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Abstract: This paper presents a general framework for model-based fault detection and accommodation for a class of dis-
tributed parameter systems with control actuator faults. A set of dedicated observers, each with its own time-varying 
threshold is constructed to detect the occurrence of fault in the corresponding actuator and reduce fault detection time. 
Additionally, an adaptive diagnostic observer is then designed and analyzed to estimate each individual actuator fault. 
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to accommodate actuator fault and to preserve closed-loop stability. An example has been discussed using the proposed 
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1. INTRODUCTION 

Industrial processes have increased in complexity over the 
recent years due to the automation of the used control tech-
niques, especially in the chemical and biological processes. In 
all of these processes, security and reliability of the system is 
critical. A fault could occur at any location or for any compo-
nent used within the system. For example, a fault could occur 
with an actuator or sensor used in the system or in the defined 
system parameters. If not handled properly and in a timely 
manner, such a fault often leads to degradation in the pro-
cessing operations. As a result, fault detection and accommo-
dation within a reasonable timeframe is extremely important to 
ensure system safety. 

Over the past few decades, a variety of methods have been 
developed and discussed in the literature extensively [1-6], 
which specifically detect and troubleshoot problems associated 
with actuators in some systems. Huang and Yu [2] presented 
an adaptive full-order observer to detect and estimate actuator 
fault for the Lur'e differential inclusion system. Hajiyev [3] 
considered a new approach based on generalized Rayleigh 
quotient for testing innovation covariance for Kalman filter 
applied to actuator and sensor fault detection. Du [4] proposed 
a method which exploits analytical redundancy in nonlinear 
systems through state observer design to isolate actuator and 
sensor faults. Yan and Edwards [5] studied an actuator fault 
detection and isolation scheme for a class of nonlinear systems 
with uncertainty based on a robust sliding mode observer. 

Previous work on actuator fault detection and diagnosis has 
focused on lumped parameter systems described by ordinary 
differential equations (ODEs). However, distributed parameter 
systems (DPSs) are often used in many important industrial 
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control processes characterized by spatial variations due to 
underlying physical phenomena [7, 8], such as convection, 
diffusion and phase dispersion [9]. These systems are typically 
modeled using partial differential equations. Control in DPSs 
often involves regulation of spatially distributed variables, such 
as temperature, pressure and concentration, using spatially dis-
tributed control actuators and measurement sensors [10]. How-
ever, it is worth noting that in particular actuator fault detection 
and accommodation in DPSs has received limited attention. 

Over the recent years, particularly Demetriou [11, 12], Ar-
maou [13], and EI-Frarra et al. [9, 10] studied actuator fault-
tolerant control in DPSs. Demetriou [11] considered an infinite 
dimensional adaptive detection observer, which was used to 
generate a residual signal to detect fault occurrence and assist 
with fault accommodation for DPSs. Armoaou [13] addressed 
a class of DPSs with component and actuator faults. An adap-
tive detection observer with a time-varying threshold and an 
adaptive diagnostic observer were proposed that provide fault 
declaration and estimation. Additionally, control reconfigura-
tion scheme that accommodates component and actuator faults. 
However, the designed observers can only be used to detect 
total actuator faults and does not allow pinpointing the actuator 
where the fault occurred. This would result in all actuators be-
ing adjusted, including the healthy actuators in the system. 
Alternatively, EI-Frarra [12] also developed a methodology for 
design of an integrated, model-based fault diagnosis and recon-
figurable control systems for PDEs with actuator faults and 
control constraints. A set of dedicated fault detection and isola-
tion filters was constructed to replicate each of the fault-free 
behaviors at a given state. The residual of each filter is sensi-
tive to fault for only a single actuator. However, each initial 
condition for the filter was required to be identical to the 
closed-loop system of the transformed reduced model in the 
absence of a fault. In such cases, knowledge of unmodeled 
dynamics and unknown initial conditions would be limited. 
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Moreover, the use of fixed thresholds would increase the time 
required for fault detection. 

Actuator fault detection and accommodation architecture 
are considered here for DPS, which can be decomposed into a 
finite dimensional slow subsystem and an infinite dimensional 
fast subsystem. A set of fault detection observers with appro-
priate time-varying thresholds are set up to monitor the slow 
subsystem for impending actuator faults. In order to avoid un-
necessary adjustments of healthy actuators, residual signal of 
each observer is only sensitive to detect fault in the correspond-
ing actuator even if the initial conditions were different. Dy-
namic (time-varying) threshold significantly reduces detection 
time. After the fault occurs, a set of diagnostic observers with 
adaptive schemes for the adjustable parameter are designed to 
capture dedicated actuator faults. Furthermore, actuator faults 
are accommodated with the use of control reconfiguration with 
an online estimate of the fault parameter. Therefore, the stabil-
ity can be maintained for the closed-loop subsystem.  

2. PROBLEM FORMULATION 

The class of DPS under consideration here is described by 
the following equation: 
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The system is defined in the Hilbert space X , where 
),( xtz  is the state; x  and t  are the spatial and time coordi-

nate, respectively; )(xbi  is the spatial distribution of the i th 
actuator; )(tui  is the associated control signal; )),(( xtzω  is 
the nonlinear dynamics; )(tf

ia
 is a fault of i th actuator, 
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For convenience of analysis, let us rewrite the system (1) in 
the following form: 
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B  is the control input operator. We set and 
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It is assumed that the infinite dimensional state z  can be 
decomposed as [14] 

zPzPzzz fsfs +=+= , (3) 

where sz  denotes the state of the finite-dimensional 
slow/unstable subsystem and fz denotes the state of the infi-

nite dimensional fast/stable subsystem. sP  and fP  are projec-
tion operations yielding the following form: 
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where ,,, ωω ssssss PBPBAPA === ,APA ff = BPB ff = ,

ωω ff P= . }{ idiag µ=sA  is an m -dimensional diagonal 

matrix, }{ mµµ ,,1  are the slow eigenvalues. The unbound 
differential operator fA  is exponentially stable. By neglecting 

the fast/stable infinite dimensional subsystem fz  in Eq. (4), we 

obtain the m - dimensional slow system 
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Based on the above decomposition and model-reduction, 
first a fault detection filter needs to be designed that indicates 
the time of when the actuator fault occurs and allows to diag-
nosis related to the nature of the actuator fault. The secondary 
objective is to provide fault accommodation based on the esti-
mate of the actuator fault. 

3. DETECTION OBSERVER 

To differentiate faults among different actuators, a dedicat-
ed fault detection and isolation filter can be designed for each 
mode. This allows the residual signal to be sensitive only to the 
actuator where the fault occurs. 

In this case, the existence of a bounded, invertible matrix 
sQ  is assumed, such that sss TBQ = , where sT  is an identity 

matrix. Consider the transformation sss zQn = , which trans-
forms the slow system (5) as follows: 
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where sss Q ων = . 

In order to address the specific structure of the system, we 
can further decompose the slow state )(tns  as 
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where )(tnKn sss ii
=  as a one-dimensional state denotes the 

evolution of the i th transformed slow mode. The orthogonal 
projection matrix 

isK  projects )(tns  onto )(tn
is

. In the above 
decomposition, for mi ,,1= , the i th transformed slow 
mode can be rewritten as follows: 
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where ss vK
iis

=ν . Since the operator ssBQ  has a diagonal 

structure, then we have 0)( =xbPQK jsssi
 for ij ≠ . It results 

in 
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Throughout this paper, the following assumptions are given: 

Assumption 1. The number of slow modes is equal to the 
number of actuators, i.e., nm = . 

Assumption 2. Consider the above fault-free approximate 
slow system, then the proposed control signal is given by 

)],())()(([))(()( 11 tnktnKQxbPQKtu
iiiii sissssisssi +−= −− ν  (10) 

where  ki  is a suitably chosen feedback gain such that the fault-
free system (9) has satisfactory behavior. 

Actuator fault detection can be accomplished by construct-
ing an observer, which is combined with the approximate slow 
system (9) to produce a residual signal for detecting the fault. 
To this end, the dedicated detection observer takes the follow-
ing form: 
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where iL  is an appropriately chosen observer gain. The state 

observation error norm )()()( tmtnte isi i
−=  serves as the 

residual signal. 

Theorem 1. Consider an approximate, finite-dimensional 
closed-loop system (9), for which both Assumptions 1 and 2 
hold. Then, the on-line observer given in (11) has the following 
properties. 

(1) When all signals are nonzero, a fault is declared if the 
residual signal )(tei  exceeds the time-varying threshold 
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The actuator fault is declared at the detection time 
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iaTt <  can be expressed as: 
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where i∂  is the spectrum bound for )( is LA − , iξ  is the 

upper bound in iie ξ≤)0( . The nonlinear dynamics 
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An actuator fault is declared when the residual )(tei  ex-
ceeds the time-varying threshold )(tri . The detection time is 
given by 
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 from Eq. 17, thus indicat-

ing presence of an actuator fault in the system. 

Remark 1. The transformed slow-subsystem of Eq. (9) dif-
fers from the one derived by [10]. In Eq. (9), a fault in actuator 
j  cannot influence the i th slow mode, that is, even though 

there is a fault in actuator i , the mode )( ijj ≠  is still normal. 
Thus, the residual signal of i th filter is sensitive to the i th 
actuator fault, rather than all the actuators. 

4. ADAPTIVE DIAGNOSTIC SCHEME 

In the previous sections, the detection of actuator faults has 
been demonstrated. In this section, the next step towards the 
development of a fault diagnostic scheme is discussed. From 
an adaptive theory viewpoint, online approximations are used 
to adjust the system parameters when an actuator fault occurs. 
The objective is to establish a parameter adaptive law for )(ˆ tiθ  

so that online estimation of =)(ˆ tf
ia

 )()(ˆ tgt iiθ  approximates 

the function ( ) ( ) (
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vergence property for the adaptive diagnostic observer is for-
malized in Theorem 2 below. 

Theorem 2. Consider the system described by (9) where 
the actuator fault occurs. Assume that there exists a diagnostic 
observer gain iL̂  that satisfies the Lyapunov equation: 
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guarantee that the state diagnostic errors converge to zero, and 
all signals are bounded. 

Proof. Consider )(ˆ)()( tntnte isd ii
−=  is the state diagnostic 

error, the following is obtained: 
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where )()(
iai TtHIt −−=ϕ and iii tt θθθ −= )(ˆ)(~ . The associ-

ated Lyapunov function is given as: 
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By integrating from 00 == tt  to 
iattt <= 1 , we obtain 
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Based on the above analysis, the bounds of the state error 

  
edi

(t)  and parameter estimator )(~ tiθ are readily obtained. 

There exists a finite constant ic  such that 
  
sup
t!Tai

fai
(t) =  
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asymptotic converge to zero. In addition, when ∞→t , the 
parameter approximation )(ˆ tiθ  asymptotically converges to 
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5. FAULT ACCOMMODATION SCHEME 

So far the methods for detecting and diagnosing the actua-
tor fault have been discussed. Next, in this section, a control 
reconfiguration to accommodate the fault is proposed. It is 
desirable to adjust the controller to preserve closed-loop system 
stability in the presence of the actuator fault. Due to the fact 
that the actuator fault is unknown, an estimation )(ˆ tiθ  may be 
used instead of the fault parameter. 

Theorem 3. Consider system (9) in which the fault actuator 
is declared, then the corresponding fault accommodating con-
troller takes the form 
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ensures the closed-loop system (9) satisfies the stability cri-
teria and the residual signal is below its time-varying threshold. 

Proof. In view of the control signal (10) for the closed-loop 
fault-free system 
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When the fault is detected )(
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take the actuator fault into account as: 
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By taking into account the fault accommodating controller 
(23), the closed-loop system is represented as follows: 
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If there exist positive definite matrix iP  satisfying the Lya-
punov equation 
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stable. 

After fault accommodation, the state observation error is 
given as: 
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The residual signal given by the norm is 
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Remark 2. It should be noted that the i th fault accommo-
dating controller is driven only by the i th system state and the 
i th actuator. 

6. NUMERICAL RESULTS 

In this section, the method for fault detection and accom-
modation are validated using computer simulations. Consider a 
thin, long rod in a reactor, which is fed with pure species P  
and a zero order exothermic catalytic reaction of the form 

QP→  takes place on the rod [16]. Since the reaction is exo-
thermic, a cooling medium in contact with the rod is used to 
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facilitate temperature control. Under standard modeling as-
sumptions, the mathematical model, which describes the spati-
otemporal evolution of the dimensionless rod temperature is 
represented by the following DPS: 
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 (30) 

with the initial condition and boundary condition: 

,0),(),0(),()0,( 0 === tztzxzxz π  

where z denotes the dimensionless temperature of the reac-
tor rod, uβ denotes the dimensionless heat transfer coefficient, 

Tβ  denotes a dimensionless heat of reaction, r  denotes a di-
mensionless activation energy. The process parameters are 

.4,2,50 === ruT ββ  

The system of Eq. (28) can be written in the form of Eq. 
(2). Eigenvalue of A  can be solved analytically and solution is 

,,,2,1),sin(2)(,2 ∞==−= iixxi ii π
φλ  

where iλ  and )(xiφ denote the eigenvalues and eigenfunc-
tions of A , respectively. The solution verified that the operat-
ing steady state 0),( =xtz  is unstable due to the exothermic 
nature of the reaction. For this case, we consider the first four 
eigenvalues to be the dominant ones, a total of 4=n  actuators 
located at 

.4,,1,
1
)137.0(

=
+

−= i
n

ixai
π  

The spatial distribution of the actuating devices is consid-
ered to be of the following form: 

⎪⎩

⎪
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εε
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where .05.0=ε The transformation )()( tzQKtn ssss ii
=  can 

be used to obtain the approximate slow system (9). To demon-
strate how the fault detection and accommodation schemes 
work, we initialize the closed-loop systems (9) and filters (11) 
using actuators i  for 4,,1=i . 

The case, where fault occurs in a single actuator is consid-
ered first. Fig. (1) shows the evolution of residual signals for 
the four systems with fixed and time-varying thresholds. In Fig. 
(1a), a fault is introduced in actuator #1. The fault occurs at 

sT
ia 1= . When using a time-varying threshold, the system 

detects the fault at st
ia 5.2= . Then, using fault accommoda-

tion, the residual signal asymptotically reaches an ideal state. 
When using a fixed threshold, the fault is detected at st 01.4= . 
(The residual signal denoted by )(ˆ tei  with fixed threshold). As 
shown in Figs. (1b)-(1d), the three residual signals do not ex-

ceed their specified thresholds, indicating that no faults can be 
detected in actuators #2 to #4. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. (1). Evolution of residual signals when fault in actuator #1. 



Actuator Fault Detection and Accommodation in Distributed The Open Electrical & Electronic Engineering Journal, 2015, Volume 9    465 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. (2). Evolution of residual signals when faults in three actuators. 

 
Fig. (3). Evolution of fault parameters and their adaptive estimates. 

Figs. (2a), (2b) and (2d) show the results when actuator #1, 
actuator #2 and actuator #4 experience faults. The faults were 
declared at sta 5.2

1
= , sta 8.2

2
= and sta 82.2

4
= . A faster 

convergence is observed when time-varying thresholds are 
used for fault detection. Fig. (2c) depict the case when no fault 
is introduced in actuator #3. As expected, the faults in actuator 
#1, actuator #2 and actuator #4 do not affect the healthy actua-
tor #3. The evolution of the actuator fault parameters and their 
adaptive on-line estimates are presented in Fig. (3). It can be 
seen that )(ˆ tiθ  converges to the desired value, .4,2,1=i  

CONCLUSION 

In this paper, the actuator fault detection and accommoda-
tion for a class of DPSs has been presented. Model reduction 
technique has initially been utilized to derive finite-
dimensional approximations that capture the dominant dynam-
ics of the DPSs. A set of detection observers have been pro-
posed that separately monitor each actuator fault. A fault was 
declared when the residual signal exceeded its time-varying 
threshold. Once a fault is detected, a fault diagnostic scheme 
using online approximation of the fault with adaptive estimate 
will be developed. To preserve closed-loop stability and reduce 
deterioration of system performance resulting from actuator 
fault, a control reconfiguration scheme has been implemented. 
The effectiveness of the proposed strategy has been successful-
ly applied and demonstrated on a typical DPS. 
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