
Send Orders for Reprints to reprints@benthamscience.net

90 The Open Electrical & Electronic Engineering Journal, 2013, 7, 90-97

 1874-1290/13 2013 Bentham Open

Open Access
Improving Read Performance with BP-DAGs for Storage-Efficient File
Backup

Tianming Yang*, Jing Zhang and Ningbo Hao

International College, Huanghuai University, Henan, 463000, China

Abstract: The continued growth of data and high-continuity of application have raised a critical and mounting demand on
storage-efficient and high-performance data protection. New technologies, especially the D2D (Disk-to-Disk) de-
duplication storage are therefore getting wide attention both in academic and industry in the recent years. Existing de-
duplication systems mainly rely on duplicate locality inside the backup workload to achieve high throughput but suffer
from read performance degrading under conditions of poor duplicate locality. This paper presents the design and perform-
ance evaluation of a D2D-based de-duplication file backup system, which employs caching techniques to improve write
throughput while encoding files as graphs called BP-DAGs (Bi-pointer-based Directed Acyclic Graphs). BP-DAGs not
only satisfy the 'unique' chunk storing policy of de-duplication, but also help improve file read performance in case of
poor duplicate locality workloads. Evaluation results show that the system can achieve comparable read performance than
non de-duplication backup systems such as Bacula under representative workloads, and the metadata storage overhead for
BP-DAGs are reasonably low.

Keywords: Data De-duplication, File Backup, Storage-Efficient, Read Performance.

1. INTRODUCTION

Data explosion [1] has been forcing backups to expand
storage capacity, which makes modern enterprises face sig-
nificant cost pressures and data management challenges.
Studies showed that storage cost share of the enterprise in-
formation resource planning is rising, which has reached
more than 50% [2]. With the expansion of system capacity,
the storage management overhead can increase several times
more than that by the storage hardware devices [3-5]. In ad-
dition, the high-continuity of application requires that data
should be backed up and failure recovered as quickly as pos-
sible. So, the key challenge for modern enterprises data pro-
tection is to construct storage-efficient backup systems with
high performance on both data write and read throughputs.

Traditional backup systems used to rely on magnetic
tapes to archive data due to their cheap, large capacity and
removability for off-site backup. With the increase of disk
capacity and reliability [6], more and more backup solutions
are built on top of hundreds or thousands of hard drives,
which are known as Disk-to-Disk (D2D) technique in stor-
age industry [7]. As the disk seek and rotation time is 2 to 3
orders of magnitude shorter than the tape rewinding time, a
D2D-based backup system has the advantage of fast
backup/recovery compared with Disk-to-Tape (D2T) solu-
tions. More importantly, D2D backup can support global-
scale data de-duplication that in turn dramatically improves
the effective capacity of D2D device [8]. Now, D2D-based
de-duplication storage is gaining popularity and new

*Address correspondence to this author at the International College,
Huanghuai University, Zhumadian, Henan, 463000, China;
Tel: +8615290193519; E-mails: ytmzqyy@163.com, 2:282353724@qq.com

schemes are emerging to provide more storage-efficient and
high performance data protection for enterprises [9-13].

In de-duplication, files or streams are divided into chunks
and then duplicate chunks are eliminated in the global sys-
tem [14]. Each chunk is stored and addressed by its finger-
print (the cryptographic hash such as SHA-1 [15] value of its
content) to ensure that only 'unique' chunk is stored. A disk
index is used to establish mapping between fingerprint and
the location of its corresponding chunk on disk. The key
challenge regarding performance is how to reduce the sig-
nificant random disk I/O overhead to search for chunks on
disk index [9]. Most of the existing de-duplication systems
use caching technique, which judiciously exploits duplicate
locality within the backup stream to avoid the disk index
bottleneck, and hence achieves high de-duplication through-
put [9, 10]. Duplicate locality refers to the tendency for
chunks in backup streams to reoccur together. That is, when
a backup stream contains a chunk A, it is surrounded by
chunks B, C, and D, then in a different backup if chunk A
appears it is very likely that chunks B, C, and D will also
appear nearby.

Apart from improving de-duplication write throughput,
another important issue for de-duplication backup is how to
read files from the system more efficiently. Although restore
is not much more frequent event than backup, read through-
put is still very important especially in high-continuity appli-
cation environments that require very short RTO (Recovery
Time Objective). In existing de-duplication systems file
chunks are indexed by their fingerprints (i.e., hash pointers),
which are called Content-Addressed Storage (CAS) [14].
However, reading a file from the system using hash pointers
involves time-consuming disk index seeks, and one disk in-
dex seek per file chunk is far too slow. The use of caching

Improving Read Performance with BP-DAGs for Storage-Efficient The Open Electrical & Electronic Engineering Journal, 2013, Volume 7 91

techniques mentioned above can reduce the disk index seeks
for reading chunks, but their read performance is heavily
degraded under conditions of poor duplicate locality. Differ-
ent from large data streams that have good duplicate locality,
poor duplicate locality workloads consist of random files
from disparate sources such as file backup requests made by
Network-attached Storage (NAS) clients, Continuous Data
Protection (CDP) where files are backed up as soon as they
are changed, and electronic emails are backed up as soon as
they are received [16]. In order to maintain high read
throughput under various workloads, files were encoded as
graphs called Bi-Pointer-based Directed Acyclic Graphs
(BP-DAGs) whose nodes had variable-sized chunks of data
and whose edges were hash plus address pointers. The pro-
posed BP-DAGs not only supported automatic structure
sharing to satisfy the 'unique' chunk storing policy of de-
duplication system but also directed access to chunks to
completely avoid disk index seeks when restoring a file.

The rest of this paper is organized as follows. Section 2
gives the system architecture related to de-duplication
backup and storage. Section 3 describes the structure of BP-
DAGs. Section 4 presents the evaluation results in terms of
de-duplication ratio, file write\read throughputs and the
metadata storage overhead of BP-DAGs. Finally, section 5
contains conclusion.

2. THE STORAGE-EFFICIENT FILE BACKUP

The storage-efficient backup system is designed to pro-
vide a flexible data protection solution for companies whose
application servers may be dispersed across the Internet. In
this section, we introduce the architecture, de-duplication
process and disk storage policy of this system.

2.1. System Architecture

The architecture of this system is shown in Fig. (1); it
consists of the backup server, backup agent, storage server,
catalog database, and web interface. Backup server controls
the entire system; it supervises the backup, restore, verifica-
tion and resource management jobs. Users can access the
system to make their data protection plans through Web In-
terface with no time/location constraints. Backup agent runs
as a background daemon on the application server where
recently generated data needs to be backed up periodically.
When doing a backup/restore job, backup agent sends/rec-
eives data to/from the storage server. In the backup process,
data is de-duplicated, files are encoded into BP-DAGs and
metadata associated with the backup job such as job ID, ses-
sion time, root chunks of the BP-DAGs, etc. is sent to a cata-
log database to ensure that data can be recovered if neces-
sary. This paper mainly focuses on data de-duplication and
BP-DAGs, and not on the backup job management, so, the
rest of the section is dedicated to workflow of backup agent
and storage server.

2.2. De-duplication Backup Process

Fig. (2) shows the de-duplication backup process. The
backup agent divides the input backup stream (it may consist
of general files /directories or large tar files) into variable-
sized chunks using the content-defined chunking algorithm
[17] with an expected chunk size of 8KB, computes the
SHA-1 hash [15] (20 bytes in size) of each chunk as its fin-
gerprint, and sends the fingerprints in the order that they
appear in the backup stream to the storage server. The stor-
age server performs data de-duplication on the received fin-
gerprints to identify new fingerprints and then informs the

Fig. (1). The file backup architecture.

92 The Open Electrical & Electronic Engineering Journal, 2013, Volume 7 Yang et al.

backup agent to send the corresponding new chunks (i.e.,
unique chunks in the scope of the entire system). Since only
new chunks are transmitted over the network, the network
bandwidth overhead of the backup can be reduced.

The de-duplication process is performed by the finger-
print filter module of the storage server, which uses caching
techniques to improve de-duplication throughput similar to
most of the existing de-duplication systems such as DDFS
[9] and Foundation [18]. Specifically, an in-memory Bloom
filter [19] and a fingerprint cache have been used. The
Bloom filter represents an in-memory conservative summary
of the disk index, which can identify most of the new finger-
prints without needing query to the disk index, and the fin-
gerprint cache exploits duplicate locality to prefetch groups
of chunk fingerprints to improve cache hit rate. If an incom-
ing fingerprint is identified as new (not duplicate) by the
Bloom filter then it is indeed a new fingerprint in the entire
system, since the Bloom filter does not give a false negative,
otherwise it is duplicate with very high probability (depend-
ing on the false positive rate of the Bloom filter that can be
maintained at very low levels such as lower than 2% by us-
ing an adequately large Bloom filter as per the system capac-
ity). If an incoming fingerprint is determined as duplicate by
the Bloom filter, then it can be searched in the in-memory
fingerprint cache; if it is there, it will definitely be a dupli-
cate; otherwise it can be searched on the disk index. If an
incoming fingerprint is found on the disk index, all the fin-
gerprints are read on the same container with the incoming
fingerprint from the container store to the in-memory fin-
gerprint cache since these fingerprints are more likely to be
accessed together in the near future due to duplicate locality.
It should be noted that in order to preserve duplicate locality,
new chunks and their fingerprints were stored in the order
that they appeared in the backup stream to fixed-sized (e.g.
8MB) containers. The container store module is responsible
for container management such as reading from or writing to
the disk storage a container by its container ID. By using
caching techniques, the disk index I/O bottleneck for de-
duplication backup can be avoided under well duplicate lo-

cality workloads. The BP-DAGs builder module of the stor-
age server encodes files into BP-DAGs based on the results
of the fingerprint filter; details of the BP-DAGs are given in
the next section.

2.3. Write-Once Storage Policy

For container storage, a write-once policy was imposed
to retain backup data in perpetuity, that is, containers were
stored on a write-once disk RAID (Redundant Arrays of In-
expensive Disks) [6]. This changes the concept of traditional
backup which keeps data for a limited period of time and
reclaims storage space from outdate backup data. Traditional
archival storage may retain data in perpetuity, but it usually
uses off-site tapes or optical jukeboxes as storage media and
suffers from expensive administration cost. Write-once disk
storage has been used due to the following reasons: first, the
rapid advances in disk storage technology witnessed in re-
cent years have notably improved the disk storage capacity
while reducing its cost. Second, the de-duplication technique
dramatically reduces the disk storage requirement for data
protection [9], making it feasible to impose a write-once pol-
icy to the back-end storage, actually, there has been success-
ful case to do so [14]. Third, one more attractive benefit of
this approach is that it simplifies data management, since all
the backup data are retained abidingly, users can access any
history versions of information once backed up in the sys-
tem, not worrying about accidental deletion of data, nor
needing to decide a policy for ILM (Information Lifecycle
Management)[20]. Finally, the write-once policy makes it
possible to encode files as BP-DAGs and to append chunks
to disk densely without fragmentation, thus giving rise to
high data recovery throughput.

3. BI-POINTER-BASED DIRECTED ACYCLIC
GRAPHS

From the perspective of the storage server, all the data is
stored as chunks. A chunk can be shared by multiple files.
On the other hand, a file may consist of many chunks and a
file index should be built to access file chunks. Traditional

Storage Server

Chunker

Fingerprint filter

Backup Agent

Container store

Sender

fingerprints /chunks

fingerprints /unique chunks

backup stream

BP-DAGs builder

fingerprints /unique chunks

root chunks to Catalog Database

container

Fig. (2). Block diagram of the de-duplication backup.

Improving Read Performance with BP-DAGs for Storage-Efficient The Open Electrical & Electronic Engineering Journal, 2013, Volume 7 93

file systems build file index by address pointers to physical
blocks. For example, UNIX file systems use an inode struc-
ture, and indirect blocks if necessary, to map logical block
addresses to the corresponding physical addresses on disk.
This address-based index can provide quick access to file
data, but cannot support duplicate block elimination and
'unique' block sharing since address pointers are completely
block content agnostics. In contrast, the hash-based index
such as the Venti hash tree [14] and HDAGs [21] refers to
child nodes by their hash rather by their location on disk,
hence can well support 'unique' chunk storing and sharing,
but its data access performance can be very poor since hash
pointers should be translated to disk addresses and this usu-
ally incurs time-consuming disk index lookups.

3.1. The Structure of BP-DAGs

In order to combine the advantages of address-based and
hash-based indexes, BP-DAGs have been used to establish a
number of relationships between files and chunks. A BP-
DAG is a special kind of DAG (Directed Acyclic Graph)
whose nodes refer to other nodes by their hash and their ad-
dress on disk. Specifically, a BP-DAG pointer is a <type,
fingerprint, address, size > group with a total of 32 bytes in
size, which records the chunk type (1 byte), fingerprint (20
bytes), storage address (9 bytes with 5 bytes for container ID
and another 4 bytes for storage offset within the container)
and chunk size (2 bytes, we impose a limitation of maximum
chunk size of 64KB) of the corresponding child, respec-
tively. The fingerprint is a hash pointer and the < address,
size > is an address pointer, so a BP-DAG pointer is actually
a hash plus address pointer pair which has been pictorially
denoted as a double arrow. Fig. (3) depicts a file represented
as a BP-DAG. There are three different types of BP-DAG
nodes that are all stored on disk as chunks, namely the root
chunk, index chunk and data chunk. A BP-DAG has a
unique root chunk that contains two fields: the metadata field
that stores the file metadata, and the pointer field that stores
BP-DAG pointers to file data. Data chunks contain the con-
tents of the file and locate the leaf of the BP-DAG. For a
small file, its data chunks can be directly indexed by the root
chunk pointer field. For a large file, more than one index

chunk, which is an array of BP-DAG pointers, may be re-
quired to constitute a hierarchical index structure to access
its data. It should be noted that although a BP-DAG is a hi-
erarchical structure, it is in general not a tree, but rather a
DAG since one child can have multiple parents.

BP-DAGs use variable-sized index chunks with a maxi-
mum size of 32KB. An index chunk can contain a maximum
of 1024 BP-DAG pointers (32KB/ 32bytes =1024), so an
index layer with a depth of 2 can index a maximum of
1024*1024 data chunks. An expected chunk size of 8KB
means 1024*1024*8KB=8GB, which is exceeding the size
of most files, so, most file's index layers are no more than 2
in depth. In practice, for most small files, there are no index
chunks in their BP-DAGs.

Hash pointers also give BP-DAGs a number of useful
properties. First, all the BP-DAGs chunks are uniquely
stored in the system, no duplicate chunks exist, this property
satisfies the 'unique' chunk storing policy of de-duplication
system. Second, a BP-DAG is automatically acyclic since
creating a cycle in the parent-child relationship between two
BP-DAG nodes is cryptographically hard [21]. Third, more
importantly, BP-DAGs are intrinsically structure sharable.
Except root chunks, all the BP-DAGs chunks can be shared.
For example, two files with the same data contents but dif-
ferent metadata (e.g., different names or even the same name
but in different jobs) will have different root chunks but
share the same index chunks and data chunks. Fig. (4) illus-
trates the structure sharing between two BP-DAGs.

3.2. BP-DAGs Building

When a file is de-duplicated, the BP-DAGs builder mod-
ule sequentially reads its fingerprints and new chunks from
the fingerprint filter to build BP-DAGs. It maintains an in-
memory container to which BP-DAGs chunks are written.
When the in-memory container is full, it is flushed to the
container store and then another empty in-memory container
is created and its container ID is requested. To make a fin-
gerprint h read from the fingerprint filter, the BP-DAGs
building algorithm does the following:

M(F)

...

...

...

...

...

root pointer

...

root chunk

index chunks

data chunks

Fig. (3). A BP-DAG representation of a file, M(F) represents the file metadata.

94 The Open Electrical & Electronic Engineering Journal, 2013, Volume 7 Yang et al.

• If it is a duplicate, then its < address, size > from the
fingerprint cache (see Section 2.2) is read and stored
< dc, h, address, size > to the BP-DAG. Here, 'dc'
represents the chunk type 'data chunk'.

• If it is new, it stores the new data chunk D(h) to the
in-memory container, and its <dc, h, address, size > is
stored to the BP-DAG. The address pointer < address,
size > can be obtained from the in-memory container
ID and the chunk’s storage offset within the container.

For a small file, BP-DAG pointers are directly stored in
its root chunk. For a large file, index chunks are recursively
created in the process until in the end a unique root chunk is
created and stored for the file. When an index chunk is gen-
erated, its fingerprint is sent to the fingerprint filter to check
if it is new. If it is new, the index chunk is stored to the con-
tainer and its new address is built to the BP-DAG, otherwise,
it is discarded and its address pointer is copied from the fin-
gerprint cache to the BP-DAG. Although storing an index
chunk incurs de-duplication overhead, its impact on backup
performance is negligible, since the amount of index chunks
is far smaller than that of the data chunks.

3.3. Restoring Files from BP-DAGs

BP-DAGs are effective structures for fast access to file
data. BP-DAGs root chunks are much like UNIX file system
inodes and can be used to improve file read performance.
During backup, the root chunks are also sent to a catalog
database. When doing a restoring job, they are directly read
to an in-memory read cache for quick file restoration. The
desired file chunk (data chunk or index chunk) is directly
read from the cache if found there. Otherwise, according to
its BP-DAG pointer, the container that stores the requested
chunk is read to the cache. The BP-DAG pointers avoid
time-consuming disk index lookups to search chunks.
Moreover, the locality-preserved container guarantees that a
BP-DAG's chunks are stored on the disk of a continuous
region if they are not shared by previous files. This continu-
ous data layout improves cache hit rate that in turn reduces
disk I/Os to read chunks. So the performance of file restore
can be effectively improved.

4. EXPERIMENTAL EVALUATION

Here, a prototype of the system in Linux called Dedup-
BP (De-duplication backup system with BP-DAGs), has
been implemented and by modifying Dedup-BP, another
system called Dedup has been developed, which removes
BP-DAGs and builds file index just as a flat sequence of
fingerprints that map to the file chunks. In this section, De-
dup-BP has been evaluated in terms of de-duplication ratio,
compared with Dedup and Bacula in terms of backup/restore
throughputs under representative workloads The comparison
of Dedup-BP and Dedup on metadata storage overhead has
also been given. Bacula is non de-duplication free network
backup software available under the GNU Version 2 soft-
ware license. There are many versions of Bacula available
but bacula-2.0.2 was selected for comparison.

4.1. System Setup

Here, system setup for the evaluation was based on three
computers PC1-PC3. The servers (the backup servers, stor-
age servers and catalog databases of Dedup-BP, Dedup and
Bacula) run on PC1 and the clients (the backup agents of
Dedup-BP, Dedup and Bacula) on PC2. PC1 and PC2 were
equipped with Inter 604-pin EM64T (NoconaTM) Xeon 3.0
GHz processor and 4GB DDR SDRAM memory. A
Highpoint Rocket 2240 Raid controller attached to 5 SATA
disks was connected to PC1 served as container store and
disk index for de-duplication backup, the SQLite version
2.8.4 was also installed on PC1 served as catalog database.
These two machines were connected over a 1000 Mbit/s
Ethernet through a windows 2003 server enterprise internal
router run on PC3, which can be configured to measure traf-
fic and impose bandwidth limitations.

In order to examine the benefit of BP-DAGs on improv-
ing file restore performance, two representative workloads
were used. Workload-1 is based on backup versions in their
chronological order from a massive storage system [22],
where significant amounts of data remained unchanged be-
tween adjacent versions; it represented backup stream work-
loads with well duplicate locality. There were a total of

M(F1)

...

...

...

...

...

root pointer 1

...

root pointer 2

...

M(F2)

...

...

...

 

Fig. (4). Structure sharing between BP-DAGs.

Improving Read Performance with BP-DAGs for Storage-Efficient The Open Electrical & Electronic Engineering Journal, 2013, Volume 7 95

572GBs of data, 3177 files in workload-1. Workload-2 was
collected from different personal workstations; it contained
development sources and documentations, object files gener-
ated from code compiling, meeting records and technology
discussions, and research papers and reports in various for-
mats and languages. Although there were large percentages
of duplicate files in workload-2, majority of them were ran-
dom small files (usually several ten of kilobytes in size) scat-
tered in various parts of the workload, giving rise to very
poor duplicate locality. Workload-2 contained 241GBs of
data, 947258 files.

4.2. Results and Discussions

The expected chunk size is an important parameter for
de-duplication backup. It is a trade-off between the degree of
data de-duplication and the storage overhead of the metadata.
Larger chunks not only reduce the storage overhead of the
metadata but also reduce the number of duplicate data elimi-
nated.

Fig. (5) shows the amount of duplicate bytes eliminated
by Dedup-BP on the two workloads as a percentage of the

total number of bytes in the workloads. As expected, the
number of eliminated duplicates decreases slightly as the
chunk size increases because of the coarser granularity. For
workload-2, the data de-duplication degree drops faster as
the expected chunk size varies from 8KB to 16KB. This may
be because many files in this workload are small files around
10KB, expected chunk size larger than 8KB will make most
of these files be divided into no more than one chunk. In this
case, Dedup-BP will be degraded to ordinary file-based
backup and will lose many duplicates. Overall, by perform-
ing de-duplication, the storage requirement for backup can
be remarkably reduced, as shown in Fig. (5), with expected
chunk size of 8KB, over 58% and 52% storage spaces were
saved when backing up workload-1 and workload-2, respec-
tively. It should be noted that the percentage of storage saved
will grow higher over time with the system holding more
backup data.

Fig. (6) shows the amount of extra storage needed as a
percentage of the total number of bytes in the workload for
storing the file index. The results do not take into account the
file metadata (i.e., file name, ctime, mtime, etc.) overhead

Fig. (5). Data de-duplication using various expected chunk size.

Fig. (6). Metadata storage overheads using various expected chunk size.

40

45

50

55

60

65

2 4 8 16 32

Da
t
a
De
-d
up
li
ca

ti
on

(P
er
ce
nt
 o
f

To
ta
l
By
te
s)

Expected Chunk Size(KB)

workload-1

workload-2

0

0.2

0.4

0.6

0.8

1

1.2

2 4 8 16 32Me
ta
d
at

a
Ov

er
he
a
d(

Pe
r
ce

nt
 o
f

Th
e
To

ta
l
B
yt

es
)

Expected Chunk Size (KB)

Dedup-workload-1

Dedup-workload-2

Dedup-BP-workload-1

Dedup-BP-workload-2

96 The Open Electrical & Electronic Engineering Journal, 2013, Volume 7 Yang et al.

for convenience of comparison. The metadata storage over-
head is negatively affected by the expected chunk size;
smaller expected chunk size suffers from relatively high
metadata storage overhead. Moreover, Dedup-BP’s metadata
storage overhead is also affected by the de-duplication rate
and duplicate locality while Dedup does not (Dedup’s meta-
data overhead is only related to the average chunk size).
With higher de-duplication rate and good duplicate locality,
more index chunks will be shared between BP-DAGs, result-
ing in lower metadata overhead. This can be seen from Fig.
(6) where Dedup-BP suffers from relatively low metadata
overhead on workload-1 than on wokload-2. Overall, the
metadata overhead for BP-DAGs is reasonably low, as can
be seen in Fig. (6), using an expected chunk size of 8 KB.
The amount of metadata storage overhead is very small, less
than 0.4%.

Figs. (7 and 8) show the backup and restore throughputs
of Dedup, Bacula and Dedup-BP on 1000Mbit/sec LAN with
different bandwidth limitations. Fig. (7) shows that both De-
dup and Dedup-BP outperform Bacula in terms of backup
throughput on workload-1 in low bandwidth environments.

This improvement mainly comes from the de-duplication of
data transmitted over the network in backup session. How-
ever, on workload-2, both Dedup and Dedup-BP yielded
relatively low backup throughput than Bacula, this is be-
cause the poor duplicate locality within workload-2 reduced
the cache hit rate, making the disk index lookup become a
performance bottleneck.

Fig. (8) shows that both Dedup and Dedup-BP achieve
comparable read throughput than Bacula under workload-1
because of the well duplicate locality contained in this work-
load. But under workload-2, Dedup experienced a sharp de-
cline in read performance compared with Bacula, this is be-
cause workload-2 presents poor duplicate locality, which
results in many random small disk I/Os for file read. In con-
trast to Dedup, Dedup-BP effectively slowed the decline in
read performance under workload-2. As expected, Dedup-BP
outperforms Dedup in read performance under both work-
loads, achieving improvements over Dedup by a factor of
1.07 and 1.81 under workload-1 and workload-2 respec-
tively. This is because Dedup-BP indexes files using BP-
DAGs that completely eliminate time-consuming disk index

Fig. (7). Backup throughputs on 1000 Mbit/sec LAN with different bandwidth limitations.

Fig. (8). Restore throughputs on 1000 Mbit/sec LAN with different bandwidth limitations.

0

5

10

15

20

25

30

35

40

45

50

No limitation 30MB/s 20MB/s 10MB/s

B
a
c
k
u
p
 T
h
r
o
u
g
hp
u
t

(M
B
/
s
)

Bandwidth Limitations

Dedup-workload-1

Dedup-workload-2

Bacula-workload-1

Bacula-workload-2

Dedup-BP-workload-1

Dedup-BP-workload-2

0

5

10

15

20

25

30

35

40

No limitation 30MB/s 20MB/s 10MB/s

Re
st

or
e

Th
ro

ug
hp

ut

 (
MB

/s
)

Bandwidth Limitations

Dedup-workload-1

Dedup-workload-2

Bacula-workload-1

Bacula-workload-2

Dedup-BP-workload-1

Dedup-BP-workload-2

Improving Read Performance with BP-DAGs for Storage-Efficient The Open Electrical & Electronic Engineering Journal, 2013, Volume 7 97

lookups in the read process, while Dedup suffers from a
great number of random on-disk fingerprint lookups espe-
cially in the case of poor duplicate locality.

5. CONCLUSIONS

Data de-duplication, an emerging backup technique, is
sparking a revolution in the area of data protection as it can
dramatically reduce the backup storage requirement. Despite
its rapid advance witnessed in recent years this technique is
still facing many challenges on how to meet the performance
requirements in high-continuity application environments. In
this paper, the design of a de-duplication backup system that
encodes files as BP-DAGs was presented. The system using
representative workloads was also evaluated. Experimental
results showed that the proposed BP-DAGs can effectively
improve file read throughput under poor duplicate locality
workloads in which the cases of current mainstream solu-
tions would experience a very sharp performance decline.
How to effectively improve the backup throughput under
poor duplicate workloads still remains a problem and will be
the research direction of our future work.

CONFLICTS OF INTEREST

The authors confirm that this article content has no con-
flicts of interest.

ACKNOWLEDGEMENTS

This paper was supported by the Key Science-
Technology Project of Henan of China under Grant No.
112102210446.

REFERENCES
[1] Gens, F., “IDC Predictions 2012: Competing for 2020”, IDC

TOP10 Predictions 2012, pp.1-26, [Online] Available:
http://cdn.idc.com/research/Predictions12/Main/downloads/IDCTO
P10Predictions2012. pdf . [Accessed 21th, March 2013].

[2] L.Y. Lawrence, “Efficient Archival Data Storage”, PhD thesis,
University of California, Santa Cruz, CA, USA, 2006.

[3] C. A. Thekkath, T. Mann, and E. K. Lee, “Frangipani: A Scalable
Distributed File System”, In: Proceedings of the 16th Symposium
on Operating Systems Principles (SOSP-97), 1997, pp. 224-237.

[4] A. C. Veitch, E. Riedel, S. J. Towers, and J. Wilkes, “Towards
Global Storage Management and Data Placement”, In: Eighth IEEE
Workshop on Hot Topics in Operating Systems (HotOS-VIII), 2001,
pp. 184-184.

[5] J. Wilkes, “Traveling to Rome: Qos specifications for automated
storage system management”, In: Proceedings of the Int. Workshop
on QoS (IWQoS'2001), 2001, pp.75-91.

[6] D. Patterson, G. Gibson, and R. Katz, “A case for redundant arrays
of inexpensive disks (RAID)”, In: Proceedings of ACM SIGMOD,
1988, pp.109-116.

[7] ASARO, T., and BIGGAR, H. Data De-duplication and Disk-to-
Disk Backup Systems: Technical and Business Considerations.
White Paper, the Enterprise Strategy Group, 2007.

[8] BIGGAR, H. Experiencing Data De-Duplication: Improving Effi-
ciency and Reducing Capacity Requirements. White Paper, the En-
terprise Strategy Group, 2007.

[9] B. Zhu, H. Li, and H. Patterson, “Avoiding the disk bottleneck in
the data domain deduplication file system”, In: Proceedings of the
6th USENIX Conference on File And Storage Technologies, 2008,
pp. 269-282.

[10] M. Lillibridge, K. Eshghi, D. Bhagwat, V. Deolalikar, G. Trezise,
and P. Camble, “Sparse indexing: Large scale, inline deduplication
using sampling and locality”, In: Proceedings of the 7th USENIX
Conference on File And Storage Technologies, 2009, pp. 111-123.

[11] T. Yang, H. Jiang, D. Feng, Z. Niu, K. Zhou, and Y. Wan, “DE-
BAR: a scalable high performance deduplication storage system for
backup and archiving”, In: IEEE International Symposium on Par-
allel and Distributed Processing, 2010, pp. 1-12.

[12] P. Shilane, M. Huang, G. Wallace, and W. Hsu, “Wan optimized
replication of backup datasets using stream-informed delta com-
pression”, In: Proceedings of the 10th USENIX Conference on File
And Storage Technologies, 2012, pp. 57-71.

[13] K. Srinivasan, T. Bisson, G. Goodson, and K. Voruganti, “idedup:
Latency-aware, inline data deduplication for primary storage”, In:
Proceedings of the 10th USENIX Conference on File And Storage
Technologies, 2012, pp. 307-320.

[14] S. Quinlan and S. Dorward, “Venti: a new approach to archival
storage”, In: Proceedings of the USENIX Conference on File And
Storage Technologies, 2002, pp. 89-101.

[15] PUB F, Secure Hash Standard. Public Law, 1995.
[16] D. Bhagwat, K. Eshghi, D. D. Long, and M. Lillibridge, “Extreme

binning: scalable, parallel deduplication for chunk-based file
backup”, In: Proceedings of the 17th IEEE International Sympo-
sium on Modeling, Analysis, and Simulation of Computer and Tele-
communication Systems, 2009, pp.1-9.

[17] A.Muthitacharoen, B.Chen, and D.Mazieres, “A low-bandwidth
network file system”, ACM SIGOPS Operating Systems Review,
vol. 35, pp. 174-187, October 2001.

[18] S. Rhea, R. Cox, and A. Pesterev, “Fast, inexpensive content-
addressed storage in foundation”, In: Proceedings of the 2008
USENIX Annual Technical Conference, 2008, pp. 143-156.

[19] B. Bloom, “Space/time trade-offs in hash coding with allowable
errors”, Comm. ACM, vol. 13, pp. 422-426, 1970.

[20] Reiner, D., Press, G., Lenaghan, M., Barta, D., and Urmston, R.,
“Information life-cycle management: the EMC perspective”, In:
Proceedings of 20th International Conference on Data Engineer-
ing, 2004, pp. 804-807.

[21] Kave Eshghi, Mark Lillibridge, Lawrence Wilcock, Guillaume
Belrose, and Rycharde Hawkes, “Jumbo store: Providing efficient
in cremental upload and versioning for a utility rendering service”,
In: Proceedings of the 5th USENIX Conference on File And Stor-
age Technologies, 2007, pp.123-138.

[22] Zeng, L.F., Zhou, K., Shi, Z., Feng, D., Wang, F., Xie, C.S., Li,
Z.T., Yu, Z.W., Gong, J.Y., Cao, Q., Niu, Z.Y., Qin, L.J.,Liu, Q.,
Li, Y., and Jiang, H., “HUSt: a Heterogeneous Unified Storage
System for GIS Grid”, In: Proceedings of ACM/IEEE Conference
on Supercomputing, 2006, pp.325-338.

Received: July 04, 2013 Revised: July 07, 2013 Accepted: July 14, 2013

© Yang et al.; Licensee Bentham Open.

This is an open access article licensed under the terms of the Creative Commons Attribution Non-Commercial License
(http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted, non-commercial use, distribution and reproduction in any medium, provided the
work is properly cited.

