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Abstract: In this paper, the experimental validation of a fast and accurate near-field – far-field (NF–FF) transformation 
with spherical spiral scanning for elongated antennas is provided. Such a transformation relies on a nonredundant sam-
pling representation of the voltage measured by the probe, obtained by using the unified theory of spiral scans for non-
spherical antennas and adopting a cylinder ended in two half-spheres to model long antennas. It allows a remarkable re-
duction of the measurement time due to the use of continuous and synchronized movements of the positioning systems 
and to the reduced number of needed NF measurements. In fact, the NF data required by the classical spherical NF–FF 
transformation are efficiently and accurately recovered from those collected along the spiral, by using an optimal sam-
pling interpolation expansion. Experimental results, obtained at the Antenna Characterization Lab of the University of 
Salerno and assessing the effectiveness of such a NF–FF transformation, are shown. 
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1. INTRODUCTION 

The techniques for the reconstruction of antenna far-field 
(FF) patterns from measurements accomplished in the near-
field (NF) region have been widely investigated and em-
ployed in the last four decades [1-7], since they allow to 
overcome all drawbacks which make impractical the direct 
measurement in a conventional FF range. Moreover, they 
represent the most convenient choice when complete pattern 
and polarization measurements are required, and can be used 
to determine the field at the antenna surface. This infor-
mation can be properly exploited for the diagnostics of faulty 
elements in an array or surface deformations in a reflector 
antenna (microwave holographic diagnostics [8]). Usually, 
the FF patterns are obtained from the measured NF data by 
using an expansion of the field of the antenna under test 
(AUT) in terms of modes, i.e., a complete set of solutions of 
the vector wave equation in the region outside the antenna. 
Plane, cylindrical, or spherical waves are normally em-
ployed. The type of modal expansion adopted to represent 
the field determines the kind of the NF scanning surface, 
which, therefore, will be a plane, a cylinder, or a sphere. The 
modal expansion coefficients, whose knowledge allows the 
reconstruction of the AUT far field, are then obtained by 
exploiting the orthogonality properties of the modes on these 
surfaces. The employment of NF–FF transformations using 
different scanning geometries is justified from the fact that  
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each approach has its own specific advantages, depending on 
the measurement requests and on the AUT characteristics. In 
particular, that making use of the spherical scan has attracted 
a considerable interest [9-21], because it allows the whole 
reconstruction of the AUT pattern without requiring its repo-
sitioning and avoids the errors due to the scanning surface 
truncation. However, this is obtained at the expense of a data 
processing remarkably heavier than that needed in the planar 
and cylindrical scanning cases. 

Innovative NF–FF transformation techniques with 
spherical spiral scanning have been proposed in recent years 
[22-29]. They maintain the interesting features of those em-
ploying the spherical scanning and, what’s more, reduce in a 
remarkable way the time required for the NF data acquisi-
tion, which, as suggested in [30], is performed on fly by ex-
ploiting continuous and synchronized movements of the po-
sitioning systems of the probe and AUT. It must be stressed 
that the reduction of the measurement time is a very impor-
tant issue for the antenna measurement community, since 
such a time is nowadays very much greater than that required 
to evaluate the far field by means of the NF–FF trans-
formation code. The remarkable time saving characterizing 
these innovative transformations is even more strengthened 
by the reduced number of the NF data to be collected. As a 
matter of fact, they are based on the nonredundant sampling 
representations of electromagnetic (EM) fields [31, 32] and 
make use of proper optimal sampling interpolation (OSI) 
expansions [33] to retrieve, from the nonredundant samples 
acquired along the spiral, the NF data required by the NF–FF 
transformation with spherical scanning in its original version 
[13] or as modified in [14, 16]. The nonredundant sampling 
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representation on the sphere for the voltage measured by the 
probe has been obtained by choosing the spiral in such a way 
that it intersects any meridian at points whose spacing coin-
cides with that needed for the interpolation and then deter-
mining a nonredundant representation on such a spiral. In a 
first approach, the sampling representation has been deter-
mined [22-24] by adopting a spherical source modelling, i.e., 
by considering the AUT as enclosed in the smallest sphere 
able to contain it. Then, by properly applying the unified 
theory of spiral scans for nonspherical antennas [25], NF–FF 
transformations with spherical spiral scanning for elongated 
or quasi-planar antennas have been developed in [26-29], 
thus avoiding the useless increase in the number of the NF 
data to be acquired, related to the use of the spherical model-
ling when considering these kinds of antennas. More in de-
tail, an oblate [26, 28] and a prolate ellipsoid [26] have been 
employed to shape a quasi-planar and an elongated antenna, 
respectively. As an alternative, a quasi-planar antenna has 
been considered as enclosed in a surface formed by two cir-
cular bowls with the same aperture diameter but eventually 
different lateral bends [27, 29] and a rounded cylinder, 
namely, a cylinder ended in two half-spheres has been 
adopted for modelling an elongated AUT [27]. Generally, 
the use of these last modellings results to be more effective 
from the data reduction viewpoint with respect to the em-
ployment of the corresponding ellipsoidal ones, since they 
allow a better fitting of many antennas by properly setting 
their geometric parameters. 

The goal of this paper is the experimental validation of 
the NF–FF transformation with spherical spiral scan for long 
antennas [27] based on the rounded cylinder modelling (see 
Fig. 1). The effectiveness of that for quasi-planar antennas 
using the two-bowls modelling has been already assessed in 
[29]. Also in such a case, the testing has been carried out by 
means of the spherical NF facility available in the anechoic 
chamber of the Antenna Characterization Lab of the Univer-

sity of Salerno and has wholly confirmed the effectiveness of 
this innovative transformation, which allows a remarkable 
time saving without losing the accuracy of the classical 
spherical one. 

2. NONREDUNDANT SAMPLING REPRESENT-
ATION OF THE PROBE VOLTAGE ON A SPHERE 

Let us consider an elongated antenna and a nondirective 
probe scanning a proper spiral, which wraps a spherical sur-
face of radius d in the antenna NF region, and adopt the 
spherical coordinate system (r,!," )  for denoting an obser-
vation point P (Fig. 1). It has been shown [34] that the volt-
age V measured by such a kind of probe has the same effec-
tive spatial bandwidth of the AUT field and, accordingly, the 
nonredundant sampling representations of EM fields [31] 
can be applied to it. Therefore, when dealing with the repre-
sentation on a curve C, it is convenient to use a proper ana-
lytical parameterization r = r (η) for describing C and to 
introduce the “reduced voltage” 

   
%V (!) =V (!) e j" (!)  (1) 

where V is the voltage 
  
V1  or 

  
V2 measured by the probe or by 

the rotated probe and ψ(η) is a proper phase function. As 
shown in [31], r (η) and 

 
! (")  are related to the rotational 

surface Σ bounding the convex domain adopted to model the 
AUT. The choice of a modelling which fits the geometry of 
the AUT well is mandatory for minimizing the number of 
required samples. Since the considered AUT is long, it is 
convenient to choose the surface Σ enclosing it coincident 
with a rounded cylinder, namely, a cylinder of height h' 
ended in two half-spheres of radius a' (see Figs. 1 and 2). 
The error, occurring when 

   
%V (!)  is approximated by a ban-

dlimited function, exhibits a step-like behaviour becoming 

 
Fig. (1). Spherical spiral scanning for an elongated antenna. 
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negligible as the bandwidth exceeds a critical value 
 
W!  [31] 

and can be effectively controlled by choosing the bandwidth 
of the approximating function equal to 

  
! 'W" , 

 
!'  being an 

enlargement bandwidth factor, which is slightly greater than 
unity for electrically large antennas. 

According to the unified theory of spiral scans for non-
spherical antennas [25], the OSI expansion for the voltage 
reconstruction on a sphere from a nonredundant number of 
its samples acquired by the probe along a proper spiral can 
be derived by choosing the spiral in such a way that it inter-
sects any meridian at points whose spacing coincides with 
that needed for the interpolation and then determining a non-
redundant representation on such a spiral. Because of the 
choice of a rounded cylinder as modelling, the bandwidth 

 
W! , the parameterization η relevant to a meridian and the 

corresponding phase function ψ are [27, 31]: 

   
W! = "l ' 2#  (2) 

   
! = " l '( ) R

1
# R

2
+ s

1' + s
2'$% &'   (3) 

  
! = " 2( ) R

1
+ R

2
+ s

1' # s
2'$% &'  (4) 

where β is the wavenumber, 
   
l' = 2(h'+ !a')  is the length of 

the intersection curve   C '  between the meridian plane 
through the observation point P and Σ, 

  
R1, 2 are the distances 

from P to the two tangency points 
  
P1, 2  between the cone of 

vertex at P and   C ' , and 
  
s1,2'  are their curvilinear abscissae 

(see Fig. 2). The expressions of 
  
R1,2  and 

  
s1,2'  change de-

pending on the location of the points 
  
P1, 2  [27] and are re-

ported in Appendix A for reader’s convenience. 

As shown in [25], the spiral can be obtained by project-
ing on the scanning sphere, via the curves at η = const [27], 
a proper spiral wrapping Σ whose pitch is equal to the sam-
ple spacing 

  
!" = 2# (2N"+1)  required for interpolating the 

voltage along a meridian. In this last relation, 

  
N"= Int(! N ') + 1 , where 

  
N '= Int(! 'W" ) + 1 , Int(x) is the 

integer part of x, and 
 
! >1  is an oversampling factor needed 

to control the truncation error [31, 33]. Accordingly, the pa-
rametric equations of the spiral are [25, 27]: 

  

x = d sin!(") cos#

y = d sin!(") sin#

z = d cos!(")

$

%
&

'
&

  (5) 

wherein φ is the angular parameter describing the spiral and 

 
! = k" . The parameter k is such that the spiral step, deter-
mined by two consecutive intersections with a meridian, 
coincides with the sample spacing !" . Accordingly, since 

  
!" = 2#k , it follows that 

  
k = 1/(2N"+ 1) . It must be 

stressed that the spiral angle θ, unlike the zenithal angle ϑ, 
can assume negative values. 

The way for determining a nonredundant representation 
on the spiral is again traced by the unified theory of spiral 
scannings for nonspherical antennas. Accordingly, the opti-
mal parameter ξ to describe the spiral is equal to 

  
! /W"  

times the arclength of the projecting point on the spiral 
which wraps the modelling surface Σ and the corresponding 
phase function γ coincides with that ψ relevant to a meridian. 

 
Fig. (2). Relevant to the rounded cylinder modelling. 
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The bandwidth 
 
W!  is chosen equal to 

 
! / "  times the length 

of the spiral wrapping Σ from pole to pole [25, 27], so that ξ 
covers a  2!  range when a point moving on the scanning 
spiral encircles the AUT once. It must be stressed that, in 
such a way, the spiral, γ and ξ coincide with those relevant to 
the spherical modelling when the surface Σ reduces to a 
sphere [25]. 

By taking into account the above results, the voltage at P 
on the meridian at ϕ can be reconstructed via the following 
OSI formula [27]: 

   

V !("),#( ) = e$ j% (!) %V !
n( ) G !,!

n
,!, N , N"( )

n=n
0
$ q+1

n
0
+ q

&  (6) 

wherein 
   
%V (!

n
)  are the intermediate reduced samples, 

namely, the reduced voltage values at the intersection points 
between the meridian passing through P and the spiral, 2q is 
the number of the retained samples, 

  
n0 = Int (! "!0 ) /#![ ], 

 
! = q"! ,   N = N"! N ' , and 

  
!

n
=!

n
(")= k" + n#! = !0 + n#!  (7) 

Moreover, 

  
G !,!

n
,! , N, N "( ) = D

N"
! "!

n
( )#

N
! "!

n
,!( )  (8) 

is the product of the Dirichlet and Tschebyscheff sampling 
functions [31, 33]: 

  

D
N " !( ) =

sin (2N"+1)! 2  ( )
 (2N"+1) sin (! 2)

  (9) 

  

!
N

","( ) =
T

N
#1+ 2 cos(" / 2) cos(" /2)( )2$% &'
T

N
#1+ 2 cos2(" /2)$% &'

  (10) 

wherein 
  
T

N
(!)  is the Tschebyscheff polynomial of degree 

N. 

A similar OSI expansion along the spiral [27] allows to 
retrieve the intermediate reduced samples 

   
%V (!

n
) : 

   

%V !
n( ) = %V "(!

n
)( ) = %V "
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m
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where 2p is the number of the retained samples, 

  
m

0
= Int !/"![ ] ,

 
! = p"! ,   M = M "! M ' , and 

  
!

m
= m"! =2#m (2M"+1)  (12)

 with 
  
M"=Int(! M ') + 1 and 

  
M '= Int (! 'W" ) + 1 . 

The two-dimensional OSI expansion to reconstruct the 
voltage at any point on the sphere is then obtained by match-
ing the one-dimensional ones (6) and (11), thus getting: 
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0
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Such an expansion allows the accurate reconstruction of 
the voltages 

  
V1  and 

  
V2 , which would be measured by the 

probe and rotated probe at the points required by the spheri-
cal NF–FF transformation in its classical version [13] or as 
modified in [16]. 

3. EXPERIMENTAL ASSESSMENT 

Some experimental tests assessing the effectiveness of 
the described NF–FF transformation with spherical spiral 
scanning for long antennas are shown in this section. They 
have been accomplished in the anechoic chamber of the An-
tenna Characterization Lab of the University of Salerno, 
wherein a roll (ϕ axis) over azimuth (ϑ axis) spherical NF 
facility is available. The chamber is 

 
8m!5m ! 4m  sized and 

is covered with pyramidal absorbers which guarantee a wall 
reflectivity less than – 40 dB. It is equipped with a vertical 
scanner and some rotating tables supplied by MI Technolo-
gies, which can be properly arranged to perform NF meas-
urements with plane-polar, planar spiral, cylindrical, and 
helicoidal scannings, besides those with spherical and 
spherical spiral scannings. Direct FF measurements and ra-
dar cross section (RCS) measurements of small targets are 
also possible. The amplitude and phase measurements are 
carried out by means of a vectorial network analyzer Anritsu 
37247C, which is characterized by wide dynamic range, high 
sensitivity and linearity in the frequency range from 40 MHz 
to 20 GHz. Both the rotating tables employed in the roll over 
azimuth spherical NF facility assure an angular precision of 
 
±0.05° . 

The experimental results reported in the following refer 
to the field radiated at 10.4 GHz by a X-band resonant slot-
ted waveguide array made by PROCOM A/S, realized by 
cutting 12 round-ended slots on both the broad walls of a 
WR90 rectangular waveguide and soldering two cylinders on 
its narrow walls (see Fig. 3). Such an antenna has been mod-
elled by a rounded cylinder with   h' = 28.28 cm,   a' = 2.60 cm 
and mounted in such a way that the broad walls are parallel 
to the plane y = 0 and its axis is coincident with the z one. 
The probe output voltages have been acquired by an open-
ended WR90 rectangular waveguide on a spiral wrapping a 
sphere with radius d = 45.2 cm. 

In order to assess the effectiveness of the two-
dimensional OSI algorithm (13), the amplitude and phase of 
the reconstructed voltage 

  
V1  relevant to the meridian at ϕ = 

0° are compared in Figs. (4 and 5), respectively, with those 
directly measured on the same meridian. The corresponding 
comparisons relevant to the meridian at ϕ = 90° are shown in 
Figs. (6 and 7). As regards the values of the OSI algorit- 
hm parameters, 

 
! '  has been chosen equal to 1.30 in order to  
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Fig. (3). Photo of the X-band resonant slotted waveguide array. 

 

Fig. (4). Amplitude of 
  
V1  on the meridian at ϕ = 0°. Solid line: measured. Crosses: recovered from NF data acquired via the spherical spiral 

scanning. 

 

Fig. (5). Phase of 
  
V1  on the meridian at ϕ = 0°. Solid line: measured. Crosses: recovered from NF data acquired via the spherical spiral scan-

ning. 



6    The Open Electrical & Electronic Engineering Journal, 2014, Volume 8 D’Agostino et al. 

 

 

Fig. (6). Amplitude of 
  
V1  on the meridian at ϕ = 90°. Solid line: measured. Crosses: recovered from NF data acquired via the spherical spiral 

scanning. 

 

Fig. (7). Phase of 
  
V1  on the meridian at ϕ = 90°. Solid line: measured. Crosses: recovered from NF data acquired via the spherical spiral 

scanning. 

 

make negligible the aliasing error with respect to the meas-
urement one [35], whereas 

 
! = 1.20  and p = q = 7 have been 

employed for neglecting the truncation error [27]. A good 
agreement between the retrieved voltage (crosses) and that 
directly acquired (solid line) results save for the zones char-
acterized by a very low level, wherein the error is due to the 
noise and the residual reflections from the anechoic chamber 
walls. Note that an enlargement bandwidth factor 

 
! ' such 

that the spacing among the samples is reduced exactly by a 
factor 5 has been adopted in the zones of the spiral deter-
mined by the 20 samples around each pole. 

The overall effectiveness of this NF–FF transformation 
technique is assessed by comparing the FF patterns in the 
principal planes E and H recovered from the NF data col-

lected along the spiral (Figs. 8 and 9) with those (references) 
obtained from the NF data directly acquired on the classical 
spherical grid. Note that the software package MI-3000, im-
plementing the standard spherical NF–FF transformation 
[13], has been used to reconstruct the FF patterns in both the 
cases. At last, the FF pattern reconstruction in the cut plane 
at ϕ = 90° is shown in Fig. (10). In this last figure, as well as 
in Fig. (9), it is plotted also the reconstruction error in order 
to better appreciate its levels. All reconstructions are very 
accurate, thus validating also from the experimental point of 
view the effectiveness of the described technique. 

It must be stressed that the number of employed samples 
is 1 024 (including the 160 “extra samples” at reduced spac-
ing) and, therefore, significantly less than those (5 100 and 
3 622) which would be respectively required by the MI soft-
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ware package implementing the classical spherical NF–FF 
transformation [13] and by the NF–FF transformation with 
spherical spiral scan [23, 24] based on the spherical AUT 
modelling. It is worth noting that these reduction percentages 
are much greater than the corresponding ones obtained in 
[29], wherein the two-bowls modelling was adopted to shape 
a quasi-planar antenna. This result does not depend on the 
particular antennas considered in these two papers, but is a 
general validity result: the time saving obtainable by using 
the appropriate spiral scanning technique when considering 
long antennas is usually remarkably greater than that in the 
quasi-planar antennas case. In fact, the number of spiral 
turns is related to the length of the curve   C ' , whereas the av-
erage number of samples on a turn depends on the maximum 
transverse radius of Σ. 

4. CONCLUSIONS 

The innovative NF–FF transformation with spherical spi-
ral scanning for elongated antennas, based on the rounded 

cylinder modelling, has been experimentally tested in this 
paper. A very good agreement has been found, both in the 
near-field and in the far-field reconstructions, thus experi-
mentally confirming the effectiveness and reliability of such 
a transformation technique, which is even more effective 
from the data reduction and measurement time saving view-
points than that for quasi-planar antennas [29]. 

APPENDIX A. EXPLICIT EXPRESSIONS OF 
 
R1,2  

AND 
 
s
1,2'  

In this appendix, the explicit expressions of the parame-
ters involved in the nonredundant sampling representation 
relevant to a meridian are reported. As shown in [27], the 
expressions of the distances 

  
R1,2  and arclength coordinates 

  
s1,2'  change depending on the position of the observation 
point P and three cases (see Fig. 2) must be considered when 
ϑ varies in the range [0, π]. 

 
Fig. (8). E-plane pattern. Solid line: reference. Crosses: recovered from NF data acquired via the spherical spiral scanning. 

 
Fig. (9). H-plane pattern. Solid line: reference. Crosses: recovered from NF data acquired via the spherical spiral scan. Dashed line: recon-
struction error. 
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For 
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For 
  
sin!1(a '/ d ) < " # $ ! sin!1(a '/ d ) , 
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At last for 
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