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Abstract: Through the comparison and analysis of some recent patents on the fault-tolerant designed method, this paper 

addresses the problem of robust guaranteed cost fault-tolerant for nonlinear networked control systems (NNCS) with net-

work-induced delay and packed dropout. Firstly, we adopt observer and state-feedback control strategy, wherein states are 

immeasurable. Then, by constructing appropriate Lyapunov-Krasovskii functional, based on T-S fuzzy model, a delay-

dependent sufficient condition is deduced for robust guaranteed cost fault-tolerant control. Further, observer-based gain 

and state-feedback controller gain can be obtained and optimized. Finally, an example is used to illustrate the effective-

ness and feasibility of the proposed approach.  
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1. INTRODUCTION 

According to European Patent 2075961 [1] and U.S. Pat-
ent 7426189 [2], (Networked Control System) NCS is a con-
trol system of full-distributed real-time feedback which con-
nects the sensors, controllers and actuators from different 
locations through network. 

In the past decade, NCS has become a widespread con-

cern in research areas. Although NCS has advantages of a 

low cost, easy installation and maintenance, system reliabil-

ity and flexibility, easy to fault diagnosis, etc., network delay 

and packet dropout have become primary problems, which 

cannot be avoided due to bandwidth, irregular flow and unre-

liable transmission. Not only does it cause the system per-

formance degradation, and even lead to system instability [3-

5]. In addition, compared with traditional systems, NCS is 

larger in scale and more complicated in structure, therefore 

all kinds of uncertainty and fault-induced factors have 

greatly increased. As a result more and more researchers 

have started to focus on the fault-tolerant control of NCS [6-

8], hoping to get better performances and higher safety and 

reliability [9, 10]. 

In the practical, the nonlinear properties more or less ex-

ist in NCS. Due to its complexity, there are fewer studies on 

the fault tolerant. The preceding fault-tolerant control re-

searches on NNCS are discussed by adopting state-feedback 

control strategies [11]. However, not all states can be  
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measured. Therefore, targeted at a class of uncertain NNCS 
and based on observer of fuzzy state, this paper studies the 
control problem of the robust fault-tolerant guaranteed cost 
while considering the influences of time-delay and packet 
dropout under the condition of actuator failures. 

2. SYSTEM DESCRIPTION 

Typical uncertain NNCS described by T-S fuzzy model 
is shown in Fig. (1): 

In Fig. (1), 
ca

 and
sc

!  are the time-varying network-

induced delays from controller to actuator and from sensor to 

controller, respectively.  

 Assumption 1: It is assumed that the sensor is clock-

driven, while the controller and actuator are event-driven.  

 Assumption 2: The sampled data is transmitted with a 

single packet. The packets reach the controller and actuator 

by their original transmitting sequence if they are not lost.  

 Assumption 3: Data packet dropouts are used as a spe-

cial kind of time delays. 

 Therefore, we can get according to [12, 13] 

1 1 1M 2( ) ( 1)
sc sc

t T+ +   

1 2 2M 2( ) ( 1)
ca ca

t T+ +  

Define 2 1M 2( 1)
s sc

T= + +
1 1s sc
=  

Then 1 1 2( )
s s

t ,  

similarly have 1 2 2( )
c c

t  
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where
1( )t and

2( )t are total time-varying delays respectively 

of controller-to-actuator and sensor-to- controller including 

network-induced delays and data packet dropouts.
1sc

,
2sc

 

and
1ca

,
2ca

are positive constant representing the lower and 

upper delay bound of corresponding transmission channel, 

respectively. 
1M

and 
2M

are the maximum number of data 

packet dropouts of corresponding transmission channel, re-

spectively. 

According to Japanese Patent JP 06035508 [14], consider 
a NNCS with parameter uncertainties represented by T-S 
fuzzy model as follows: 

Fuzzy rule i: if 1(t) is Fi1 and if 2(t) is Fi2 and … and 

n(t) is Fin, then 

2( ) ( ) ( ) ( ) ( ( ))
i i i i

t t t t= + + +x A A x B B u  (1) 

1( ) ( ( )) ( 1, 2,..., )
i

t t t i N= =z C x  (2) 

where i is the number of if-then rules; Fij (j=1,2,…,n) and 

(t)=[ 1(t), 2(t),…, n(t)]T are fuzzy sets and premise vari-

ables, respectively; ( ) n
t Rx , ( ) m

t Ru and ( ) l
t Rz  are state 

vector, control input vector and output control vector, re-

spectively;
i

A
i

B  and
i

C are constant matrices with appropri-

ate dimensions, respectively; 
i

A  and 
i

B  are time-varying 

unknown matrices with appropriate dimensions, respec-

tively, which stand for uncertainty of structure in the system 

model and can be described as 

[ , ] ( )[ , ]
i i ai bi

t=A B DF E E  

where D
ai

E and
bi

E are known constant matrices with ap-

propriate dimensions; ( )tF  is an unknown matrix function 

with Lebesgue measurable elements satisfying the inequal-

ity ( ) ( )T
t tF F I . 

 For any given ( )tx  and ( )tu , by using a singleton fuzzi-

fier, product inference and centre-average defuzzifier, the 

local models can be integrated into a global nonlinear model:  

2

1

( ) ( ( ))[ ( ) ( ( ))]
N

i i i i i

i

t t t t tμ
=

= + + +x A A x B B u
 (3) 

1

1

( ) ( ( )) ( - ( ))
N

i i

i

t t t tμ
=

=z C x
 (4) 

where 

1

( ( ))
( ( ))

( ( ))

i

i N

ii

a t
t

a t

μ

=

= , and ( ( ))
i

tμ  is the weight 

ratio of each fuzzy rule satisfying ( ( ))
i

tμ  ( 1,2,..., )i N=  

and 
1

( ( ))
N

i

i

tμ
=

; 
1

( ( )) ( ( ))
n

i ij j

j

a t F t
=

= , and ( ( ))
ij j

F t  is 

grade of the membership of j(t) in fuzzy set Fij, and it is 

assumed that ( ( )) ( 1,2,..., )
i

a t i N=  and
1

( ( ))
N

i

i

a t

=

. 

It is assumed that all of the state variables are unmeas-
urable for NNCS, but it is observable. According to parallel 
distributed compensation (PDC) technique, the fuzzy dy-
namic output feedback controller is observer-based of full-
dimension which shares the same premise parts as the fuzzy 
system, and has the following form 

1

ˆ ˆ( ) ( ( ))[( ) ( ) ( + ) ( )
N

i i i i i

i

t t t tμ
=

= + + +x A A x B B u  

1
ˆ( ( ( )) ( )]

i i i
t t tI C x C x  (5) 

1

ˆ( ) ( ( )) ( )
N

i i

i

t t tμ
=

=u K x  (6) 

where ˆ( ) n
t Rx  is the estimation of state vector ( )tx ;

j
K is 

the control gain matrix for the jth controller rule,
i

I  is the 

observer gain matrix for the ith observer rule. 

Substituting (6) into (4) and (5) yields the close-loop 
NNCS as follow  

1 1

1

ˆ ( ) ( ( )) ( ( ))[(

ˆ) ( ) ( ( )]

N N

i j i i j

i j

i i i i

t t t

t t t

μ μ
= =

= +

+

x A B K

I C x I C x

 (7) 

 

Fig. (1). Framework of networked control systems Based on state observer. 
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1 1

ˆ( ) ( ( )) ( ( ))[ ( ) ( ( ))]
N N

i j i i j

i j

t t t t t tμ μ
= =

= +x A x B K x  (8) 

where =
i i

+A A A = +
i i

B B B  

Defining the estimation error ˆ( ) ( ) ( )t t t=e x x , we get 

1 1

1

2 2

( ) ( ( )) ( ( ))[( ) ( )

( ) ( ) ( ( ))

( ( )) ( ( ))]

N N

i j i i j i i

i j

i j i i i i

i j i j

t t t t

t t t

t t t t

μ μ
= =

= + +

+

e A B K I C e

B K I C x I C x

B K x B K e

 (9) 

Lemma 1[15]: Given constant matrices S,H and E of ap-
propriate dimensions and with matrix S symmetric, then  

( ) ( ) 0T T T
t t+ + <S HF E E F H  

for all F(t) satisfying ( ) ( )T
t tF F I ,if and only if there 

exists a scalar 0 such that  

1
0

T T
+ +S HH E E<  

Lemma 2 (matrix separation lemma [16]). If 

11 12 13 14

11 12 13

22 23 24 11 12

22 23

33 34 22

33

44

0, 0, 0

*
*

a a a a
b b b

a a a c c
b b

a a c
b

a

< < < , 

then 

11 12 13 14 11 12

11 12 1322 23 24 22

33 34

22 2344

33

0 0 0 0 00 0 0 0

00 0 0 0

0 0 0 00 0 0 0

* 0 * 0 0

0 0

a a a a c c

b b ba a a c

a a

b ba

b

+ + <
 

3. MAIN RESULTS 

3.1. Robust Guaranteed Cost Fault-tolerant Analysis of 
NNCS with Actuator Failures Fore-casting 

Considering the possible actuator failures, we can intro-
duce a switching matrix L as follow 

 L=diag{l1,l2,…ln}, 

where 
1, the ith actuator normal

0, the ith actuator failure
i
l =   

L , and denotes the set of all possible actuator fail-

ures switching matrices except L=0. 

When the switching matrix L is laid between the feed-

back matrix
j

K and input matrix
i

B , we get the following 

uncertain nonlinear networked closed-loop fault system 

(UNNCFS)  

1 1

2 2

( ) ( ( )) ( ( ))[ ( )

( ( )) ( ( ))]

N N

i j i

i j

i j i j

t t t t

t t t t

μ μ
= =

= +

+

x A x

B LK x B LK e

 (10) 

1 1

1

2 2

( ) ( ( )) ( ( ))[( ) ( )

( ) ( ) ( ( ))

( ( ) ( ( )]

N N

i j i i j i i

i j

i j i i i i

i j i j

t t t t

t t t

t t t t

μ μ
= =

= + +

+

e A B LK I C e

B LK I C x I C x

B LK x B LK e

 (11) 

  
According to the UNNCFS, we define the guaranteed 

cost function 

0
[ ( ) ( ) ( ) ( )]T T

J x t x t u t u t dt= +Q R  (12) 

where Q  and R  are given positive definite symmetric ma-
trices. 

In our study, based on observer, the aim of robust fault-

tolerant guaranteed cost control is to seek the control gain 

matrix
j

K and the observer gain matrix 
i

I  such that the 

UNNCFS (10)-(11) is asymptotically stable and the guaran-

teed cost function J satisfies *
J J , and then *

J is said to 

upper boundary of guaranteed cost function. 

Theorem 1: For the UNNCFS described by (10)-(11) 

and the guaranteed cost function J , given positive constants 

1sc
,

2sc
,

1ca
,

2ca
,

1M
,

2M
and d , if there exit matrices, 

0
T

= >Q Q , 0
T

= >R R , 0
T

i i
= >R R , 0

T

i i
= >Z Z  ( 1, 2)i = , 

0
T

ij ij
= >Q Q  (i=1,2,j=1,2), , and

1 2
, ,

j i
X Y Y  ( , 1, 2,..., )i j N=  

with appropriate dimensions, satisfying the following LMIs 

1 1 1

1 1 1 2 2 2

1

1

1

1

1

2

1

2

0 0 0

00 0

* 0

T T

ij

<

D H E H E

I

I

I

I

 (13) 

2 2 2 2 2

2 2 2 2 2

2

2 2 2 2

2

0 0

0

0

* 0 0

0

T T T T T T

i i i i c i i s

T T T T T T

i i i i c i i s

i i T T T T

i i c i i sT T

i i

<

C Y C Y C Y

C Y C Y C Y

Y C
C Y C Y

C Y

 (14) 

 Where 

1 1

1 21

1

3

0
*

ij ij

ij

ij

= <
D D

D
D

 

11 1 13 14 16

1

1 1 34

1

44 2 46

2

2

0

0 0 0 0

0 0

* 0

ij
=

Ö R Ö Ö Ö

R

Z Ö
D

Ö R Ö

R

Z
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11 11 21 1 1

T T

i i
= + + + +Ö A X XA Q Q R Z Q  

13 1 1i j
= +Ö B LY Z  

14 1

T T T

j id=Ö Y L B  

16 1i j
=Ö B LY  

34 1

T T T

j id=Ö Y L B  

44 1

1 2 2 12 22

T T

i i i j

T T T

j i

d d d

d

= + + +

+ +

Ö A X XA B LY

Y L B R Z Q Q
 

46 1 2i jd= +Ö B LY Z  

2 2 2 2

1 2 2 2 2

2

2 2

2 2 2 2

0 0 0 0 0

0

0 0 ( ) ( )

0 0 0 0 0

0

T T T T T

i c i s c s j

T T T T

c s c s

ij T T T T T

i c i s j

T T T T

c s c s

=
+ +

XA XA Ö Ö Y

Ö Ö Ö Ö
D

XA Ö XA Ö Y

Ö Ö Ö Ö

 

1i j
=Ö B LY  

1 1

3
[0 0 0 0 ]ij diag=D R  

1 2 2 1 11
[ 0 0 0 0 0]

T T T T

c s
=H D D D  

1 1 1 1 11
[ 0 0 0 0 0]

T

ai bi j bi j=E E X E LY E LY  

2 2 2 1 11
[0 0 0 0 0 0]

T T T T

c s
d=H D D D  

2 1 1 1

1 1 11

[ 0

0 0 0]

T

bi j bi j ai bi j

bi j

= +E E LY E LY E X E LY

E LY

 

then existing the observer-based state-feedback control law 

(5)-(6) for robust guaranteed cost fault-tolerant control such 

that UNNCFS(10)-(11) with 
1

T

j j
=K Y X and 1

2i i
d=I XY  is 

asymptotically stable, and the guaranteed cost function J  

satisfies the following boundary. 

   

J J
*=

x
T (0)

e
T (0)

T

P
1

0

0 P
2

x(0)

e(0)
+

x
T (s)

e
T (s)

T

Q
i1

0

0 Q
i2

x(s)

e(s)i

0

ds

i=1

2

+  

    

c2

x
T (s)

e
T (s)

T

R
1

0

0 R
2

x(s)

e(s)

0

c 2

0

dsd +  

    

s2

x
T (s)

e
T (s)

T

Z
1

0

0 Z
2

x(s)

e(s)

0

s 2

0

dsd  

 Proof: the proof is cut off due to space limitation. con-
tact the authors for the detailed proof. 

Remark 1: In order to determine the observer gains 
i

I , 

we have to set 
2 1

d=P P  to obtain the LMI conditions. The 

scalar d should be given prior to solve LMI (13) and (14). 

How to choose scalar d for optimization is still an open prob-

lem. Hence, we determine the scalar d by the trial and error 

method. 

Remark 2: The theorem 1 provides a robust fault-tolerant 
guaranteed cost condition in form of delay-dependent, which 
include some of the information of delay from controller to 
actuator and from sensor to controller. Especially, introduc-
ing of lower delay bound, the result is less conservative [17]. 

3.2. Optimization of Guaranteed Cost 

Control gain matrix
j

K and observer gain matrix
i

I can be 

solved via the above theorem 1, and the guaranteed cost 

function J satisfies *
J J , but *

J is not the minimum upper 

boundary of guaranteed cost, 
j

K  and
i

I gain matrices are 

only the suboptimal solution. Thence, we introduced the fol-

lowing optimization algorithm for optimal guaranteed cost 

gain matrices which minimize J 
*
. 

1 2 11 12

21 22 1

2 1 2

min ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

J Trace M Trace M

Trace M Trace M Trace T

Trace T Trace S Trace S

= + + + +

+ + +

+ +

  

s.t. )i  (13) )ii  (14) 

1

1

1

(0)
) 0

T

iii <
x

P
 

2

1

2

(0)
) 0

T

iv <
e

P
 

11 11

1

11

) 0
T

v <
M N

Q
 12 12

1

12

) 0
T

vi <
M N

Q
 

21 21

1

21

) 0
T

vii <
M N

Q
 22 22

1

22

) 0
T

viii <
M N

Q
 

1 2 1

1

2 1

) 0

T

c

c

ix <
W T

R
 2 2 2

1

2 2

) 0

T

c

c

x <
W T

R
 

1 2 1

1

2 1

) 0

T

s

s

xi <
G S

Z
 2 2 2

1

2 2

) 0

T

s

s

xii <
G S

Z
 

where: 

1

0

11 11( ) ( )T T
s s ds =x x N N   

1

0

12 12( ) ( )T T
s s ds =e e N N  

2

0

21 21( ) ( )T T
s s ds =x x N N   

2

0

22 22( ) ( )T T
s s ds =e e N N  

2

0 0

1 1( ) ( )
c

T T
s s dsd =x x T T   

2

0 0

2 2( ) ( )
c

T T
s s dsd =e e T T  
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The proposed optimization algorithm is a convex prob-
lem which is constrained by LMIs, and then it can be solved 
via the mincx solver of LMI tools. 

4. THE CIRCUIT 

In this section, we use an example to demonstrate the ef-
fectiveness of our main result.Consider the following NNCS 
with parameter uncertainties which is borrowed from [12]: 

The membership function are 2

1 2 2( sinM x x  and 
2

2 2 2( cosM x x  

Rule 1: if x2 is M1 then 

1 1 1 1( ) ( ) ( ) ( ) ( )t t t= + + +x A A x B B u  

1( ) ( )t t=z C x  

Rule 2: if x2 is M2 then 

2 2 2 2( ) ( ) ( ) ( ) ( )t t t= + + +x A A x B B u  

2( ) ( )t t=z C x  

Where 

A
1
=

3 1

1 1
A

2
=

2 1

1 0
B

1
=

1 0

0 0.5
 

  

B
2

=
1 0

0 0.5
C

1
=

1 0

0 0.5
C

2
=

1 0

0 0.5
 

and matrices 
i

A  and 
i

B (i=1,2) satisfy [ A
i

, B
i

] =  

   
DF(t)[E

ai
, E

bi
] , where 

0.31 0.1 sin 0
( )

0 0 0 cos

t
t

t
= =D F  

0 0.2 0 0.2
( 1,2)

0 0 0 0
ai bi

i= = =E E  

In cases of actuator normal and possible failures, the 
switching matrices L0=diag (1,1), L1=diag (0,1) and L2=diag 

(1,0) indicate actuator normal and actuator 1,2 failure, re-
spectively. 

Considering the actual NCS, we assume T=0.05s, choose 

d=0.4, 
iM

(i = 1,2) = 2 , 
sci

(i = 1,2)  are 0.01s and 0.1s, 

respectively. 
  cai

(i = 1,2)  are 0.01s and 0.1s, respectively. 

Then we can solve convex problem (13), (14) by using LMI 

toolbox to obtain 

1 2

-3.5235   -0.3810 -4.2102   -0.4680
,

1.2765   -1.8105 1.4688   -1.9980
= =K K  

1 2

-1.1745   0.1270 -1.1695   0.1300
,

0.4255   0.6035 0.4080   0.5550
= =I I  

and guaranteed cost function 32.246J . 

Setting the initial conditions of the system x(0)=[2,2]
T

e(0)=[0.2,0.2]
T
, in the cases of L0, L1 and L2, response curve 

of the error vector e1, e2 are shown in Fig. (2), and zero-
input response curve of the state vector x1, x2 are shown in 
Fig. (3).  

It can be seen from Fig. (2) that state estimation error 
quickly approximate to zero, which show that the states of 
closed-loop NNCS with possible actuator failures can be 
estimated well via the observer.  

 Fig. (3) can be seen that NNCFS is not only asymptoti-
cally stable, but also has good dynamic performance. These 
indicate that the proposed method makes the NNCS against 
possible actuator failures have the capability of robust fault-
tolerant guaranteed cost. 

 In addition, in terms of 3.2, we can receive the following 
optimal robust guaranteed cost fault-tolerant controller and 
observer gains: 

1 2

-0.7349   -0.2540 -0.8339   -0.2650

 0.8521    1.2074  0.8116    1.1210
opt opt

= =K K  

the upper boundary of guaranteed cost function 
*

28.363J . 

5. CURRENT AND FUTURE DEVELOPMENTS  

In this paper, based on T-S fuzzy model, we studies the 
control problem of the robust guaranteed cost fault-tolerant 

 

Fig. (2) response curve of the error vector. 
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on uncertain NNCS which includes time-delay and packet 
dropout under the condition of possible actuator failures. By 
constructing appropriate Lyapunov-Krasovskii functional, 
adopting the Jensen inequality and matrix separation tech-
nologies, this paper deduces a delay-dependent sufficient 
condition for robust guaranteed cost fault-tolerant. Further, 
we give the approach of solving for optimal controller and 
observer gains via optimizing. Finally, an example is used to 
illustrate the effectiveness and feasibility of proposed ap-
proach. In the future, in order to save the limited communi-
cation resources and improve the safety reliablity of NCS, 
we will research the active-passive hybrid fault-tolerant con-
trol under the event-trigger communication mechanism 
against the actuator failure. 
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Fig. (3) response curve of the state vector. 


