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Abstract: Wind power has been developed rapidly as a clean energy in recent years. The forecast error of wind power, 
however, makes it difficult to use wind power effectively. In some former statistical models, the forecast error was usually 
assumed to be a Gaussian distribution, which had proven to be unreliable after a statistical analysis. In this paper, a more 
suitable probability density function for wind power forecast error based on kernel density estimation was proposed. The 
proposed model is a non-parametric statistical algorithm and can directly obtain the probability density function from the 
error data, which do not need to make any assumptions. This paper also presented an optimal bandwidth algorithm for 
kernel density estimation by using particle swarm optimization, and employed a Chi-squared test to validate the model. 
Compared with Gaussian distribution and Beta distribution, the mean squared error and Chi-squared test show that the 
proposed model is more effective and reliable. 
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1. INTRODUCTION 

As the environmental issues catch the attention of public, 
many countries are beginning to increase their investments in 
clean energy. As a mature technology, wind power has been 
widely used in recent years, especially in China, the total 
installed capacity of wind power is close to 90 gigawatts by 
2014. Up to now, a large number of wind farms have been 
connected to the power grids, which brings about many neg-
ative effects, for example, the fluctuations of wind power 
make the power system more vulnerable and increase the 
difficulty of electric power dispatching. In addition, the 
power system must keep a large reserve capacity to cope 
with the fluctuations, which will eventually lead to higher 
costs. The forecast error costs usually can reach as much as 
10% of the total incomes from generated energy [1]. As a 
result of this, many wind power forecast methods have been 
developed to handle these problems [2, 3]. A correct forecast 
method can improve the stability of the power system and 
reduce the operation costs and largely reduce the effect of 
power fluctuations, so it’s very helpful to optimize the usage 
of wind energy. Currently, various forecasting methods are 
being used and developed, ranging from basic persistence 
methods to complex statistical models [4]. But so far none of 
these methods have proven to be precise enough to be equal 
to actual values. Therefore, the forecast error is inevitable. 
Many researchers have paid much attention to the forecast 
methods, but they ignored to study the forecast error. This 
paper focuses on the modeling of wind power forecast error,  
 
 

the probability density function (PDF) of forecast error can 
be found by analyzing the error data, and the statistical law 
of errors can be obtained in this process. This will help im-
prove the accuracy of wind power forecasting. 

Actually, only few papers have studied the wind power 
forecast error. The forecast error was generally assumed to 
be a Gaussian distribution [5, 6], based on this assumption 
literature [7] proposed an optimization method for spinning 
reserves, and in [8], the Gaussian distribution for wind pow-
er forecast error is used for system risk management. How-
ever, the Gaussian assumption has been challenged in some 
works [9-10]. Literature [10] points out that it’s difficult to 
find a proper definition for the forecast error PDF and the 
error PDF is fat-tailed with variable kurtosis, so it cannot be 
modeled with Gaussian distribution. In the meanwhile, a new 
PDF, a so-called Beta distribution, is proposed. The analysis 
of error data shows that the Beta distribution is more suitable 
than Gaussian distribution. But in some cases, Beta distribu-
tion is still not sufficiently heavy-tailed to model the lepto-
kurtosis of the error data, because it will cause a lot of errors. 
In [4], the Levy skew alpha-stable distribution is proposed as 
a well-suited statistical model to describe the heavy-tailed 
character of the error data. This model can provide a more 
appropriate approach than Gaussian distribution and Beta 
distribution. There are still few methods for the modeling of 
the forecast error such as Cauchy distribution [11], copula 
theory [12], Gamma distribution [13] and mixed distribution 
[14]. Most of the mentioned methods are based on paramet-
ric statistics, which assume that the error data fulfill some 
kind of known PDF and then try to use this PDF to fit the 
data. But in fact, the assumed PDF will not fit the actual data 
in a strict manner, which will lead to significant fitting error.  
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In this paper, a new forecast error model based on kernel 
density estimation (KDE) was proposed. KDE is a non-
parametric way to estimate the PDF of a random variable. 
Unlike the parametric statistics, the non-parametric statistics 
make no assumptions about the probability distributions of 
the variables assessed. It uses such variables as the training 
data and the PDF obtained by this method is closer to the 
real PDF than the parametric way is. When using the KDE 
method, we should note that one of the most important 
things is to select a suitable bandwidth, which is a free pa-
rameter and has a strong influence on the estimating of re-
sults. An adaptive bandwidth selection method is also pre-
sented in this paper, which can automatically seek the opti-
mal bandwidth by considering the goodness and smoothness 
of the fitting curve. Finally, the proposed model is tested by 
using the forecast error data from a real wind farm, and it 
will be compared with the Gaussian distribution and Beta 
distribution. And in the data analysis section, Chi-squared 
test is used to calculate the fitting goodness of these models. 

2. MATHEMATICAL MODEL 

2.1. Kernel Density Estimation 

Kernel density estimation can be applied to analyze the 
forecast errors. Let (X1,X2,X3,…Xn) be an independent varia-
bles from the error data and the PDF of the variables can be 
represented as f(x). Its kernel density estimator is 

  
f̂ (x)  [15-

16], 
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where N is the count of the variables, and h is a smoothing 
parameter, called bandwidth. 

  
K(!)  is the kernel function, a  

 

 

non-negative function that integrates to one and has mean 
zero. It must satisfy the Eq.(2), 

  
u = (x ! X

i
) / h . The com-

monly-used kernel functions are as follows: uniform kernel, 
Gaussian kernel, triangle kernel, Epanechikov kernel and 
Biweight kernel. Theoretically speaking, if the N tends to be 
infinite, no matter what kind of kernel functions is chosen, a 
reliable PDF can be obtained. But in most cases, N is a lim-
ited value. Therefore, different kernel function will have 
different results even though the difference is not significant. 

  

K(u)du = 1!
uK(u)du = 0!
u

2
K(u)du " 0!

#

$
%%

&
%
%

 (2) 

The kernel function used in this paper is Gaussian kernel. 
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Then the KDE expression is 
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Fig. (1) shows that the PDF curves are obtained by KDE, 
their sharps are quite different. So the KDE model is very 
adaptable and can deal with different types of the error data. 

2.2. Bandwidth Selection 

An appropriate bandwidth is the key to the successful ap-
plication of the KDE algorithm. If the bandwidth is too 
small, the fitting goodness will be better. Otherwise, the fit 
smoothness will be worse and the fitting curve will produce  
 

 

 
Fig. (1). Different Types of PDF Obtained by KDE. 
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a lot of noise; on the contrary, if the bandwidth is too large, 
the fitting goodness will be getting worse and the fitting 
curve will be smoother, it will lose some density characteris-
tics. So choosing an appropriate bandwidth is very im-
portant. Eq.(5) is the Mean Squared Error (MSE) of the 
KDE, which is an important indicator of bandwidth. In order 
to get the optimal bandwidth, the MSE should be as small as 
possible. 

  
MSE(h

n
)=E[(f̂ (x)! f (x))2]  (5) 

The MSE can be divided into two parts: the bias and the 
variance. Those two parts are contradictory and cannot be 
reduced at the same time. When the kernel function is deter-
mined, the bandwidth is the main factor for MSE. 

  
MSE(h

n
)=[Bias(x)]2

+ Var(x)  (6) 

Due to the fact that the PDF is continuous, Mean Inte-
grated Squared Error (MISE) is usually used to compute the 
precision of KDE, which is the sum of MSE. 
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The bias in Eq. (6) and Eq. (7) can be expressed by 
Eq.(8). Assuming that the PDF is f(x), its second derivative 
is 
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The variance is 
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where 
  
R(K ) = K

2(u)du! . 

 Substituting Eq.(8) and Eq.(9) into Eq. (6), Eq.(10) can 
be obtained as follows. The 

  
o(!)  is higher order infinitesi-

mal and it is usually ignored. 
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Using the extreme value theory, it can obtain that the op-
timal bandwidth is 

  
h

opt
! n

"
1

5 [m
2
(K ) ##f (x)]"2 f (x)R(K ){ }

1

5 + o($)   (11) 

In theory, the minimum of MSE is shown by Eq. (12). 
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But in fact, Eq. (11) cannot be directly used to obtain the 
optimal bandwidth, because the f(x) and the 

  
!!f (x)  are un-

known. A numerical solution shall be found to solve this 
problem. 

A Particle Swarm Optimization (PSO) based method for 
optimal bandwidth was proposed in this paper. The steps of 
this method are as follows: 

Step 1: Initialize positions and associate velocity of a 
number of particles randomly. Each particle represents a 
potential solution. hi is the position and 

 
h

i
!H , where H is 

the domain of the bandwidth. vi is the velocity. i is the index 
number of the particles, 

  
i ![1,n]  where n is particle count. 

Step 2: Use Eq.(1) to obtain the 
  
f̂ (x) , and let 

  
f̂ (x)  re-

place the f(x), then use Eq.(7) and Eq.(10) to evaluate the 
MISE of all particles. 

Step 3: Compare the Pbest(i) of every particle with its cur-
rent MISE. Pbest(i) is the best position (bandwidth) of a parti-
cle in history, which makes the MISE minimum.  

Step 4: Determine the current minimum MISE value in 
the whole population and its coordinates. If the current min-
imum of MISE is better than that of the Gbest, assigning the 
new position to Gbest. Gbest is the best position (bandwidth) of 
all particles in history. 

Step 5: Update positions and velocities by using Eq.(13), 
where ω  is the inertia weight. c1 and c2 are two positive 
constants. r1 and r2 are two random numbers in the range 
[0,1] and k is the iteration number [17]. 
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Step 6: Repeat from Step 2 to Step 5 until a prespecified 
number of iterations is completed. Then the Gbest is the opti-
mal bandwidth. 

2.3. Chi-squared Test 

Chi-squared test (χ2 test) is the most widely used method 
to test the fitting goodness, which can be applied to any uni-
variate distribution. Based on this, the cumulative distribu-
tion function (CDF) can be calculated. The χ2 test is defined 
for the hypothesis: 

H0: The data follow a specified distribution; 
H1: The data do not follow the specified distribution. 
For the χ2 fitting goodness computation, the data are di-

vided into m bins and the test statistic, which is defined as 
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where Pi is the observed frequency for bin i and 
  
P̂

i
 is the 

expected frequency for bin i. The expected frequency is cal-
culated by 
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where 
  
F̂(!)  is the CDF. It’s the integral of 

  
f̂ (x) . 

  
x

i,upper
 is 

the upper limit for class i while 
  
x

i,lower  is the lower limit for 
class i. N is the sample size. 

The hypothesis that the data are from a population with 
the specified distribution is rejected if 

2 2{ ( 1)}W Nαχ χ= > −   (16) 

where !  is the significance level, W is the critical region. 
So the χ2 test is a useful tool to test the validity of the ob-
tained distributions. 

3. ERROR DATA ANALYSIS 

The forecast error data sets from a real wind farm are 
used to conduct experiments in this study. The wind farm is 
located in north China, and the data sets were collected in 
April 2013. In this section, KDE algorithm will be employed 
to analyze the error data sets in different time scales (from 
minutes to hours), and will compare the results with Gaussi-
an distribution and Beta distribution.  

Fig. (2) analyses the error data of the first week in March 
2013, which contains two PDF curves and a histogram. The 
time interval is 15 minutes. The optimal bandwidth obtained 
by PSO is 0.008. The horizontal axis is the error range  
 

 

(in per unit) and the vertical axis is the probability density. 
The histogram is the real density of the error data. As it can 
be seen from Fig. (2), the main error range is from -0.2p.u. to 
0.2p.u. The Gaussian distribution does not fit the histogram 
very well, because it loses some important features of the 
error data. But the KDE is much more suitable for data sets 
with heavy-tailed character and its fitting goodness is much 
better than Gaussian distribution. 

In order to study the different time scales of the error da-
ta, Fig. (3) shows the error density with a time interval of 1 
hour. The optimal bandwidth is 0.01. The result from Fig. (3) 
is more similar to Fig. (2). The PDF obtained by KDE is 
very flexible and fits the error data very well. In the Fig. (3), 
the KDE curve is close to the histogram, which means that it 
approaches to the real PDF of the error data sets. 

Table 1 is the comparison between KDE and Gaussian 
distribution. The MSE of KDE is lower than that of Gaussian 
distribution, which indicates that the KDE is more accurate. 
Let the significance level 0.05α = , when 30N > . The value 
of the critical region is usually larger than 13. So the KDE 
will pass the χ2 test, but the Gaussian distribution will be 
rejected. The χ2 statistic of Gaussian distribution is much 
larger than that of KDE, so the Gaussian distribution is not 
suitable for modeling of the forecast error in this case. 

As the Beta distribution is ranging from 0 to 1, it cannot 
estimate the negative errors, which is a big flaw for forecast 
error modeling. It usually divides the error range into several 
intervals. For the purpose of comparison, Fig. (4) is the error 
interval ranging from 0.05p.u. to 0.15p.u. of the error data in 
April 2013 and the time interval is 15 minutes. Fig. (4) 
shows that the shapes of the KDE and the Beta distribution 
are similar, but there are still some differences between 
them. The KDE can preserve the details of the PDF, and its 
fitting goodness is better than Beta distribution. 

Fig. (5) is the error interval from 0.15p.u. to 0.25p.u.  
and the time interval is 1 hour. From the Fig. (4), it can be  

  

 
Fig. (2). Error Data with Time Interval of 15 Minutes. 
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Fig. (3). Error Data with Time Interval of 1 Hour. 

 

Table 1. The Comparison Between KDE and Gaussian Distribution. 

Cases PDF MSE χ2 statistic 

Fig.2 
KDE 0.1532 1.3282 

Gaussian distribution 1.0276 32.2213 

Fig.3 
KDE 0.1054 0.8725 

Gaussian distribution 0.9328 21.8576 

 

 

Fig. (4). Error Range from 0.05p.u. to 0.15p.u. with Time Interval of 15 Minutes. 
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Fig. (5). Error Range from 0.15p.u. to 0.25p.u. with Time Interval of 1 Hour. 

 
Table 2. The Comparison Between KDE and Beta Distribution. 

Cases PDF MSE χ2 statistic 

Fig.4 
KDE 0.1041 1.1362 

Beta distribution 0.9363 20.7536 

Fig.5 
KDE 0.1135 1.8169 

Beta distribution 1.2143 36.7546 

 

 
Fig. (6). Error Range from 0.05p.u. to 0.25p.u. with Time Interval of 15 Minutes. 
 

observed that the KDE has a better fitting goodness. But the 
Beta distribution is obviously inappropriate. 

The results of comparison between KDE and Beta distri-
bution are shown in Table 2. All the statistical indicators of 

KDE are better than those of the Beta distribution. The re-
sults show that the KDE model is more reliable and accurate. 

Finally, the three methods are compared in Fig. (6). The 
fitting goodness of Gaussian distribution is the worst, Beta 
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distribution is better than Gaussian distribution, and obvious-
ly, KDE is the best. As shown in Fig. (6), Gaussian distribu-
tion is not suitable for the PDF with high kurtosis. Although 
Beta distribution fits the kurtosis very well, it fails to fit the 
part of fat tail. Instead, The KDE provides a better solution 
for the PDF with high kurtosis and fat tail, it can presents 
different styles of PDF. Table 3 is the comparison among 
three methods, the MSE of KDE is about 90% lower than 
that of Gaussian distribution, and 80% lower than Beta dis-
tribution. χ2 statistics show that the fitting goodness of KDE 
is far better than the others. 

CONCLUSION 

In this paper, KDE model was proposed for the modeling 
of wind power forecast error. Because of its flexibility and 
adaptability, it can deal with the error data sets in different 
time scales. The results of this study show that the PDF ob-
tained by KDE model is very close to the real values, and its 
fitting goodness is always better than that of parametric sta-
tistic models (such as Gaussian distribution and Beta distri-
bution). The proposed model provides a new way to estimate 
the PDF of forecast error, through which the statistics law of 
the forecast error can be obtained. It may help improve the 
forecasting algorithms and wind farm control strategies. 
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Table 3. The Comparison Among Three Methods. 

Case PDF MSE χ2 statistic 

Fig.6 

KDE 0.1017 1.0436 

Gaussian distribution 1.0894 29.2952 

Beta distribution 0.6261 16.3833 


