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Abstract: Arc fault is one of the important reasons of electrical fires. In virtue of cross talk, randomness and weakness of 
series arc faults in low-voltage circuits, very few of techniques have been well used to protect loads from series arc faults. 
Thus, a novel detection method based on support vector machine is developed in this paper. If series arc fault occurs, high 
frequency signal energy in circuit will increase a lot, and current cycle integrals are variable and erratic. However, high 
frequency signal energy will be influenced by cross talk in a nearby branch circuit. Besides, current cycle integrals will al-
so vary while the working states of circuit changed. To better describe series arc faults, two characteristics include high 
frequency signal energy and current integral difference are extracted as support vectors. Based on these support vectors, 
least squares support vector machine is used to distinguish series arc faults from normal working states. The validity of 
the developed method is verified via an arc fault experimental platform set up. The results show that series arc faults are 
well detected based on the developed method. 
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1. INTRODUCTION 

In the light of statistical data from fire services, arc faults, 
over currents, short circuits, and leakages are the main rea-
sons of electrical fires, and over 90% of electrical fires are 
caused by them [1-3]. Leakage protectors and overcurrent 
breakers are used to protect electrical circuits from leakages 
and overcurrent circuits in the present, but they can’t be used 
to prevent arc faults. There are three types of arc faults 
which contain earth arc fault, parallel arc fault and series arc 
fault. The characteristics of the former two are respectively 
similar to ground fault and over current. Hence, they are easy 
to be diagnosed [4]. However, fault characteristics of series 
arc faults are usually covered by load currents and back-
ground noise, making accurate recognition a difficulty of 
current research. 

As a result of the randomness, weakness and cross talk of 
arc faults, there are some limitations in the methods which 
are based on arc light, arc sound wave, arc voltage and arc 
temperature appeared on stationary parts [5-9], and many arc 
models are usually too complex and inaccurate [10-13]. It is 
hard to put these methods to apply in facts while the loca-
tions of arc faults in circuits are uncertainty in most of time. 
Thus, in order to heighten the accuracy of the fault diagnosis 
in the process of arc fault detection, a large number of arc 
fault signals are collected to analyze general features. The 
features of high frequency signals and current integrals are 
extracted as support vectors to classify normal states and arc 
fault states. At last, a novel series arc fault detection method  
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which is based on least squares support vector machine 
(LSSVM) is researched in this paper.  

2. EXPERIMENTAL PLATFORM ESTABLISHMENT 
AND DATA ACQUISITION 

An arc fault experimental platform which is based on the 
low-voltage electric specifications is established as shown in 
Fig. (1). Standards include UL1699, IEC 62606: 2013 and 
JB/T11681-2013 are used as reference criterions to set up an 
experimental platform. Typical experimental loads are com-
posed of six 50 W halogen lamps, a 0.75 kW electrical hand 
drill, two 40 W fluorescent lamps, a 0.35 kW computer, a 1.2 
kW electric stove, a 1 kW dimming lamp, a 1.2 kW vacuum 
cleaner, 1.5/3.0 H.P. air conditioners and a 2.2 kW air com-
pressor, etc. An arc generator consists of a stationary elec-
trode and a moving electrode is used for simulation of arc 
fault in circuits. PXI data acquisition system and current 
transducers are used to acquire a large number of signals in 
circuits. And different kinds of loads’ signals in arc faults 
and normal working states are used to analyze the universal 
characteristics. 

3. ARC FAULT CHARACTERISTICS ANALYSIS AND 
EXTRACTION 

3.1 Analysis of High Frequency Signal Energy 

From a lot of arc fault experiments, high frequency sig-
nals are discovered as a reflection of the dynamic arc dis-
charge process. They can be acquired by the high frequency 
transducer. During the initiation of arc extinguishing, many 
air molecules in the wire gap begin to be ionized, and the  
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motion of plasma is intensified further. According to elec-
tromagnetic theory, there are a great quantity of high fre-
quency signals to be released at first. Then they will reduce 
gradually at the rest of current cycle. Therefore, cycles of 
high frequency signals will be produced when arc faults oc-
cur. However, these signals are uncertainty as a result of the 
unknown external conditions include the effects of electrode 
materials, surface states, oxide layers, adsorbed gases, arc 
currents, arc gaps of dielectric materials, and so on. Besides, 
the frequency spectrum of arc fault signal is chosen up to 
50 MHz in order to facilitate characteristic analysis. 

In order to find the common characteristics of arc fault, 
some typical load signals are selected to analysis. Arc fault 
signals are non-stationary, so their statistics, such as fre-
quency spectrums, power spectrums and so on, are time-
varying functions. To determine the amount of energy in a 
specific time and a frequency range, short time Fourier trans-
form (STFT) is introduced to analysis arc fault signals. The 
high frequency signals and time-frequency diagrams of 
dimming lamp normal state and arc fault are shown in Fig. 
(2). As shown in Fig. (2a and b), there are some short pulses 
in the opening moments of SCR when the dimming lamp 
works in normal state or arc fault. And there are many high-
frequency signals and short pulses during the arcing process 
when the dimming lamp works in arc fault. What’s more, the 
high frequency signals with big amplitudes are densely dis-
tributed. From the frequency spectrum of normal state and 
arc fault that shown in Fig. (2c and d), the high frequency 
signals with 8~12 MHz are obvious when arc faults occur.  

Another typical load is the vacuum cleaner, its high fre-
quency signals and time-frequency diagrams of arc fault and 
normal state are shown in Fig. (3). When the vacuum cleaner 
works in normal state, there are some pulses to appear in the  
 

circuit because there is an electric brush motor in the vacuum 
cleaner as shown in Fig. (3a). Electrical discharge will hap-
pen and high frequency signals will be produced when the 
electric brush change the current phase. Fortunately, the high 
frequency signal amplitudes of vacuum cleaner arc fault are 
big and the signals are densely distributed as shown in Fig. 
(3b). The high frequency signals focus on 8~12 MHz of arc 
fault are more obvious than that of normal state as shown in 
Fig. (3c and d). 

In summary, when series arc faults occur in circuits, there 
are many high frequency signals and their energy will in-
crease immediately. The signal cycle energy E(n) can be 
calculated by the formula listed as follows: 

   
E(n)= s

2(t)
(n!1)T

nT

" dt (n = 1,2,!)  (1) 

Here, T is an arc cycle which is 10 ms, s(t) is the high fre-
quency signal. 

 The high frequency signal energy of dimming lamp is 
shown in Fig. (2e and f), and that of vacuum cleaner is 
shown in Fig. (3e and f). From the energy distribution of 
them, it is not difficult to find that the high frequency signal 
energy of arc fault is more than that of normal state. Howev-
er, the high frequency signal energy is different in different 
kinds of loads. It is hard to find a reasonable numerical value 
to classify the normal and the arc fault states in all loads just 
by a constant threshold. What’s worse, the high frequency 
signals of arc fault in a circuit can be detected by a high fre-
quency current transducer in a nearby branch circuit which is 
in normal state as a result of cross talk’s influence. So it will 
cause misjudgment. To better distinguish arc faults from 
normal states, another characteristic might be added for 
judgment at the same time. 
  

 

Fig. (1). Arc fault experimental platform. 



410    The Open Electrical & Electronic Engineering Journal, 2015, Volume 9 Yang et al. 

 

 

 

 
Fig. (2). Time-frequency analysis of dimming lamp’s signals. 
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Fig. (3). Time-frequency analysis of vacuum cleaner’s signals. 

 
3.2. Analysis of Current Integrals 

Many kinds of working states’ typical load currents are 
shown in Figs. (4 and 5). The figures show that currents are 
relatively stable when loads are in normal states. But current 
periodicities will be lost, and current amplitudes will change 
evidently in an asymmetric manner when arc faults occur. 
What’s more, the current amplitudes will sometimes come to 
zero. Thus, whether an arc generated in the circuit or not 
may be discovered from the current integrals of cycles. The 
formula is listed as follows: 

   
J (n)= c(t)

(n!1)T

nT

" dt (n = 1,2,!)  (2) 

Here, T is an arc cycle which is 10 ms, c(t) is the current 
of circuit. 

 When loads are in normal states, there are several work-
ing states such as plugging on and off, speed adjustment, 
load startup, and so on. And amplitude changes, shocks and 
other phenomena might be found in load currents. Some typ-
ical distorted currents caused by non-arc faults are shown in 
Fig. (4), the load arc fault currents are shown in Fig. (5). The 
current cycle integral difference can also be observed during  
 

the normal working states. The halogen lamp currents of 
transient processes, such as start, adjustment and so on, will 
change as shown in Fig. (6a). The current cycle integrals 
change in a law and the integral variations are monotonic in 
a period of time as shown in Fig. (6b). Nevertheless, the am-
plitudes of current will change uncertainly and there are big 
fluctuations appeared in the current integrals when series arc 
fault occurs in circuit as shown in Fig. (7a and b). 

The current and its integrals of vacuum cleaner in normal 
working state are shown in Fig. (8a and b). Though the cur-
rent will change obviously when the cleaner speed is adjust-
ed, the changes of current cycle integral are regular in a peri-
od of time. However, when series arc fault occurs in the vac-
uum cleaner as the current shown in Fig. (9), the amplitudes 
of current will fluctuate seriously, the wave of current will 
change obvious distortedly, and the current cycle integrals 
are erratic which are quite different from that of normal 
states.  

However, there are some limitations to detect arc faults 
just through current cycle integrals which will also change 
while the working states are adjusted. Therefore, the current 
integral variations may be used to further distinguish series  
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(d) 

Fig. (4). Currents in non-arc faults: (a) start a hand drill, (b) plug a lamp, (c) dim a lamp, (d) adjust the vacuum cleaner speed. 

 

  
(a)  

 

(b) 

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

-10

-8

-6

-4

-2

0

2

4

6

8

10

t/s

I/A

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
-8

-6

-4

-2

0

2

4

6

8

10

12

t/st/st/st/s

t/s

I/A

arc faultnormal

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
-6

-4

-2

0

2

4

6

8

10

t/s

I/A

arc faultnormal



414    The Open Electrical & Electronic Engineering Journal, 2015, Volume 9 Yang et al. 

 

(c) 

 
(d) 

Fig. (5). Load currents: (a) electric stove, (b) computer, (c) air compressor, (d) air conditioner. 
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(b) Current cycle integrals 

 
(c) Difference sum of integrals 

Fig. (6). Analysis starting current of halogen lamps. 
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(b) Current cycle integrals 

 
(c) Difference sum of integrals 

Fig. (7). Analysis arc fault current of halogen lamps. 

 
(a) Current wave 

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

10

12

t/s

In
te

gr
al

s 
of

 I/
(A

 m
s)

normal arc fault

0.2 0.4 0.6 0.8 1
0

10

20

30

40

t/s

D
iff

er
en

ce
 s

um
 o

f i
nt

eg
ra

ls
/(A

 m
s) arc faultnormal

0 0.2 0.4 0.6 0.8 1
-10

-5

0

5

10

t/s

I/A



Research on Low-voltage Series Arc Fault Detection Method The Open Electrical & Electronic Engineering Journal, 2015, Volume 9     417 

 
(b) Current cycle integrals 

 
(c) Difference sum of integrals 

Fig. (8). Analysis speed adjustment current of the vacuum cleaner. 
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(b) Current cycle integrals 

 
(c) Difference sum of integrals 

Fig. (9). Analysis arc fault current of the vacuum cleaner. 
 

arc faults from non-arc faults. In order to more accurately 
describe the variations, the difference sum of load’s current 
integrals in a period of time is calculated by the formula (3): 

   

D (n)= J (n+1)- J (n)( )
n=1

N

! (n = 1,2,!,N)  (3) 

Here, N = 10, so the period of time is 100 ms.  
The difference sum diagrams of halogen lamps and the 

vacuum cleaner are respectively shown in Fig. (6c), Fig. (7c), 
Fig. (8c) and Fig. (9c). From the analysis of a large number 
of loads’ signals, it is not difficult to find that the classifying 
thresholds are different in different loads and working states 
through the difference sum of loads’ current integrals. Take 
arc faults and speed adjustment states for example, the cur-
rent integral difference sum of some halogen lamp arc faults 
is very closed to that of vacuum cleaner speed adjustment 

states as shown in Figs. (7c and 8c). So it may cause mis-
judgment. According to all the analysis above, several char-
acteristics should be chosen, and some intelligent classifica-
tion algorithms [14, 15] would be introduced for the accurate 
identification of arc fault. 

4. ARC FAULT IDENTIFICATION BASED ON 
LSSVM 

When series arc fault occurs in circuit, high frequency 
signal energy of arc will increase a lot, and current integrals 
of cycles are variable and erratic. However, high frequency 
signal energy will be influenced by cross talk in a nearby 
branch circuit. Besides, current integrals of cycles will also 
vary while the working states of circuit change. And it is 
hard to find a reasonable constant threshold to classify the 
normal and the arc fault states in all loads. To better discrim-
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inate arc fault states from normal states, two characteristics 
include high frequency signal energy and current integral 
difference are extracted. Based on these characteristics, sup-
port vector machine (SVM) is introduced to classify series 
arc faults and non-arc faults.  

The SVM algorithm which is based on statistical learning 
theory has been successfully used to solve function estima-
tion and classification problems [15]. The LSSVM algorithm 
which has been developed by Suykens and Vandewalle is a 
new deformation algorithm on the basis of the traditional 
SVM [16]. It can reduce computing complexity and guaran-
tee the accuracy of the data classification at the same time. 
Two characteristics which are described by the vector 

1 2[ , ]=x x x  are listed as follows: 

 1) x1, the high frequency signal energy of different kinds 
of loads. 

 2) x2, the difference sum of load current integrals in a 
period of time. 

The characteristic vector x is mapped from the original 
space to the high dimensional feature space by non-linear 
transformation f(x). Then, the optimal classification plane is 
found in the high dimensional feature space. According to 
the structural risk minimization principle, the constrained 
optimization problem corresponding to the original classifi-
cation problem can be expressed as follows [17-19]: 

   

min
1

2
V

T
V +

C

2
!

i

2

i=1

m

"
#

$%
&

'(

s.t.  y
i
(V T f (x

i
)+ b) = 1)!

i
(i = 1,…, m)

*

+
,

-
,

 (4) 

Here, V is a weight vector. C is a penalty factor. m is the 
number of training samples. ξi is the relaxation coefficient of 
xi. b is a bias term. And the output result of classification is

1 if class 1
1 if class 2

i

i
iy

∈⎧
= ⎨− ∈⎩
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， 	
  

x
x

.  

In order to solve the constrained optimization problem, 
lagrange multipliers αi is introduced. So the formula (4) is 
transformed to the unconstrained objective function 

   

L(V ,! ," ,b) =
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Here, α  = (α1, …, αm), ξ  = (ξ1, …, ξm).  
According to the Karush- Kuhn-Tucker condition, let the 

derivative to V, b, αi, ξi of formula (5) equal to 0. Then, the 
equation can be expressed as 
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Furthermore, the equation (6) can be organized into a 
matrix form 
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T
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"
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Here, R = (1, …, 1)T, y = (y1, …, ym)T, element in the pos-
itive definite matrix Ω is  

   
!

ij
= y

i
y
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f T(x

i
) f (x
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)+
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ij

C
= y

i
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!
ij
=

1 i = j

0 i " j

#
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%

&%
. On the basis of Mercer condition, 

   
K(x

i
, x

j
) = f T(x

i
) f (x

j
)  is defined as a kernel function. 

According to the process of large amounts of arc fault data, 
radial basis function (RBF) is selected as the kernel function. 
And the model of arc fault classification is stable. The effect 
of classification is good.  

Hence, the optimization problem of formula (4) can be 
solved by formula (7), α  and b can be solved through least 
square method. The identification result of loads’ states by 
LSSVM can be described as 

   

y(x)=sgn !
i

i=1

m

" K(x, x
i
)+ b

#

$%
&

'(
 (8) 

The main procedures of arc fault identification are listed 
as follows: 

1) Select data set of LSSVM. The input is the characteris-
tic vector x include the high frequency signal energy x1 and 
the difference sum of current integrals x2. And the output is 
the classification result y, the status of output contains -1 and 
1, ‘-1’ represents the normal working state and ‘1’ represents 
arc fault state. 

 2) Set up the recognizer sample Library (x, y), here, x1 
and x2 are characteristics, y is output. From the experimental 
data of 9 kinds of loads in different working states, 300 sets 
of data are chosen to process. And 250 sets of them are treat-
ed as training samples; others are treated as testing samples. 
The recognizer sample library of arc fault is listed in Table 1.  

3) Select kernel function parameters of RBF. In the light 
of cross validation method, reasonable kernel parameter σ2 
and penalty factor C will be found through the training sam-
ple set. 

 4) Identify arc fault. The testing samples are input into 
the arc fault recognizer. Then the identification results are 
compared with the real testing results. Finally, the generali-
zation ability of recognizer is evaluated by error rate which 
can be calculated as 

  

e =

y
i

*
! y

i

i=1

p

"

2p
#100%  (9) 
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Here, p is the number of testing samples. *
iy  is the real 

result of classification. 
According to the main procedures of arc fault identifica-

tion as listed above, the arc fault recognizer is set up. When 
the kernel parameter σ2=0.06 and penalty factor C=2.5, the 
identification results are shown in Fig. (10). In that figure, “*” 
represents normal states of loads, and “□” represents arc 
faults of loads. 

The testing samples can be identified through the charac-
teristic space. If the testing sample appears at white area in 
Fig. (10), it means there is arc fault occurred; otherwise, 
there isn’t arc fault in circuit. The identification results are 
the globally optimal solution in that RBF kernel function 
parameters, and the optimal classification plane of arc faults 
and normal states can be found in the high dimensional fea-
ture space.  

In the experiments of the testing samples, the results 
show that the error rate of LSSVM is 4.0%. Hence, the arc 
fault identification rate is up to 96.0%. As a result of some 
situations with very weak arc fault signals are added into the 
testing samples, the high frequency signal energy and current 
integral difference of the arc faults are both very small, and 
they are very close to that of normal states. In that situation, 
the LSSVM recognizer fails to classify arc faults and normal 
states. Nevertheless, the dimension of characteristic vectors 
will be increased in the future algorithm improvement, and 
the identification accuracy will be improved. 

CONCLUSION 

In this paper, arc fault characteristics are extracted to re-
alize the detection of series arc faults. The main conclusions 
are: 1) High frequency signal energy of arc will increase a lot 
when series arc fault occurs in circuit, but it will be influ-
enced by cross talk in a nearby branch circuit. 2) Current 
integrals of cycles are variable and erratic while series arc 
fault occur in circuit, but they will also vary while the work-
ing states of circuit change. 3) Two characteristics contain 
high frequency signal energy and current integral difference 
are extracted at the same time to represent difference be-
tween the normal working states and arc fault states. 4) 
Based on these characteristics, LSSVM is successfully used 
to distinguish arc faults from normal working states, and the 
method is verified through the experimental platform. The 
arc fault detection rate is up to 96.0%. What's more, the de-
veloped method has a good ability of generalization. 
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