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Abstract: The dependence factors in power systems should be considered in stochastic power flow computation, so Joint 
Normal Transform (JNT), belonging to the copula function technology, is improved to model these dependences. Firstly, 
the procedure of traditional JNT method is introduced and the principle of correlation structure’s remaining unchanged is 
analyzed combined with the properties of rank correlations when JNT method is utilized in dependence modelling. Then, 
an improved JNT sampling method is proposed to raise sampling efficiency by applying Orthogonal Transformation 
according to the characteristic that JNT method is based on Normal Distribution. Finally, a calculation example is 
designed to verify the feasibility of the proposed improved JNT sampling method. 

Keywords: Dependence modeling, JNT, Monte Carlo Method, stochastic power flow. 

1. INTRODUCTION 

 Since the constraints of the environment and resources to 
the energy industry are becoming more serious, the 
application of distributed new energy sources, such as wind 
power, is experiencing rapid development. However, the 
large-scale integration of these renewable energy systems 
with stochastic output has brought about uncertainty analysis 
problems in the operation and planning of power systems 
[1][2][3]. In system planning, quantifying the power 
generation uncertainty is necessary for evaluating the 
variation range of system power flow, which is central for 
the system dimensioning. In system operation, the 
uncertainty analysis can be considered as uncertainty 
forecast. The combination of system management with this 
uncertainty forecast is essential for the optimal operation of 
the power systems with high penetration of distributed 
renewable energy sources [4][5]. Therefore, as a tool for 
studying the uncertainty problems, stochastic power flow 
computation (SPFC) has drawn wide attention of academics 
[6][7][8]. While computing stochastic power flow, the 
dependence factors are always necessary to be taken into 
consideration for their influence on power systems’ planning 
and operation, such as the strong correlation of similar loads 
in the same area and the wind speed and power of wind 
farms from near geographical location [9][10]. 
 At present, many achievements have been obtained in the 
field of SPFC with the dependence of random input variables 
considered. In [6], a cumulant method of SPFC was 
proposed to process the dependence of input variables. In 
[11], incorporating three-point estimate method with the 
third-order polynomial normal transformation (TPNT) 
technique, a method was proposed to solve probabilistic  
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power flow problems with non-normal dependent variables. 
In [12], inverse Nataf transformation was used to generate 
correlated wind speed samples to get the correlating wind 
farms’ generations. However, both TPNT technique and 
Nataf transformation adopt product moment correlation 
coefficient (PMCC). The PMCC in multivariate actual 
domain is converted to the PMCC in multivariate normal 
domain by solving corresponding non-linear equations, 
which will necessarily occupy a certain period of calculation 
time. 
 Joint Normal Transform (JNT), one kind of copula 
function method, incorporates rank correlation coefficient 
(RCC), which keeps constant during the whole 
transformation process. JNT method can avoid the procedure 
of solving complicated non-linear equations to implement 
the PMCC transformation in TPNT and Nataf methods, so 
the sampling process of JNT is more efficient. Besides, this 
method can establish correlation models of random variables 
submitting to arbitrary distribution, which makes JNT 
achieve wide application in the research of relevance 
modeling in power systems [13]. 
 Nevertheless, when JNT method is utilized to establish 
correlation models and obtain relevant sampling vectors, it is 
necessary to sample the variable vectors following 
multivariate normal distribution or the copula function 
corresponding with JNT method, which will definitely have 
negative influence on sampling speed and efficiency [13-15]. 
 In this paper, the basic procedures of traditional JNT 
method were generally introduced and the reason for which 
the dependence structure can keep constant in the process of 
JNT modeling was analyzed based on the properties of RCC. 
Then, on the premise of maintaining the domain 
transformation concept, a one-dimensional normal 
distribution domain was added into the three multivariate 
domains of traditional JNT method and Orthogonal 
Transformation was applied to realize the conversion from 
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one-dimensional normal distribution domain to multivariate 
normal domain, so the sampling work can be launched in 
one-dimensional normal distribution domain. That means 
sampling of multivariate distribution function can be 
replaced with repeated and independent sampling of 
univariate standard normal distribution function. For this 
reason, the algorithm complexity and sampling time were 
reduced, so the efficiency of improved JNT method achieved 
great promotion. This is the most important contribution of 
this paper. Finally, a calculation example is designed to 
verify the feasibility of the proposed improved JNT sampling 
method. 

2. PMCC AND RCC 

2.1. PMCC 

 PMCC is widely used to measure the linear correlation of 
two random variables. Supposing that there are two 
variables: X and Y, their pair data at n observation points are 
denoted as (X1, Y1), (X2, Y2), ……, (Xn, Yn). According to 
these pair data, the values of their deviation from the two 
variables’ expectations can be calculated, denoted by (x1, y1), 
(x2, y2), ……, (xn, yn), where xi = Xi -X, yi = Yi -Y, i = 1, 2, 3, 
…, n. 
 Based on the products of pair data deviations, the PMCC 
can be calculated as the following equation (1): 

  (1) 

where ρ stands for the PMCC of the data of the two variables 
X and Y [16][17]. 

2.2. RCC 

 The two random variables X and Y are described the 
same as the last section. In this section, both X and Y are 
sorted in ascending or descending order at the same time so 
that the rank set of X and Y are obtained and denoted by x 
and y. xi stands for the rank of Xi in the data set X and the 
definition of yi can be informed analogically. The RCC of X 
and Y can be calculated from the rank sets x and y by the 
equation (2): 

  (2) 

where ρr stands for the RCC of the data of the two variables 
X and Y [18][19]. 

2.3. Characteristics and Relationship of RCC and PMCC 

 PMCC is easy for computation and it can accurately 
represent the correlation of variables submitting to elliptical  
 

distribution. However, when this condition is not satisfied, 
the value of PMCC loses significance. PMCC can remain 
unchanged after linear transformation of random variables, 
while after nonlinear strictly increasing transformation, their 
PMCC will alter. 
 By contrast, RCC always exists and will not be 
influenced by the distribution function of variables, so after 
nonlinear strictly increasing transformation, RCC of random 
variables can keep invariant. 
 PMCC ρ and RCC ρr can convert to each other by 
equation (3): 

  (3) 

where FX and FY are separately the cumulative distribution 
functions (cdf) of X and Y. 
 Particularly, when both X and Y submit to uniform 
distribution, ρ = ρr; when both X and Y submit to normal 
distribution, the conversion equation of ρ and ρr are as 
follows: 

  (4) 

 The equation (4) is important in the dependence 
modeling process by means of JNT in this paper [13]. 

3. TRADITIONAL JNT METHOD 

3.1. Procedures of Traditional JNT 

 The main purpose of dependence modeling is separating 
the influence of different marginal distributions from the 
dependence structure and copula functions are often used. 
JNT method, belonging to copulas, is corresponding to 
multivariate normal distribution and can construct a joint 
distribution function which unites one-dimensional variables 
following different marginal distributions. All the margins of 
this joint distribution are uniform distribution on the interval 
[0, 1]. 
 Assuming that there are n relevant random variables to be 
modeled, the concrete steps of traditional JNT method are as 
follows: 
1) Compute the RCC ρr of any two of n variables x1, x2, 

……, xn to form the RCC matrix Rr; 
2) According to equation (4), convert the RCC matrix Rr 

to the PMCC matrix R; 

3) Form the joint normal distribution function of JNT 
method based on R. Sample this distribution function 
directly and obtain n-dimensional standard normal 
vector = (n1, n 2, ……, n n). Transform  to by 
one-dimensional standard normal cdf Φ. = (u1, u2, 
……, un) and each component follows uniform 
distribution on the interval [0, 1] [13]. 

4) On basis of the marginal distribution functions of  
and their inverse functions, apply inverse 
transformation to u1, u2, ……, un to achieve the 
samples of x1, x2, ……, xn [20]. 
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3.2. Analysis of the Correlation in JNT Method 

 What need to be clarified first is that the dependence 
keeping unchanged in JNT method is the rank correlation of 
the original input variables. 
 Referring to the step 1 and 2 of traditional JNT method 
mentioned in section 3.1, the matrix Rr should be calculated 
first, and then equation (4) is used to transform Rr to R for 
the reason that the parameter set of multivariate normal 
distribution includes the PMCC matrix. Since the 
expectation of each component random variable is zero, the 
expression of multivariate normal distribution function can 
be determined and its components remain the primary rank 
correlation of input variables. 
 Above is the preparation before domain transformation. 
The domain transformation happens twice and there are three 
domains in the JNT method, shown in Fig. (1). 

 
Fig. (1). Domain transformation of JNT method. 

 It can be observed that two domain transformations, 
normal distribution function Φ(·) and the inverse functions 
of all components’ margins F-1(·), are both nonlinear strictly 
increasing transformations. According to the characteristics 
mentioned in section 2.3, RCC remains unchanged under 
these domain transformations. Hence, the final variables 
obtained in actual domain will maintain the same RCC as the 
variables in normal domain, which is also consistent with the 
RCC of primary input variables. That means the sampling 
series of all variables achieved can keep the rank correlation 
structure established at the beginning of JNT method. 

4. IMPROVED JNT METHOD 

 When using traditional JNT method to model the 
dependence of variables, the problem of joint distribution 
sampling is unavoidable in both multivariate normal domain 
and uniform domain. The methods such as conditional 
density method and multi-dimensional acceptance-rejection 
method will be employed for multivariate distribution 
sampling. However, these methods will decrease the 
efficiency of JNT and occupy plenty of computing time. For 
example, conditional density method needs to calculate the 
conditional density function value before achieving a single 
sample for each component variable at every turn, which is 
uneconomical when sampling scale is large. 
 On the premise of preserving the domain transformation, 
a one-dimensional normal distribution domain was added 
into the three multivariate domains of traditional JNT 
method and Orthogonal Transformation was applied to 
realize the conversion from one-dimensional normal 
distribution domain to multivariate normal domain, so the 
sampling work can be launched in one-dimensional normal 
distribution domain. Therefore, the improved JNT method 
only need to repeat independent sampling for n times (n is 
the number of input variables) with the correlation structure 
neglected temporarily. Then, one linear and two nonlinear 

transformations are conducted on the aforementioned 
samples to obtain a sample group considering the variable 
correlation. The improved algorithm reduces the calculation 
time apparently. The concrete steps are as follows: 
1) Calculate the RCC matrix Rr and convert Rr to the 

PMCC matrix R ccording to equation (4); 
2) Every component’s variance of standard normal 

distribution is equal to 1, so the values of 
corresponding elements of R and Σ are the same. 
Since multi-dimensional normal distribution function 
requires the covariance matrix being positive definite, 
if R is not positive definite, a method should be 
employed to repairing the violations of positive 
definiteness to form a positive definite matrix that is 
as close as possible to the original one [21]. Then 
cholesky decomposition method is utilized to 
decompose R into the product of A and AT. 

3) Repeat the independent sampling procedure of one-
dimensional random variable for n times and 
compose a sampling vector = (η1, η2, ……, ηn). 

 Transform to the n-dimensional sampling vector in 
multivariate normal domain by Orthogonal 
Transformation shown in equation (5): 

   (5) 

 where = (n1, n2, ……, nn). 

4) Convert  to a sampling vector in multivariate 
uniform domain by Φ(·): 

  (6) 

 Φ(·) can be stored in the form of discrete data pairs. 
The function value between two neighbouring points 
can be approximately calculated by means of linear 
interpolation. 

5) Apply inverse transformation to u1, u2, ……, un to 
achieve the samples of x1, x2, ……, xn. 

5. CASE STUDY 

 An example was designed based on IEEE-30 node 
network for the correctness validation of improved JNT 
method. The power injection of node 2, 7 and 12 was 
considered to have dependence in this chapter. 

5.1. Modeling of Margins and Dependence Structure 

 Before the verification, several adjustments were made to 
IEEE-30 node network. The generation power at node 2 was 
regarded as stochastic wind power. The original generation 
active power of node 2 in IEEE-30 network was set as the 
rated power of the wind farm. Meanwhile, it was assumed 
that the load power at node 2, 7 and 12 followed the same 
distribution law to fluctuate. The original load active power 
values of these nodes were set as the high load mean values. 
The settings were important in the next part of modeling 
margins. 

Multivariate 
Normal domain

Multivariate 
Uniform domain

Multivariate 
Actual domain

( )NΦ
 1( )F U− 

 N

= Aη


 N


 N


 U

=Φ(N

) = (u1,u2,,un )



Modeling Stochastic Dependence in Power System The Open Electrical & Electronic Engineering Journal, 2015, Volume 9    383 

 
Fig. (2). Curves of typical pdf of wind speed and conversion 
characteristics of wind turbine. 

 
Fig. (3). Cdf curve of wind power. 

 In Fig. (2), the left curve reflected the typical wind speed 
distribution, which was derived from sampling data by 
statistical treatment. The right one was the typical simplified 
characteristic curve of power converter, representing the 
relationship of wind speed and the output power of a single 
wind turbine, as displayed in equation (7). 

  (7) 

 In the equation above, PW was the actual output of wind 
turbine. Cut-in speed vin = 3.00 m/s. Rated speed vR = 13.13 
m/s. Cut-out speed vout = 24.86 m/s. The rated output PR of a 
single wind turbine was 1MW. 
 The cdf curve of wind power could be derived from the 
curves shown in Fig. (2), which was delineated in Fig. (3). 
Hence, the actual margin of wind output power was 
achieved. 
 
 

 The probability density function (pdf) and cdf of load 
power at node 2 were obtained by counting the sampling 
data in Figs. (4, 5). This curve shape was representative and 
also suitable for node 7 and 12. It was just necessary to 
conduct reduction in proportion of the high load mean value 
of each node. 

 
Fig. (4). Pdf curves of load at node 5. 

 
Fig. (5). Cdf curves of load at node 5. 

 At the same time, all the wind turbines at node 2 were 
integrated and represented by a single variable following the 
margin shown in Fig. (3). 
 The power factor of wind farm output at node 2 and the 
load at 2, 7 and 12 could be calculated according the 
proportions of original active and reactive power values at 
corresponding nodes in IEEE-30 network. 
 So far, the margins of all the random variables were 
determined. 
 According to the historical time series of the load power 
and wind output, equation (2) was employed to compute 
their RCC, which was approximately 0.191. Referring to  
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literature [18], the RCC of the load in the same local area 
was 0.582. Based on the analysis above, the RCC matrix Rr 
of the wind power and load at node 2, 7 and 12 was 
constructed as below: 

  (8) 

 Thus the correlation for these variables model was 
established. 

5.2. Verification of JNT Method 

 Utilizing the improved JNT method mentioned in section 
4.1, 10000 samples were obtained for each of the four 
variables respectively corresponding to the wind power and 
load at node 2, 7 and 12. By processing these samples, the 
proposed improved JNT method in this paper was verified in 
the aspects of margins and correlation structures separately. 

5.2.1. Verification of Margin Modeling 

 By analyzing the samples with statistical method, the 
cdf curves of a single wind turbine’s output and active 
load power were achieved. Each of these two curves was 
drawn with the statistical result curve of its corresponding 
historical time series in the same picture, so that the 
improved JNT samples could be compared with the 
original actual distribution derived from the time series to 
verify the correctness, shown in Figs. (6, 7). 

 
Fig. (6). Comparison of the Cdf curves of wind power at node 2. 

 From these two pictures, the improved JNT cdf curve 
nearly coincided with the original cdf, which means that 
these samples could represent the variable margins precisely. 
Hence, the improved JNT method is feasible for margin 
modeling. 

5.2.2. Verification of Dependence Structure 

 RCC matrix was calculated with the aforementioned 
samples to confirm the validity of improved JNT method in 
the aspect of dependence modeling, which was shown 
below. 

  (9) 

 For the purpose of comparing the RCC matrixes 
calculated separately before and after sampling intuitively, 

 in equation (9) was subtracted from  in equation (8). 
The difference was changed into absolute value displayed in 
equation (10): 

  (10) 

 
Fig. (7). Comparison of the Cdf curves of load at node 2. 

 According to equation (10), the value difference of the 

corresponding elements in  and  was negligibly small, 
whose maximum relative error was about 3.92% 
(0.0228/0.582 ≈ 3.92%). Therefore, when considering the 
randomness in sampling and engineering practicability, the 
samples obtained by improved JNT method can deoxidize 
the correlation model derived from the historical time series 
of each input variable accurately. 
 In conclusion, improved JNT method is practical and 
valid in the modeling of both margins and dependence 
structures. 

CONCLUSION 

 In this paper, an improved JNT method was introduced 
into the dependence modeling work of distributed renewable 
sources and load. the reason for which the dependence 
structure can maintain unchanged in the process of JNT 
modeling was analyzed based on the properties of RCC that 
it keeps constant under nonlinear strictly increasing 
transformation. According to characteristics of normal 
distribution, the sampling procedures of traditional JNT 
method were improved. Orthogonal Transformation was 
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applied so that sampling of multivariate distribution function 
can be replaced with repeated and independent sampling of 
univariate standard normal distribution function. For this 
reason, the algorithm complexity and sampling time were 
reduced. The samples of improved JNT method were 
processed by statistical method to acquire the margins and 
dependence structures of variables. Finally, a calculation 
example is designed to verify the feasibility and accuracy of 
the proposed improved JNT sampling method. The proposed 
method can be applied in the planning and operation of 
power systems to provide technical support in the research of 
reliability analysis after clean energy’s integration and so on. 

CONFLICT OF INTEREST 

 The authors confirm that this article content has no 
conflict of interest. 

ACKNOWLEDGEMENTS 

 This work was financially supported by the Natural 
Science Foundation of Jiangsu Province (BK20130742), the 
Nanjing Institute of Technology Fund(YKJ201316). 

REFERENCES 
[1] G. Papaefthymiou, J. Verboomen, P. H. Schavemaker and L. van 

der Sluis. “Impact of stochastic generation in power systems 
contingency analysis,” in Proc. Probabilistic Methods Applied to 
Power Systems. Conf. (PMAPS), Stockholm, Jun. 2006, pp. 1-6. 

[2] X. Zhu, Y. Huang, J. Zhang, S. Fei, J. Liu and H. Li, “Static 
security assessment based on probabilisitic load flow for wind 
power integrated power systems,” Automation of Electric Power 
Systems, vol. 38, no.20, pp. 46-53, Oct. 2014. (in Chinese) 

[3] M. Ding, X. Wu and W. Lu, “Three-phase probabilistic power flow 
calculation in distribution systems with multiple unsymmetrical 
grid-connected photovoltaic systems,” Automation of Electric 
Power Systems, vol. 36, no.16, pp. 47-52, Aug. 2012. (in Chinese) 

[4] P. Jiang, S. Yang, Y. Huo, “Static security analysis of power 
systems considering randomness of wind farm output,” Automation 
of Electric Power Systems, vol. 37, no.22, pp. 35-40, Nov. 2013. (in 
Chinese) 

[5] Y. Liu, S. Gao, S. Yang and J. Yao, “Review on algorithms for 
probabilistic load flow in power system,” Automation of Electric 
Power Systems, vol. 38, no.23, pp. 127-135, Dec. 2014. (in 
Chinese) 

[6] D. Shi, D. Cai, J. Fu, X. Duan, H. Li and M. Yao, “Probabilistic 
load flow calculation based on cumulant method considering 
correlation between input variables,” Proceedings of the CSEE, 
vol. 32, no. 28, pp. 104-113, Oct. 2012. (in Chinese) 

[7] Y. Chen, J. Wen and S. Cheng, “Probabilistic load flow analysis 
considering dependencies among input random variables,” 
Proceedings of the CSEE, vol. 31, no. 22, pp. 80-87, Dec. 2011. (in 
Chinese) 

[8] H. Yu and B. Rosehart, “Probabilistic power flow considering wind 
speed correlation of wind farms,” in Proc. 17th Power Systems 
Computation. Conf. (PSC), Stockholm, Aug. 2011, pp. 1-7. 

[9] J. Li, Y. Qiao, Z. Lu, J. Li and F. Xu, “Research on statistical 
modeling of large-scale wind farms output fluctuations in different 
spacial and temporal scales,” Power System Protection and 
Control, vol. 40, no. 19, pp. 7-13, Oct. 2012. (in Chinese) 

[10] D. Cai, D. Shi and J. Chen, “Probabilistic load flow considering 
correlation between input random variables based on Copula 
theory,” Power System Protection and Control, vol. 41, no. 20, pp. 
13-19, Oct. 2013. (in Chinese) 

[11] H. Yang and B. Zou, “A three points estimate method for solving 
probabilistic power flow problems,” Automation of Electric Power 
Systems, vol. 36, no.15, pp. 51-56, Aug. 2012. (in Chinese) 

[12] X. Pan, M. Zhou, X. Kong, Y. Wu, W. Liu and P. Liao, “Impact of 
wind speed correlation on optimal power flow,” Automation of 
Electric Power Systems, vol. 37, no.6, pp. 37-41, Mar. 2013. (in 
Chinese) 

[13] G. Papaefthymiou and D. Kurowicka, “Using copulas for modeling 
stochastic dependence in power system uncertainty analysis,” IEEE 
Trans. Power Systems, vol. 24, no. 1, pp. 40-49, Feb. 2009. 

[14] A. Lojowska, D. Kurowicka, G. Papaefthymiou and L. Van der 
Sluis, “Stochastic modeling of power demand due to EVs using 
copula,” IEEE Trans. Power Systems, vol. 27, no. 4, pp. 1960-
1968, Nov. 2012.. 

[15] M. Rahimiyan, “A statistical cognitive model to assess impact of 
spatially correlated wind production on market behaviors,” Applied 
Energy, vol. 122, pp. 62-72, Feb. 2014. 

[16] H. Shi, D. Song and Y. Liu, “Magnetization Model and 
Modification of Iron Core Based on J-A Theory,” Electrical 
Measurement & Instrumentation, vol. 50, no. 6, pp. 4-7, Jun. 2013. 
(in Chinese) 

[17] F. Cai, Z. Yan, J. Zhao, D. Feng, J. Guo and D. Hu, “Dependence 
structure models for wind speed and wind power among diffenrent 
wind farms based on copula theory,” Automation of Electric Power 
Systems, vol. 37, no.17, pp. 9-16, Sep. 2013. (in Chinese) 

[18] D. Kurowicka and R. M. Cooke, Uncertainty analysis with high 
dimensional dependence modeling, John Wiley & Sons, 2006, pp. 
30-31. 

[19] X. Xu, Z. Yan, D. Feng, Y. Wang and L. Cao, “Probabilistic load 
flow calculation based on rank correlation coefficient of input 
random variables,” Automation of Electric Power Systems, vol. 38, 
no.12, pp. 54-61, Jun. 2014. (in Chinese) 

[20] X. Zhu and H. Jiang, “Study on Pseudo-Random Number of 
Arbitrariness Probability Distributing and Its Implementation,” 
Computer Technology and Development, vol. 17, no. 12, pp. 116-
118, Dec. 2007. (in Chinese) 

[21] R. Rebonato and P. Jäckel, “The most general methodology to 
create a valid correlation matrix for risk management and option 
pricing: purposes,” Quantitative Research Centre of the NatWest 
Group, vol.19, Oct. 1999. 

 
 
 

Received: May 26, 2015 Revised: July 14, 2015 Accepted: August 10, 2015 

© Le et al.; Licensee Bentham Open. 

This is an open access article licensed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-
nc/3.0/) which permits unrestricted, non-commercial use, distribution and reproduction in any medium, provided the work is properly cited. 


