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Abstract: In this paper, we investigate the end-to-end performance of a dual-hop fixed gain relaying system with semi-
blind relay under asymmetric fading environments. In such environments, the wireless links of the considered system un-
dergo asymmetric multipath/shadowing fading conditions, where one link is subject to only the Nakagami-m fading, the 
other link is subject to the composite Nakagami-lognormal fading which is approximated by using mixture gamma fading 
model. First, the cumulative distribution function (CDF), the moment generating function (MGF) and the moments of the 
end-to-end signal-to-noise ratio (SNR) are derived under two asymmetric scenarios. Then, novel closed-form expressions 
of the outage probability, the average end-to-end SNR, the symbol error rate and the ergodic capacity for the dual-hop 
system are obtained based on the CDF and the MGF, respectively. Finally, some numerical and simulation results are 
shown and discussed to validate the accuracy of the analytical results under different scenarios, such as varying average 
SNR, fading parameters per hop, the choice of the semi-blind gain and the location of relaying nodes. 
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1. INTRODUCTION 

Wireless relaying transmissions have emerged as a 
promising technique for the high data-rate coverage re-
quired in the wireless communication networks [1]. In such 
networks, one source node communicates with one destina-
tion node through one or several intermediate nodes called 
relays. In the past few years, as an important relay trans-
mission strategy, amplify-and-forward (AF) fixed gain sys-
tems have been widely investigated in terms of outage 
probability (OP), average bit/symbol error rate 
(ABER/ASER) and ergodic capacity for various system 
models and fading channel models, such as [2-5] and the 
references therein. This can be due to the fact that the fixed 
gain relay systems are not complicated and are easy to de-
ploy which makes them more attractive from a practical 
viewpoint as compared to the variable gain AF relaying 
systems. 

Recently, the interest in researching the asymmetric (or 
mixed) fading models has increased where all the single-
hop links in wireless relaying systems experience different 
fading conditions. The authors in [6] and [7] first studied 
the end-to-end performance of dual-hop AF, relaying with 
both channel state information (CSI) based and fixed again 
over mixed Rayleigh and Rician fading channels, respec-
tively. After that, more cooperative relaying models are 
studied in mixed Rayleigh and Rician fading channels, 
such as [8, 9]. In [10], the authors analyzed the perfor-
mance of dual-hop AF relaying in mixed Nakagami-m and 
Rician fading channels. In [11], the authors studied the 
performance of a decode-and-forward cooperative system  
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under mixed Rayleigh and generalized Gamma fading 
channels. Performance analysis of dual-hop AF relaying 
systems is studied over mixed �-� η-­‐µμand �-�κ-­‐µμ fading 
channels in [12]. The authors in [13] and [14] investigated 
the performance of the dual-hop fixed gain relaying system 
over composite multipath/ shadowing fading channels, 
where the composite Nakagami-m/lognormal (NL) distri-
bution is approximated by using generalized-K (KG) dis-
tribution. Since the probability density function (PDF) of 
average signal-to-noise ratio (SNR) over KG fading chan-
nel includes modified Bessel functions, the outage proba-
bility and ASER in [13] include Meijer’s G functions and 
some infinite-series representations. Some expressions re-
main complicated and intractable. In [14], the end-to-end 
moment generating function (MGF) is expressed by using 
Lommel function in the first scenario which the first hop 
undergoes in Rayleigh fading. Some approximations and 
bounds of the end-to-end MGF are derived in the second 
scenario which the first hop is subject to KG fading. To the 
best of our knowledge, some exact and simple closed-form 
expressions of the performance metric for the dual-hop 
fixed gain relaying system have not as yet been found over 
composite multipath/shadowing scenarios. Especially, no 
exact closed-form expression of the ergodic capacity for the 
dual-hop AF fixed gain relaying has been derived over any 
fading channels. 

In [15], the authors developed an approach to approxi-
mate composite NL distribution by using mixture gamma 
(MG) distribution. This distribution avoids the above-
mentioned problems, and some exact and simple results are 
obtained by adjusting the number of gamma distribution. In 
[16], the authors studied the end-to-end performance of 
dual-hop AF based CSI over composite NL fading chan-
nels using MG model, and found it is more precise and 
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amenable to approximate the NL distribution by using MG 
model than KG model. 

In this paper, we consider an asymmetric scenario of a 
dual-hop AF fixed-gain relaying system with semi-blind in 
a wireless propagation environment, where multipath fad-
ing, shadowing and the propagation path loss occur simul-
taneously. The semi-blind relaying only considers the sta-
tistical CSI of the first hop channels, and causes some per-
formance degradation compared with the variable gain AF 
relaying. The S−R (first-hop) and the R−D (second-hop) 
links experience Nakagami-m or NL fading, where the NL 
fading model is approximated by using MG fading model. 
The main contribution of this paper is to first derive the 
statistics of the end-to-end SNR for the dual-hop fixed gain 
system, including the cumulative distribution function 
(CDF), the MGF and the moments. Then, some exact and 
simple closed-form expressions for the OP, the average 
SNR, the ASER, and the ergodic capacity are derived based 
on the analytical expressions of CDF and MGF, respectively. 
Also, two expressions for the parameter Z which describes 
the semi-blind relay gain is derived and discussed. With 
these results, we show various numerical and simulation 
results to confirm the accuracy of the proposed analysis 
under different conditions, such as varying average SNR, 
fading parameters per hop, the choice of the semi-blind 
gain and the location of relaying nodes. 

2. SYSTEM AND CHANNEL MODELS 

We consider a wireless dual-hop AF fixed gain relaying 
system in a mixed multipath/shadowing environment. The 
source node (S) communicates with the destination node (D) 
via a relaying node (R).The whole transmission is divided 
into two phases. In the first phase, S only transmits its sig-
nals to R, and in the second phase, R amplifies the received 
signals by a gain factor β and then forwards their amplified 
versions to D. Without loss of generality, we assume that the 
average powers of S and R are normalized to unity. If β is 
selected according to the fixed relay gain, which is defined 
as β2= 1/ZN0β! = P! ZN! as in [2]. Thus, the instantaneous 
end-to-end SNR, γSRD, at the destination can be expressed as 
in [2] 
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where γi=ρi|hi|2 is the instantaneous SNR of the ith-hop link, 
|hi| is the fading amplitude of the ith hop link, i�{1,2}, 
ρi=1/N0 denotes the un-faded SNR, N0 is the power of the 
additive white Gaussian noise component, Z is a constant for 
a fixed gain β. Then, iγ =ρE[|hi|2]=ρΩi denotes the average 
SNR of the ith -hop link, E[•] is the statistical expectation, Ωi 
denotes the deviation of |hi|2. Due to the capture of the path-
loss effect, we define the local mean power Ωi=(d0/di)ε, d0 
denotes the distance between S and D, di is the distance of 
the ith hop link, and ε is the path-loss exponent. 

For (1), we consider two asymmetric scenarios. For 
the first asymmetric scenario denoted by S1, the first-hop 
link is subject to Nakagami-m fading and the second-hop 
link is subject to NL fading. In contrast, when the first-
hop link undergoes NL fading and the second-hop link is 

subject to Nakagami-m fading, this fading condition is 
identified as S2. Nakagami-m fading is more general and 
versatile, and covers a broad variety of multi-path fading. 
The proposed model can represent either an up or down 
link in a mobile communication network, such as a mo-
bile station at the edge of the cell acts as S, another mo-
bile (or fixed) station as R and a base station as D. 

If the ith-hop link experiences Nakagami-m fading, γi is a 
Gamma distributed variable with the PDF given by [17] 
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fading parameter and is a integer. The CDF of γi can be ob-
tained as: 
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Where,   !(i,i)  is the upper incomplete gamma func-
tion. 

 When the ith-hop link experiences NL fading, γi is a 
composite Gamma-lognormal distribution variable with the 
PDF given by [17] 
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where µi and λi  are the mean and the standard deviation of 
lognormal shadowing, respectively, λi=(ln10/10)σ, µi= lnΩi, 
σ  denotes the standard deviation in dB. 

Since a closed-form expression of (4) is not available in 
the open literature, the performance metrics of digital com-
munication systems over NL distribution are intractable or 
difficult. Some approximations or simple forms of (4) have 
been paid great attention recently, such as KG, ! and MG 
fading models. Due to that KG and models include modified 
Bessel functions in PDFs, some expressions of the perfor-
mance metrics still keep mathematical complications, and 
further approximations have to be adopted as in [19] and 
[20]. In order to avoid the above problems, we use MG dis-
tribution presented in [15] to approximate the composite NL 
distribution in this paper. Thus, the PDF of γi can be ex-
pressed as: 
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is the normalization factor, jt and jw are weight factors and 
abscissas for Gaussian-Hermite integration, jt and jw for 
different N values are available in [21, Table (25.10)]. 

The CDF of γi over MG fading can be obtained as: 
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3. STATISTICS OF END-TO-END SNR 

In this section, we first derive the closed-form CDF ex-
pressions of the end-to-end SNR for the dual-hop fixed gain 
system under S1 and S2, and then find their MGFs and the 
qth moments based on the CDF expressions. 

3.1. CDF of end-to-end SNR 

For the dual-hop fixed gain system, by using (1), the 
CDF of γSRD can be expressed as: 
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In the case of scenario S1, since the first-hop link is only 
subject to Nakagami-m fading, γ1 is a gamma distributed 
random variable. Thus, we can obtain the term Pr[•|•] in (7) 
as: 
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By using eq. (5) and eq. (8), and substituting them into 
(7), and with the help of the series expression of Γ(*; *) de-
fined in [18, (8.352.2)], the binomial expansion defined in 
[18, (1.111)], and (3.471.9) in [18], after applying some al-
gebraic manipulations, eq. (7) can be rewritten as: 
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where ! [( )! !]j
kC j j k k= −  is the binomial coefficients, Kα(•) 

is the second kind modified Bessel function of order α. 

Similarly, for the scenario S2, due to that the shadowed 
fading is considered in the first-hop link, γ1 is a gamma-
lognormal distributed random variable. By using (6), we can 
obtain the term Pr[•|•] in (7) as: 
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Similar as eq. (9), and substituting eq. (2) and (10) into 
eq. (7), the CDF of γSRD under the scenario S2 can be given 
by 
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3.2. MGF of end-to-end SNR 

Due to the fact that MGF is defined as Laplace transform 
of PDF, MGF can also be obtained by using CDF. By using 
the integration property of Laplace transform, the MGF of 
γSRD can be expressed as: 

0
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In the case scenario of S1, by expressing 
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function form defined in [22, (03.04.26.0009.01) and [22, 
(01.03.26.0004.01), and substituting eq. (9) into eq. (12), and 
with the help of (6.621.3) in [18], after applying some alge-
braic manipulations, the MGF of γSRD under the scenario S1 
can be given by 
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where G[•|•] is the Meijer’s G-function. 

Similar as eq. (13), and substituting eq. (11) into eq. (12), 
the MGF of γSRD under the scenario S2 can be given by 
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3.3. The qth Moment of end-to-end SNR 

The qth moment of the end-to-end SNR can be derived by 
using CDF as: 
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Similar to eq. (13), and substituting eq. (9) into eq. (15), 
the qth moment of γSRD under the scenario S1 can be given by 
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Then, the qth moment of γSRD under the scenario S2 can 
be given by 
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4. PERFORMANCE ANALYSIS 

In this section, based on the statistics of the end-to-end 
SNR in section 3, we derived the closed-form expressions of 
the OP, the average SNR, the ASER and the ergodic capacity 
over mixed fading channels, respectively. Then, the selective 
strategies of the semi-blind gain are discussed. 
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4.1. Outage Probability 

The OP is an important performance metric that is com-
monly used to characterize a digital communication system. 
It is defined as the probability that the instantaneous end-to-
end SNR falls below a given threshold (γth), this is, 
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SNR. Using eq. (9) and eq. (11), a uniform expression of the 
OP under both S1 and S2 can be obtained as: 
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4.2. Average end-to-end SNR and Amount of Fading  

The average end-to-end SNR is a useful performance 
measure serving as an excellent indicator of the overall sys-
tem’s fidelity. Therefore, the average end-to-end SNRs for 
the dual-hop fixed gain system can be obtained by setting 
q=1 in eq. (16) and (17) under both S1 and S2, respectively. 

The amount of fading (AoF) is a unified measure of the 
severity of fading, which is typically independent of the av-
erage fading power and is defined as: 

  
AoF = µ(! 2 ) µ2(! )"1  in [17]. The AoFs of dual-hop fixed 

gain relaying system can be obtained by setting q=1 and 2 in 
(16) and (17) under both S1 and S2, respectively. 

4.3. Average Symbol Error Rate 

Using the MGF-based approach, we can obtain the 
closed-form expression of ABER/SER of the above dual-
hop systems over mixed fading channels. For many coher-
ent demodulation schemes, the ASER for M-ary phase-
shift keying signals (M-PSK) can be given by [17] 
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where gM=sin2(π/M). Thus, the ASER of MPSK for dual-
hop fixed gain system can be numerically evaluated by 
substituting eq. (13) and eq. (14) into eq. (19) under both 
S1 and S2. These can be done with some elementary nu-
merical integration techniques. 

4.4. Ergodic Capacity 

For a dual-hop AF system with fixed gain, the ergodic 
capacity can be obtained as: 

  
C = !" ln 1+ #
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where ∆=1/2ln2, the factor 1/2 accounts for the fact that the 
transmission process takes place in two orthogonal channels. 

Since an exact closed-form expression in (20) over mixed 
fading channels is not mathematically tractable by directly 
using a traditional approach (i.e., finding the PDF of γSRD), 
we restructure eq. (20) as in [23] 
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In order to find the closed-form expression of (21), we 
must obtain the closed-form expressions of 

1C and 
2C . 

Here, we let X=γ2/Z, Y=1+γ1, U=XY. Thus, the key prob-
lem is to find the PDFs of variables X, Y and U, respec-
tively. 

In the asymmetric case of S1, with the help of eq. (2) and 
eq. (5), and using the variable transform method, the PDFs 
of X and Y can be obtained, respectively, as: 
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Then, by using eq. (22), the closed-form expression of 
2C  can be written as: 
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By expressing 1,2 1,1
2,2 1,0ln(1 ) [ ]x G x+ =  in eq. (24) as a Mei-

jer’s G function defined in [22, (01.04.26.0003.01)], and 
using (07.34.21.0011.01) in [22], eq. (24) can be rewritten as: 
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In the following, for the sake of finding the PDF of U, we 
let V=X as an auxiliary variable. Due to the fact of the inde-
pendence between γ1 and γ2, X and Y are also independent of 
each other. Thus, by using Jacobian determinant, we can 
obtain the composite PDF of V and U as: 
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By using eq. (22) and (23), and the binomial expansion 
defined in [18] when mi is integer, and with the aid of 
(6.621.3) in [18], the PDF of U can be written as: 
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By using eq. (27), similar as eq. (25), the closed-form 
expression of 

1C  can be obtained as: 
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Then, by substituting eq. (25) and eq. (28) into eq. (21), 
we can obtain the exact closed-form expression of the er-
godic capacity under S1. 
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In the asymmetric case of S2, with the help of eq. (2) and 
eq. (5), and using the variable transform method, the PDFs 
of X and Y can be obtained, respectively, as: 
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Similar as eq. (27), by using eq. (29) and eq. (30), the 
PDF of U in the asymmetric case of S2 can be written as: 
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Thus, by using eq. (29) and eq. (31), after applying some 
algebraic manipulations, we can obtain the closed-form ex-
pressions of 

1C and 2C  under S2, respectively, then substi-
tuting them into (21), the ergodic capacity under S2 can be 
expressed as: 
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4.5. The Choice of the Fixed Relay Gain 

For the dual-hop fixed gain system using semi-blind re-
lay, the relay gain is determined by the channel statistics at 
the first hop. In general, there are two major schemes to cal-
culate the semi-blind gain as in [5]. 

In the first scheme, the fixed-gain relaying factor β is 
chosen equal to the average of CSI assisted gain as: 
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Since the first-hop link undergoes Nakagami-m fading in 
the case of scenario S1, the constant Z is given by 
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Similarly, since the first-hop link undergoes NL fading in 
the case of scenario S2, the constant Z is given by 
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In the second scheme, the fixed-gain relaying factor β is 
chosen as: 
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Thus, the constant Z is determined by the average SNR of 
the first-hop in the case of the scenarios of S1 and S2, and its 
uniform expression can be obtained as: 
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5. NUMERICAL RESULTS AND DISCUSSION 

In this section, we present some numerical and simula-
tion results to evaluate the performance of the dual-hop fixed 
gain system using semi-blind schemes in mixed multi-
path/shadowing fading channels. 

Fig. (1) illustrates the OP versus the un-faded SNR (ρ) 
under both S1 (Na/MG) and S2 (MG/Na) scenarios where 
m1=m2=2, and γth=5dB. The impacts of the shadowing pa-
rameter (σ) and the constant (Z) on the OP are only consid-
ered. The impact of the multipath fading parameter (m) on 
the OP can be found in [14]. In this case, a symmetric net-
work geometry is assumed, this is, d0=1, d1=d2=0.5, ε=4, N 
=10 for MG distribution. 

 As expected, it can be seen from Fig. (1) that the OP is 
improved as ρ increases, and decreases when the shadowing 

 

Fig. (1). Outage probability for the dual-hop fixed gain system versus the un-faded SNR (ρ) under both S1 and S2 scenarios. 
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deviation (σ) increases (σ=4.5dB→10dB) under both S1 and 
S2. The impact of fading asymmetry on the OP, under the 
case of S1 shows better performance than S2 using Z2 in the 
entire range of ρ, and the performance of both cases using Z1 
outperforms that using Z2, whereas, the case under S1 is not 
always better than the one under S2 by using Z1. These re-
sults can be explained from two points. It is a fact that for the 
dual-hop fixed gain system the end-to-end performance is 
dominated by the first-hop channel gain. The other fact is 
that the calculation of the fixed-gain in (33) and (36) differs 
in the position of the expectation operator. The case using Z1 
averages the received signal-plus-noise power, and the case 
using Z2 only averages the received signal power, such that 
Z2 is always greater than Z1. It can be proved from Fig. (2), 
and the value of Z1 under S2 (MG/Na) scenarios is mini-
mum. Thus, it can be seen from Fig. (1) that the case under 
S2 using Z1 shows almost similar performance as the case 
under S1 in medium and high SNR. At the same time, the 

simulation results in Fig. (1) coincide perfectly with the ana-
lytical results in (9) and (11), and verify the mathematical 
accuracy. 

Fig. (3) shows the ASER of MPSK versus the un-faded 
SNR (ρ) under both S1 and S2 scenarios where m1=m2=2, 
and σ=4.5dB. In this case, the symmetric network geometry 
is assumed as in Fig. (1). It can be seen from Fig. (3) that 
ASER of MPSK is improved as ρ increases. The impact of 
fading asymmetry on ASER shows agreement with the ones 
on the OP in Fig. (1). As expected, the performance of 
MPSK shows better when the value of M is smaller. At the 
same time, the simulation results still agree perfectly with 
the analytical results. 

In Fig. (4), we show the impact of the relay location on 
the ABER of BPSK for the dual-hop fixed-gain system un-
der both S1 and S2 scenarios where m1=m2=2. In this sec-
tion, the asymmetric network geometry is examined where R 
is moved on a straight line between S and D, d1 denotes the 

 
Fig. (2). Fixed-gain constant (Z) versus the un-faded SNR (ρ) under both S1 and S2 scenarios. 

 
Fig. (3). Average SER of MPSK for the dual-hop fixed gain system versus the un-faded SNR (ρ) under both S1 and S2 scenarios. 
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distance between S and R, ρ=10dB, N=10 for MG distribu-
tion. From Fig. (4), it can be seen that the optimum perfor-
mance under both S1 and S2 scenarios is located at the right 
of the middle, and the case under S1 is closer to D. These re-
sults can be caused by the first-hop fading gain and the path 
loss. It is due to the fact that the optimum performance often 
takes place when the first-hop and second-hop have a similar 
performance. For example, the first-hop fading gain is better 
than the second-hop under the case of S1, such that the first-
hop needs more path loss than the second-hop. If the shadow 
deviation increases (σ=4.5dB→σ=8dB), the location of the 
optimum performance moves towards D. These results are 
helpful to the selection of relaying nodes in relaying networks. 

Fig. (5) illustrates the ergodic capacity in (21) versus the 
un-faded SNR (ρ) under different fading parameters, where 
d1=d2=0.5, and the constant Z2 is selected. As expected, the 

ergodic capacity increases with increasing ρ from this figure. 
At the same time, it is clear that they match well between our 
exact analytical results and simulations over entire range of ρ. 
Fig. (5a) shows the impact of multipath parameters (m) on 
ergodic capacity. It can be seen that the ergodic capacity 
increases with increasing mi (i=1,2), and that the capacity 
performance under S1 outperforms that under S2. It can be 
explained by the fact that the end-to-end performance is 
dominated by the channel gain of the first-hop for the dual-
hop fixed gain system. Fig. (5b) shows the impact of shad-
owing (σ) parameters on ergodic capacity. As expected, the 
ergodic capacity decreases with increasing σi under both S1 
and S2. 

Fig. (6) plots the AoF of the dual hop fixed gain system 
versus the un-faded SNR (ρ), where m1=m2=2, and σ=4.5dB. 
It can be seen that the AoF changes slightly when ρ increas-

 
Fig. (4). Average SER of BPSK for the dual-hop fixed gain system versus d1 under both S1 and S2 scenarios, and Z2. 

 

Fig. (5). Ergodic capacity for the dual-hop fixed gain system versus the un-faded SNR (ρ) under both S1 and S2 scenarios. 
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es, or when the first-hop link undergoes Nakagami-m fad-
ing. However, it changes largely when the first-hop link un-
dergoes MG fading. 

CONCLUSION 

In this paper, we investigate the end-to-end performance 
of a dual-hop fixed gain relaying system with semi-blind 
over mixed multipath/shadowing fading conditions, where 
the composite NL fading is approximated by using MG fad-
ing model. First, we derived the CDF, the MGF and the mo-
ments of the end-to-end SNR which is derived under S1 and 
S2 scenarios. The analytical expressions of CDF and MGF, 
novel closed-form expressions of the OP, the ASER and the 
ergodic capacity for the dual-hop system are derived, respec-
tively. Finally, some numerical and simulation results are 
shown and discussed to validate the accuracy of the analyti-
cal results under different scenarios, such as varying average 
SNR, fading parameters per hop, the choice of the semi-
blind gain and the location of relaying node. These works in 
this paper can be helpful to analyze the performance of co-
operative relaying systems over composite fading channels 
in the future. 
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