control method can be adopted to achieve the goal. The 
pinning controllers in (6), associated with the following 
adaptive coupling law, lead to  

 
xi (t) = Dxi (t)+ Af (xi (t))+ Bf (xi (t ))+ I (t) +c(t)

j=1

N

Gij x j (t)  

 
c(t)ki (xi (t) s(t)), i = 1,2, , l,  

 
xi (t) = Dxi (t)+ Af (xi (t))+ Bf (xi (t ))+ I (t)  

 

+c(t)
j=1

N

Gij x j (t), i = l +1, ,N ,  

 

c(t) =
j=1

N

(x j (t) s(t))T (x j (t) s(t)),   (17) 

where  is a small positive constant. 

3.2. Directed Network 

 The structure of a directed network is more complex 
than that of an undirected network, since a directed path may 
exist through the network from vertex a  to vertex b , but it 
does not guarantee that the path exists from b  to a . As a 
result, the coupling matrix is asymmetric. The controlled 
complex dynamical directed network can be written as  

 
xi (t) = Dxi (t)+ Af (xi (t))+ Bf (xi (t ))+ I (t)  

 

+c
j=1

N

Gij x j (t)+ ui , i = 1,2, ,N ,   (18) 

where G = (Gij )N N A1 , and  

ui = cki (xi (t) s(t)),   (19) 

 
 
ki > 0, i = 1,2, , l;  and 

 
ki = 0, i = l +1, ,N;  Let ei (t) = xi (t) s(t) , 

subtracting (4) from (18) yields the following error directed 

network:  

 
ei (t) = Dei (t)+ Af (xi (t)) Af (s(t)) +Bf (xi (t )) Bf (s(t ))   

+c
j=1

N

Gij ej (t) cki ei (t),  

,,1,2,= Ni   (20) 

Theorem 2. Suppose that Assumption (H) holds and 
G A1 . The controlled directed network (18) globally 
synchronizes to (4) if there is a symmetric matrix  
P n n  and a diagonal nonnegative matrix 

 
K = diag(k1, k2 , , kl , 0, 0 , 0) N N  such that the following 
conditions are satisfied:  

1.  

=

D P
1

2
A+ L

1

2
B

1

2
AT

+ L In 0

1

2
BT 0 In

< 0    (21) 

and  

2.  

E P +
1

2
c(EG +GT E) cEK < 0    (22) 

where 
 
E = diag( 1, 2 , , N ) , i=1

N

i = 1 , and its diagonal 

elements are the left eigenvector of G corresponding to the 

eigenvalue. 

Proof. First, denote  

et = e(t + ), 0.  

Consider the following Lyapunov functional:  

V (et ) =
1

2 i=1

N

i ei
T (t)ei (t) +

i=1

N

i t

t
gT (ei ( ))g(ei ( ))d ,        (23) 

where  

g(ei ( )) = f (xi ( )) f (s( )) . 

The derivative of V (et )  along the trajectories of (20) can 
be described as  

 

V (et ) =
1

2 i=1

N

i ei
T (t)ei (t)+

1

2 i=1

N

i ei
T (t)ei (t) +

i=1

N

gT (ei (t))g(ei (t))  

gT (ei (t ))g(ei (t ))  
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=
1

2 i=1

N

i ei
T (t)( D)ei (t){ +ei

T (t)Ag(ei (t))+ g
T (ei (t))A

T ei (t)  

+ei
T (t)Bg(ei (t ))+ gT (ei (t ))BT ei (t)   

+cei
T (t)

j=1

N

Gij ej (t)+ c
j=1

N

ej
T (t) TGij ei (t)  

i=1

l

i ei
T (t)cki ei (t) +

i=1

N

gT (ei (t))g(ei (t)) gT (ei (t ))g(ei (t ))  (24) 

Consider the following fact,  

[ f (xi (t)) f (s(t))]T [ f (xi (t)) f (s(t))] [xi (t) s(t)]T L[ f (xi (t)) f (s(t))]. (25) 

Combing (24)and (25), adding and subtracting 

i=1

N

i ei (t)
T Pei (t) , we have  

 

V (et )
i=1

n

i i
T (t) i (t) +e

T (t) E P +
1

2
c(EG +GT E)

cEK e(t)  

< 0,                (26) 

where i (t) = ei
T (t), f (xi (t)) f (s(t))( )

T
, f (xi (t )) f (s(t ))( )

T T

, 

and 
 
e(t) = [e1

T (t), e2
T (t), , eN

T (t)]T .  

From the conditions (21) and (22), one knows that the 
network (18)synchronize to (4). 

Similar to Corollary 1, a simpler condition for the 
directed networks can be obtained as follows. 

Corollary 3. Suppose that Assumption (H) and condition 
(21) hold, > 0 . The controlled directed network (18) 
globally synchronizes to (4) if the following condition is 
satisfied:  

= E +
1

2
c(EG +GT E) cEK < 0         (27) 

where , the matrix P  is determined in Theorem 

2 and P = P . 

3.3. Pinning Scheme 

In this subsection, a unified pinning scheme is designed 
for undirected and directed networks when the network 
structure and coupling strength are fixed.  

Theorem 3. Suppose that Assumption (H) holds. If the 
control gains ki  (ki )  are chosen to be sufficiently large,  

(1) The condition < 0  in (14) is equivalent to  < 0 ; 

(2) The condition < 0  in (27) is equivalent to  <0; 

where   and   are obtained by removing the 
 
1,2, , l  

row-column pairs of matrices  and  respectively.  

Proof. Let 

 

= IN + c(G K ) =
Q cK R

RT
,  

where 
 
K = diag(k1, k2 , , kl )) . 

Obviously, if < 0  then  < 0 . So, we only need to prove 
that if  < 0  then < 0 . Since the control gains 

i
k  can be 

chosen to be sufficiently large, one can select 

 
cK > Q R 1RT . From Schur complement, we have < 0 .  

Let 

 

= E +
1

2
(EG +GT E) cEK =

Q cEK R

RT
, where 

 
K = diag(k1, k2 , , kl ) . The equivalence of < 0  and  < 0  can 

be similarly proved. The proof is completed. 

It follows from the definitions of 
~

 and 
~

 that  

 
= IN l + cG, = E + cG,  

where 
 
Gij = Gl+i,l+ j , 

 

Gij =
1

2
(EG +GT E)

l+i,l+ j

 for 
 
i, j = 1,2, ,N l , 

and 
 
E = diag( l+1, l+2 , , N ) . Then one has the following 

corollary. 

Corollary 4. Suppose that Assumption )(H  holds and  
is a diagonal positive definite matrix.  

(i)The controlled undirected network (5) globally 

synchronizes to (4) if 
 

K > max (Q R 1RT )

c
Il  and 

 
c max (G)+ < 0 ; 

(ii)The controlled directed network (18) globally 

synchronizes to (4) if 
 

K > max (Q R 1RT )

c( 1 i lmin i )
Il  and 

 
c max (G)+ ( l+1 i Nmax i ) < 0 . 

Remark 4. The condition in Theorem 3 is very simple. It 
also provides some guidance to choose the control gains and 
therefore is very useful. The condition in Corollary 4 
provides a criterion for ensuring the network synchronization 
with the network structure, coupling strength and pinning 
scheme in the form of (6) or (19). 

Remark 5. In the above discussion, the synchronization 

is considered for the undirected network and the directed 

network via pinning control. In fact, the undirected network 

is the special case of the directed one, i.e., the matrix E  for 

the undirected network is 
 

diag(
1

N
,
1

N
, ,

1

N
) RN N .  

4. NUMERICAL SIMULATIONS 

Consider the following 2-dimensional delayed neural 
networks  

dx(t)

dt
= Dx(t)+ Af (x(t))+ Bf (x(t )),        (28) 

where x(t) = [x1 (t), x2 (t)]
T  is the state vector of the network, 

1= , f (x(t)) = [tanh(x1 ), tanh(x2 )]
T , and  

D = [
1 0

0 1
], A = [

2 0.1

5 3
], B = [

1.5 0.1

0.2 2.5
],  

x1 (t) 0.4 , x2 (t) 2, t [ 1, 0] . The orbits of chaotic trajectory 

of (28) is illustrated in Fig. (1). 

Now consider a scale-free network consisting of one 
hundred linearly coupled models, where N = 100 , 
m0 = m = 3 ,the coupling strength c = 10  and = I2 .  
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Let twenty nodes are selected for pinning control and 

gains 
 
ki = 40,(i = 1,2, 20) . The fact I + c(G K ) < 0  is easily 

verified, where  and the matrix 

P =
23.7709 0

0 27.9348
 can be obtained from solving the 

LMI (8). Therefore, the coupled network with the pinning 

controllers is globally synchronized. The closed-loop 

response and the synchronization state response are shown in 

Fig. (2) and the synchronization error is illustrated in Fig. 

(3).  

5. CONCLUSIONS 

 In this paper, synchronization of undirected and directed 
networks has been investigated via pinning control. Some 
criteria for ensuring coupled networks synchronization have 
been derived, and some analytical techniques have been 
proposed to obtain appropriate coupling strength and control 
gain matrix for achieving network synchronization. 
Furthermore, the effective pinning schemes has been 
designed for networks with fixed structure and coupling 
strength. Finally, an numerical example has also been given 
to illustrate the theoretical analysis. 

APPENDIX 

 Barab¡äasi and Albert (BA) scale-free model. A 
significant discovery in the field of complex networks is the 
observation that a number of large-scale complex networks, 
including the Internet,WWW and metabolic networks, are 
scale free and their connectivity distributions have a power-
law form. To explain the origin of power-law degree 
distribution, BA proposed another network model [2], the 
algorithm of which is given as follows: 

(i) Growth. Start with a small number ( m0 ) of nodes; at 
every time step, a new node is introduced and is connected to 
m m0  already-existing nodes. (In this paper, we use m = m0 
- 3for convenience). 

(ii) Preferential attachment. The probability i  that a 

new node will be connected to node i (one of the m already-

existing nodes) depends on the degree 
i

k  of node i , in such 

a way that i = ki / j k j  . 
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