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Abstract: To study surface denoising of lithium battery film to extract feature effectively. The best atomic function by
sparse decomposition is acquired by iteration under added noise, gaussian noise, salt and pepper noise, additive and mul-
tiplicative noise. Terminating iteration value is got by observation and used to filter under specific background noise. Ex-
periment shows sparse decomposition denoising performance is better than the median filter, sparse decomposition is

good for detection of lithium battery film defects.
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1. INTRODUCTION

The application of lithium battery is not as good as it gets
old. Battery used for automobile are composed of battery
pack from a large number of single battery, and its service
life is more than 2000 times. When composed of more than
one battery and consistent highly in performance, the battery
pack shows long service cycle close to the single. Consider-
ing equipment and technology of the lithium manufacturer’s
production are not mature in China, the quality of the prod-
uct is affected. Surface defect is the important factor for the
quality lithium battery film. Therefore, automatic detection
of surface quality of thin film based on machine vision tech-
nology has gradually become the importance of research.

During production of lithium battery film, the defects are
often represented by various sources in the process. So the
problem can be confirmed by accurate and effective extrac-
tion of features to improve production technology. The lithi-
um battery film image based on image enhancement tech-
nology aims to highlight the main feature of defects, but
general algorithms usually focuses on median filtering [1],
histogram equalization [2], area average [3], spatial filtering
[3-6] and frequency domain and wavelet filtering technology

[3].

Sparse decomposition is a new kind of signal and image
decomposition method [7], It has extremely broad prospect
in signal and image compression, denoising, signal analysis
and signal recognition [8]. Under the condition lack of statis-
tical noise feature, sparse decomposition algorithm can not
only select appropriate base function adaptively to accom-
plish the decomposition of signal, but also capture the origi-
nal feature of the original signal from redundant dictionary
feature.
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Lithium battery film images enhancement technology is
present in this paper, including the application of sparse de-
composition and comparison with the median filter technol-
ogy. Lithium battery film defects from added noise, gauss
noise, salt and pepper noise are de-noised by sparse decom-
position method, then de-noised by median filter under the
same background, finally, compared with the median filter-
ing results.

2. SPARSE DECOMPOSITION OF IMAGE SIGNAL
BASED ON MATCHING PURSUIT ALGORITHM

Matching pursuit algorithm(MP) is an iterative algorithm
selecting the most matching atom for tracing the time-
frequency structure of signal from highly redundant over-
complete dictionary. From the de-noising, defect target has
small fluctuation of structure and flat distribution, besides it
has certain structure whose property is as same as atom.
However, there is bigger for the local fluctuation of noise
which is the randomly relevant and lack of structure charac-
teristic. If meaningful atom can be extracted from noisy im-
age, extracted part is defect target or is noise target. During
MP algorithm, signals or largest inner product atoms of re-
sidual will be chosen. Firstly flat defect signals comparative-
ly are extracted, then local noise are extracted gradually.
Sparse decomposition is the process of tracking and extract-
ing atomic vector best matching the original signal and its
residual signal. The atomic vector is the defect distribution.
According to different noise background iteration terminal
value conditions, we use artificial observation as empirical
value.

The step is including in training and de-noising :

(1) Defining a over-complete dictionary from Hilbert
Space D={g (x,y)}(m=0,1,---,M—1) M is the iteration

terminal value,

g (t)Hz 1. Selected atom in the dictionary

is as the following :
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Fig. (1). Flow Chart of Sparse Decomposition Based on MP.
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From Eqs.l, x, =xcos@+ ysin@, y =—xsinf+ ycosb,
x=12L T;,y=12,L T,,T1 is the atomic signal width,T2
is the atomic signal height , y=(0,v,4,60) is the time-

frequency parameter which represents respectively the atom-
ic expansion, distance, frequency and phase.

(2) Suppose specific noisy image signal is z, (x,y) and
zy(x,y)=R,z, , N is the number of specific noise includ-

ing Random noise , Gaussian noise , Salt and Pepper noise
and Addition-multiplication noise, Rz, is the original re-

sidual.

(3) Selecting the most matching atom g, (x,y)€ D by

MP which maximizes the KROZN, g, (x, y)>‘ and obtaining

residual is Rz, =Rz, —<R02N,g70 (x,y)>g70 (x,»). Select-
ing the most matching atom g (x,y)€ D by MP once again

which maximizes the KRIZN, g, (x, y)>‘ and obtaining resid-
ual is Rz, =Rz, - <RlzN,g71 (x,y)> g, (x,y) , LL ,
RmZN = Rm—lZN - <Rm—IZN’g;/WH (x’y)>gy”H (x> y) .

(4) From the above steps, iterative termination value M is
obtained by observation under different noise.

(5)  Finally

M

2<Rmz V& (x, y)> g, (x,y)*+R,,, z, is obtained by filter.

m=0

defect image  signal zz(x,y)=

(6) Under the certain noise background, repeating Step
(1) to (5) from Step (4) iterative termination empirical value
to get defect image after the de-noising.

Fig. (1) shows the flowchart of the algorithm. Table 1
shows the various background noise characteristics.
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Fig. (2). Defects under Different Noise Background Based on Sparse Decomposition.
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Table 1. Characteristics of Noise.

Chen et al.

Noise

Characteristics

Added Noise

It is added randomly in the lithium battery film defects on the graph. The purpose is to simulate influence from ran-
dom noise, such as particle, dust and insect on the camera.

Gaussian Noise

It is a random noise whose the probability density function comply with Gaussian distribution. The purpose is to simu-

late influence from light source.

Salt and Pepper Noise

Salt and Pepper noise is black and white spot noise.The purpose is to simulate influence from transmission and pro-
cess of lithium battery film defects image by CDD.

Addition Multiplication Noise

Addition Multiplication noise is produced by random scattering point. The purpose is to simulate influence from dy-
namic lithium battery film defects image by CDD.
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Fig. (3). Best Iteration Times under Added Noise.

3. SIMULATION RESULTS

The image of lithium battery film defects is set to 128 x
128 pixels.

3.1. Denoising of Film Defects with Add Noise
Defined as (i,j) by the ith row and the jth column.

Fig. (2a)(1.1) is the original man-made added noise im-
age. Fig. (2a)(1.2) shows the reduction image by sparse de-
composition. Fig. (2a)(1,3) is the best restore image of
scratch defect and Fig. (2a) (1,4) is the original man-made
added noise image firstly. From Fig. (2a), during de-noising
by sparse decomposition, image is restored from the region
of scratch defect and from added noise in turn. 2-5th rows of
Fig. (2a) are the results of leakage, dirt, bubble and needle
defect. Experiment shows that it is effective obviously by
sparse decomposition which is strong to defect reduction.

From Fig. (2b), it is obvious for scratch, dirt and leakage
foil defect de-noising performance by sparse decomposition,
but it is insufficient to needle and limit to bubble. Because of
the smaller defects of pinhole and bubble, it can be found
that the sparse decomposition denoising effect for small area
defect is not good. The pinhole defect of denoising effect is
better than that of bubble. Experiment shows that sparse de-
composition algorithm for lithium battery film defects can
restore origin figure from the defects purposefully.

From Fig. (2¢), it’s the best for salt and pepper noise of
defect to be denoised by sparse decomposition, but it is

barely for scratch to find defects and hardly for dirt, bubble
and pinhole. Because a lot of white dots contained in salt and
pepper noise influence denoising and white areas in the
scratch defect and leakage foil defect are large and concen-
trated, sparse decomposition could be effective. At the same
time pinhole defect with same white dots cannot be de-
noised, it also shows that sparse decomposition has better
denoising effect for defects of larger area.

From Fig. (2d), It’s not very good for each de-noised de-
fect of lithium battery film. It is obvious for scratch, pinhole
and leakage foil defect de-noising performance by sparse
decomposition, but it is insufficient to dirt and limit to bub-
ble. Experiment shows that sparse decomposition algorithm
for lithium battery film defects can restore origin figure from
the defects purposefully. Because of better denoising effect
for Addition-Multiplication noise of lithium battery film
defects by sparse decomposition and grey black image of
addition-multiplication, compared with the image of salt and
pepper noise that contains a large number of white dots, it
proves that sparse decomposition has better denoising per-
formance for the white part.

3.2. Effect of Iteration Times and the Noise Area on the
Performance of Sparse Decomposition

In order to study the relationship between the specific
noise and the number of iterations N, Fig. (3) shows the best
number of iterations under added noise. It can be seen that
iteration times depend on kind of noise and belongs to
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Fig. (5). Simulation Results of Larger Area Added Noise.

different range. Because the range of scratch, leakage foil,
dirt is over the bubble and pinhole and N value of leakage
foil reaches maximum, The greater is the defect area the big-
ger is the N value. Number of experiential iterations under
different noise background can be set from variable N.

When N is larger, defect image restored is more clear and
vice versa. From Fig. (4), left figure is the image of bubble
defects when N = 27 while right figure is N = 16. The clarity
of defects in left is obviously better than the right, but the
increasing of N value will lead to denoising incompletely.
(As the noise left foot).

Considered sparse decomposition algorithm influenced
by the area of spot noise, if the area is too large, the spot
noise is restored firstly to affect deoising. From Fig. (5), the
spot noise and the defect are restored alternately.

3.3. Comparison between the Performance of Sparse De-
composition and Median Filter

3.3.1. Denoising of the Added Noise

From Fig. (6), Sparse decomposition is not effective for
the added noise from lithium battery film instead of median
filter.

3.3.2. Denoising of Gaussian Noise, Salt and Pepper Noise
and Addition-Multiplication Noise

From above experiment, median filter can only get rid of
the salt and pepper noise from lithium battery film defects,
but sparse decomposition is better than median filter and can

Noisy image without restored part
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remove the added noise, Gaussian noise and Addition-
multiplication noise. Thus the range of sparse decomposition
is wider than one of median filter. This algorithm shows the
dynamic process of denoising and has a strong targeted for
the restore of defects. Therefore sparse decomposition is bet-
ter than median filter.

CONCLUSION

For image enhancement of lithium battery film defects,
the paper mainly studies the application of sparse decompo-
sition in lithium battery film defects denoising and compari-
son between sparse decomposition and median filter. Defects
of lithium batteries film with Added noise, Gaussian noise,
Salt and Pepper noise and Addition-multiplication noise are
removed by sparse decomposition and median filter. At last
sparse decomposition and median filter are compared. Ex-
periments show that, the performance of sparse decomposi-
tion is better than median filter, sparse decomposition has
good ability to restore lithium battery film defects and re-
move the noise to identify the lithium battery film defects.
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