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Abstract:

Aims:

This article proposes an alternate view of dimensional homogeneity that greatly simplifies the solution of nonlinear engineering
problems.

Background:

The conventional view of dimensional homogeneity is generally credited to Fourier (1822).

Objectives:

The objectives of this article are to describe the alternate view of dimensional homogeneity and to demonstrate its application to
practical engineering problems.

Methods:

By presenting the solution of several nonlinear engineering problems, this article compares solutions based on the alternate view of
dimensional homogeneity with solutions based on the conventional view.

Results:

Example  problems  demonstrate  that  nonlinear  engineering  problems  are  much  easier  to  solve  if  the  solutions  are  based  on  the
alternate view of dimensional homogeneity rather than the conventional view. The relative simplicity results because the alternate
view of dimensional homogeneity reduces the number of variables in nonlinear problems.

Conclusion:

The widely accepted view of dimensional homogeneity should be replaced by the alternate view because the solution of nonlinear
engineering problems is greatly simplified.

Keywords: Dimensional homogeneity, Parameter symbolism, Nonlinear phenomena, Engineering laws, Engineering science, Heat
transfer, Modulus, Heat transfer coefficient, Parametric equations.

1. INTRODUCTION

The alternate view of dimensional homogeneity described herein is founded on the axiom:

Different things cannot be related. Therefore, equations cannot describe how different things are related.

Equations cannot describe how ducks are related to pencils, how trees are related to bicycles, how stress is related to
strain, how heat flux is related to temperature difference, etc.
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Equations can oftentimes describe how the numerical values of different things are related-how the numerical value
of stress is related to the numerical value of strain, how the numerical value of heat flux is related to the numerical value
of temperature difference, etc.

In the alternate view of dimensional homogeneity:

Parameter symbols represent numerical value but not dimension.
Equations are inherently dimensionless and dimensionally homogeneous.
Equations describe how numerical values are related. If an equation is quantitative, the dimension units that
underlie symbols must be specified in an accompanying nomenclature.
Parameters such as material modulus and heat transfer coefficient are not required for dimensional homogeneity,
and they are abandoned.
The solution of nonlinear problems is greatly simplified because abandonment of parameters such as material
modulus and heat transfer coefficient reduces the number of variables.

This  article  describes  how  the  alternate  view  of  dimensional  homogeneity  impacts  engineering  science,  and
demonstrates how to solve engineering problems in a dimensionally homogeneous way without using parameters such
as heat transfer coefficient and material modulus.

2. THE HISTORY OF DIMENSIONAL HOMOGENEITY

For more than 2000 years--from the time of Aristotle until early in the nineteenth century-scientists and engineers
globally agreed that, with one exception, dimensioned parameters cannot be added, subtracted, multiplied, or divided.
The one exception is that a dimensioned parameter can be divided by the same dimensioned parameter. For example,
the number of feet can be divided by the number of feet, and the number of seconds can be divided by the number of
seconds, but the number of feet cannot be divided by the number of seconds.

The following verbal equation by Galileo [1] is typical. Note that the equation is dimensionless and dimensionally
homogeneous because it consists of speed/speed, time/time, and (space run through)/(space run through).

“If two moveables are carried in equable motion, the ratio of their speeds will be compounded from the ratio of
spaces run through and from the inverse ratio of times”.

A proportion was often used to describe the relationship between two parameters because a proportion would not
require the addition, subtraction, multiplication, or division of dimensioned parameters. For example, Newton’s [2]
second law of motion is not Eq. (1). Newton and his contemporaries would have considered Eq. (1) irrational because it
requires that dimensioned parameter “m” be multiplied by dimensioned parameter “a”.

Newton’s second law of motion as published in Newton [2] is the proportion

A change in motion is proportional to the motive force impressed and takes place along the straight line in which
that force is impressed.

Symbolically, Newton’s second law by Newton is Proportion (2).

Fourier [3] had a very different view of dimensional homogeneity. In his view:

Dimensioned parameters can be multiplied and divided.
Dimensioned parameters cannot be added or subtracted.
every undetermined magnitude or constant has one dimension proper to itself.

Fourier  concluded  that  Proportion  (3)  correlated  his  data.  But  he  did  not  want  a  proportion.  He  wanted  a
dimensionally  homogeneous  equation.

(1)

(2)

f = ma  

a  f 

(3)q  T  
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Transforming Proportion (3) into an equation results in Eq. (4). Note that Eq. (4) is not dimensionally homogeneous
because “c” is dimensionless.

Fourier recognized that he could make Eq. (4) dimensionally homogeneous only if he could rationally assign the
required  dimensions  to  pure  number  “c”.  That  is  why  he  stated  that  a  constant  in  a  parametric  equation  “has  one
dimension proper to itself”. This statement made it seem rational to assign the required dimensions to pure number “c”,
which  Fourier  did,  thereby  transforming  pure  number  “c”  into  dimensioned  parameter  h,  and  transforming
dimensionally  inhomogeneous  Eq.  (4)  into  dimensionally  homogeneous  Eq.  (5a)1.

Note  that  Eq.  (5a)  requires  that  dimensioned  parameter  h  be  multiplied  by  dimensioned  parameter  ΔT.  Fourier
offered no proof that it is rational to multiply dimensioned parameters, even though it was a revolutionary change from
the view held by world-class scientists and engineers for more than 2000 years. The only “proof” given by Fourier is the
claim that  his  view of  dimensional  homogeneity “is  the equivalent  of  the fundamental  lemmas (axioms) which the
Greeks have left us without proof”.

Fourier did not present the lemmas in his nearly 500-page treatise, nor did he cite a reference to them. Presumably,
his contemporaries accepted his view of dimensional homogeneity without proof because he solved numerous practical
problems that his contemporaries were unable to solve.

Although Fourier is generally credited with the current view of dimensional homogeneity, it is important to note that
the current view differs from Fourier’s view in a fundamental and very important way. Langhaar [4] states:

“Dimensions  must  not  be  assigned  to  numbers,  for  then  any  equation  could  be  regarded  as  dimensionally
homogeneous”.

Therefore, parameters such as h, E, and R should be abandoned because they were created by assigning dimensions
to numbers, in violation of the current view that “dimensions must not be assigned to numbers, for then any equation
could be regarded as dimensionally homogeneous”.

3. THE MEANING OF ENGINEERING LAWS

When Eq. (5a) was conceived by Fourier, it was an equation because it described behavior, and it was a law because
it  always applied. It  stated that,  if  heat transfer is by steady-state forced convection to atmospheric air,  q is always
proportional to ΔT, and h is always a proportionality constant.

Sometime near the beginning of the twentieth century, Eq. (5a) ceased to be an equation, and became a definition.
Bird, Stewart, and Lightfoot [5] and Bejan [6] state that Eq. (5a) is “the defining equation for h”. Note the following:

Based on generally accepted mathematical terminology, Eq. (5a) is an equation that describes a proportional
relationship between q and ΔT, and h is a proportionality constant.
Since sometime near the beginning of the twentieth century, Eq. (5a) has not been an equation because it does
not describe the relationship between q and ΔT.
Although Eq. (5a) is often referred to as a “law”, it cannot be a law because it is not an equation.
Eq. (5a) is a definition in the form of an equation. It defines h to be identical to and interchangeable with q/ΔT.
Consequently, Eqs. (5a) and (5b) are identical.

1 Although Eq. (5a) is generally referred to as “Newton’s law of cooling”, Adiutori [7 and 8] and Bejan [6] state that Eq. (5a) and h were actually
conceived by Fourier [3].

(4)

(5a)

q = cT 

q = hT 

(5b)q = (q/T)T 
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When Eq. (5a) became a definition of h, it should have been replaced by Definition (6).

Eq. (5a) must be interpreted to mean, and Definition (6) does mean, that q may or may not be proportional to
ΔT, and h may be a constant or a variable.
There  has  not  been  a  law  of  convective  heat  transfer  since  Eq.  (5a)  ceased  to  be  a  law  sometime  near  the
beginning of the twentieth century.

By analogy, σ = Eε is the defining equation for E, and it defines E to be identical to and interchangeable with σ/ε. If
σ is proportional to ε, E is a constant referred to as Eelastic. If σ is not proportional to ε, E is a variable referred to as Esecant.

The analogy does not apply to R and V = IR because they are used only if R is a proportionality constant. For many
decades, there have been two branches of resistive electrical science. One branch deals with proportional behavior using
V = IR. The other branch deals with nonlinear behavior using I = f{V}.

Note  that  I  =  f{V}  has  been  used  globally  for  many  decades  in  spite  of  the  fact  that  it  is  dimensionally
inhomogeneous  if  parameter  symbols  represent  numerical  value  and  dimension.

4.  WHY  PARAMETERS  SUCH  AS  h,  E,  AND  R  ARE  REQUIRED  IF  PARAMETER  SYMBOLS
REPRESENT NUMERICAL VALUE AND DIMENSION

If parameter symbols represent numerical value and dimension, parameters such as h, E, and R are required because
it is not possible to have a dimensionally homogeneous law in the form of a proportional equation unless the coefficient
in the equation is the ratio of the two parameters in the equation.

For example, Eq. (5a) is a law in the form of a proportional equation, and it is dimensionally homogeneous because
the coefficient in the equation is the ratio of the two parameters in the equation, q and ΔT.

5.  WHY  PARAMETERS  SUCH  AS  h,  E,  AND  R  CAN  BE  ABANDONED  IF  PARAMETER  SYMBOLS
REPRESENT NUMERICAL VALUE BUT NOT DIMENSION

If parameter symbols represent numerical value and dimension, parameters such as h, E, and R are required so that
laws in the form of proportional equations can be dimensionally homogeneous. Since parameters such as h, E, and R
serve no other purpose, they can be abandoned in the alternate view of dimensional homogeneity because equations are
inherently dimensionally homogeneous.

6. MAXWELL’S 1873 VIEW OF OHM’S LAW AND R

Maxwell [9] explains why, in 1873, V = IR was a law, and R had scientific value:

.  .  .  the resistance of a conductor .  .  .  is defined to be the ratio of the electromotive force to the strength of the
current which it produces. The introduction of this term would have been of no scientific value unless Ohm had shown,
as he did experimentally,  that .  .  .  it  has a definite value which is altered only when the nature of the conductor is
altered.

In the first place, then, the resistance of the conductor is independent of the strength of the current flowing through
it.

The resistance of a conductor may be measured to within one ten thousandth, . . . and so many conductors have
been tested that our assurance of the truth of Ohm’s Law is now very high.

In summary:

R is defined to be V/I. In other words, R and V/I are identical and interchangeable.
By 1873, many conductors had been tested with great accuracy, and all conductors tested indicated that R (ie
V/I) is independent of I--ie indicated that Ohm’s law is a true law because it is always obeyed.
In 1873, R (ie V/I) had scientific value because R was always independent of I.

Maxwell  indicates  that,  if  conductors  that  do  not  obey  Ohm’s  law  (such  as  semiconductors)  should  ever  be
discovered or invented, Ohm’s law would no longer be a true law, R would no longer have scientific value, and Ohm’s
law and R should be abandoned.

(6)h  q/T 
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The invention of semiconductors did not result in abandoning R and Ohm’s law. It resulted in the creation of a
second branch of resistive electrical science that applies to components that do not obey Ohm’s law. The second branch
uses I = f{V} instead of V = IR.

7. ENGINEERING LAWS BASED ON THE ALTERNATE VIEW OF DIMENSIONAL HOMOGENEITY--ie
BASED ON PARAMETER SYMBOLS THAT REPRESENT NUMERICAL VALUE BUT NOT DIMENSION

In  terms  of  parameter  symbols  that  represent  numerical  value  but  not  dimension,  experiment  indicates  that  the
relationship between q and ΔT, and the relationship between σ and ε, and the relationship between V and I, may be
proportional or linear or nonlinear. Therefore, engineering laws must allow that relationships may be proportional or
linear or nonlinear.

Eq. (7) states that y is related to x, and the relationship may be proportional, or linear, or nonlinear. Eq. (7) is an
equation because it describes behavior, and it is a law because it is always obeyed.

Eq. (8) states that q is related to ΔT, and the relationship may be proportional or linear or nonlinear. Eq. (8) is an
equation because it describes behavior, and it is a law because it is always obeyed. Note that Eq. (8) is dimensionally
homogeneous  because  parameter  symbols  represent  numerical  value  but  not  dimension.  Note  that  Eq.  (8)  does  not
include h.

Equations (9) and (10) result by analogy. Note that Eq. (9) does not include E, and Eq. (10) does not include R.

In the alternate view of dimensional homogeneity, Equations (8) to (10) replace defining Equations (11) to (13).

8. COMPARING MATHEMATICAL ANALOGS OF ENGINEERING LAWS

Eq. (7) is the mathematical analog of Eqs. (8) to (10).
Eq. (7) is often used in mathematics.
Eq. (14) is the mathematical analog of defining Eqs. (11) to (13).

Eq. (14) is never used in mathematics.
Nonlinear engineering problems are much easier to solve using Eqs. (8) to (10) instead of Eqs. (11) to (13) for
the same reason that nonlinear mathematical problems are much easier to solve using Eq. (7) instead of Eq. (14).

(7)

(8a)

(8b)

(9a)

(9b)

(10a)

(10b)

(11)

(12)

(13)

(14)

y = f{x} 

q = f{T} 

 

T = f{q} 

 = f{}

 

 = f{}

 

V = f{I}

 

I = f{V}

q = hT  (q/T)T

 

 = E  (/) 

 

V = IR  I(V/I) 

y = (y/x)x 
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If y is a nonlinear function of x, Eq. (7) contains the two variables x and y, whereas Eq. (14) contains the three
variables  x,  y,  and  (y/x).  The  addition  of  the  third  variable  greatly  complicates  the  solution  of  nonlinear
problems.

9. THE “DIMENSIONAL EQUATIONS” WIDELY USED IN MID-TWENTIETH CENTURY

In the “dimensional equations” widely used in mid-twentieth century, parameter symbols represent numerical values
but not dimension, and dimension units that underlie parameter symbols are specified in accompanying nomenclatures.
Note that the parameter symbolism in “dimensional equations” is identical to the parameter symbolism in equations
based on the alternate view of dimensional homogeneity.

The following is an example of a “dimensional equation”:

For  the  turbulent  flow  of  gases  in  straight  tubes,  the  following  dimensional  equation  for  forced  convection  is
recommended for general use:

where cp is the specific heat of the gas at constant pressure, B.T.u./(lb.)(°F), G′ is the mass velocity, expressed as lb.
of gas/sec./sq. ft, . . . and Di′ is in inches. Perry [10]

Note that the equation is dimensionally homogeneous because parameter symbols represent numerical value but not
dimension, and the dimension units that underlie parameter symbols are specified in the accompanying nomenclature.

Equations in which parameter symbols represent numerical value but not dimension are still used, but not widely.
Holman  [11]  lists  several  dimensional  equations  including  the  following.  The  dimension  units  specified  in  the
accompanying  nomenclature  are  watts,  meters,  and  Centigrade.

10. THE TRANSFORMATION FROM q = hΔT TO ΔT = f{q} AND q = f{ΔT}

The transformation from q = hΔT to ΔT = f{q} and q = f{ΔT} requires that q and ΔT be separated in all equations
that explicitly or implicitly include q/ΔT (ie include h).

Eq. (15)2 is an important equation in the analysis of heat transfer between two fluids separated by a flat wall. To
separate q and ΔT, substitute q/ΔTtotal for U, q/ΔT1 for h1, q/ΔTwall for kwall/twall, and q/ΔT2 for h2, then separate q and ΔT,
resulting in Eq. (16). Eqs. (15) and (16) are identical--they differ only in form. In the alternate view of homogeneity,
Eq. (16) replaces Eq. (15).

Eq. (17) is a heat transfer coefficient correlation often used in the analysis of convective heat transfer. To separate q
and  ΔT,  replace  Nu  with  qD/ΔTk,  then  separate  q  and  ΔT,  resulting  in  Eq.  (18).  Note  that,  since  Eq.  (18)  is  not
quantitative, it is not necessary to specify dimension units that underlie parameter symbols.

2 Text books often present Eq. (15) in the form U = 1/(1/h1 + twall/kwall+ 1/h2), a form that applies only if the relationship between q and ΔT1 and ΔT2 is
proportional, and the wall is flat. Eq. (15) always applies if the wall is flat.

(15)

(16)

(17)

(18a)

(18b)

 

h = 16.6 cp(G)0.8/(Di)
0.2  

 

h = 5.56(∆T)3 

U = 1/(1/h1{T1} + twall/kwall+ 1/h2{T2}) 

 

Ttotal = T1{q} + Twall{q} + T2{q} 

Nu = a Reb Prc  

 

q = a (Tk/D) Reb Prc 
 

T = qD/(akRebPrc) 
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It is important to note that heat transfer coefficients cannot be measured directly. h values must be determined by
measuring q and ΔT, then dividing q by ΔT. The separation of q and ΔT described above reverses the step in which q
data are divided by ΔT data, and results in correlations in the desired form q = f{ΔT} or ΔT{q}.

11.  THE  SOLUTION  OF  PROPORTIONAL  AND  MODERATELY  NONLINEAR  HEAT  TRANSFER
PROBLEMS

Table 1 describes the solution of a moderately nonlinear heat transfer problem that concerns heat transfer between
two fluids separated by a flat wall. The solution on the left side of Table 1 is based on q = hΔT. The solution on the
right  side  is  based on ΔT = f{q}.  The solutions  described in  Table  1  are  typical  of  problems in  which the  thermal
behavior of boundary layers is described by equations (rather than charts).

Table 1. The solution of a moderately nonlinear heat transfer problem based on q = hΔT and ΔT = f{q}.

Based on q = hΔT.       Based on ΔT = f{q}. –
U = 1/(1/h1{ΔT1} + t/k + 1/h2{ΔT2) ΔTtotal = ΔT1{q} + ΔTwall{q} + ΔT2{q} (1)

ΔTtotal = 320 – 200 = 120 ΔTtotal = 320 – 200 = 120 (2)

h1 = .40(ΔT1)
.33 ΔT1 = 1.99q.75 (3)

twall/kwall = .05 ΔTwall = .05q (4)

h2 = .80(ΔT2)
.50 ΔT2 = 1.16q.667 (5)

U = 1/(1/.4(ΔT1)
.33 +.05 + 1/.8(ΔT2)

.50) 120 = 1.99q.75 + .05q + 1.16q.667 (6)

Note the following in Table 1:

The equations on the left side of Table 1 are identical to the equations on the right side. They differ only in form.
The equation on the left side of Line 6 is much more difficult to solve because it contains three unknowns (U,
ΔT1, and ΔT2), whereas the equation on the right side contains one unknown (q).
The  equation  on  the  right  side  of  Line  6  can  be  solved  in  about  a  minute  using  Excel  and  trial-and-error
methodology. It would take much longer than a minute to solve the equation on the left side, and the likelihood
of error would be much greater.
If ΔT1 and ΔT2 were proportional to q--ie, if h1 and h2 were constants--the equations on both sides of Line 6,
would be simple to solve. In other words, proportional problems are very simple to solve whether the solution is
based on q = hΔT or ΔT = f{q}.
The problem in Table 1 can be solved graphically if the solution is based on ΔT = f{q} because the equation on
the right side of Line 1 can be solved graphically. The problem in Table 1 cannot be solved graphically if the
solution is based on q = hΔT because the equation on the left side of Line 1 cannot be solved graphically.

12. THE SOLUTION OF A HIGHLY NONLINEAR HEAT TRANSFER PROBLEM

12.1. The Solution of a Highly Nonlinear Heat Transfer Problem Based on q = f{ΔT}

If ΔT2{q} in Table 1 were so highly nonlinear that it included a region in which dq/dΔT2 is negative, the relationship
between q and ΔT2 would probably be described graphically in the form q vs ΔT2. The problem could have more than
one solution, and operation might be thermally unstable in the region in which dq/dΔT2 is negative. Such problems are
solved quite simply if the solution is based on q = f{ΔT}, as demonstrated by the following3:

Use the given information to plot q vs (T2 + ΔT2{q}). Note that (T2 + ΔT2{q}) is the temperature of the interface
that adjoins Fluid 2, and q is the heat flux out of that interface.
On the same chart, use the given information to plot q vs (T1 - ΔT1 - ΔTwall). Note that (T1 - ΔT1 - ΔTwall) is the
temperature of the interface that adjoins Fluid 2, and q is the heat flux into that interface.

3 Heat transfer problems can be solved based on either ΔT = f{q} or q = f{ΔT}. If a problem is highly nonlinear, the graphical solution based on q =
f{ΔT} seems more intuitive.
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At intersections of the two curves, the heat flux into the interface in Fluid 2 equals the heat flux out of that
interface.  Therefore,  intersections  are  steady-state  operating  points  provided  operation  at  the  intersection  is
thermally stable.
If  an  intersection  is  in  a  region  in  which  dq/dΔT2  is  negative,  the  operation  may  be  thermally  unstable.  To
appraise thermal stability at the intersection, inspect the chart to determine whether a small perturbation at the
intersection would shrink or grow.
If  a  small  perturbation  would  shrink,  operation  at  the  intersection  is  thermally  stable  with  respect  to  small
perturbations. (It may be thermally unstable with respect to large perturbations.)
If a small perturbation would grow, operation at the intersection is thermally unstable.

If the unstable intersection lies between two other intersections, inspection of the chart will indicate that
the instability results in hysteresis.
If  there  is  only  one  intersection,  inspection  of  the  chart  will  indicate  that  the  instability  results  in
undamped oscillations in temperature and heat flux.

12.2. The Solution of Highly Nonlinear Heat Transfer Problems Based on q = hΔT

The solution of the highly nonlinear problem above is quite simple because the solution is based on q = f{ΔT}. If
the solution is based on q = hΔT, the chart of q vs ΔT2 is replaced by a chart of h vs ΔT2 and the addition of the variable
h adds so much complexity that it is virtually impossible to determine the correct and complete solution of the problem.

13. STRESS/STRAIN PROBLEMS

13.1. The Solution of Stress/Strain Problems in the Elastic Region Based on σ = Eelasticε and σ = f{ε}

In the elastic region:

σ = Eelasticε is a proportional equation, and Eelastic is a dimensioned proportionality constant.
σ = f{ε} is the proportional equation σ = cε, and c is a dimensionless proportionality constant.
c is numerically equal to Eelastic.

Because both σ = Eelasticε and σ = cε are proportional equations, and because c and Eelastic are numerically equal, the
solution  of  elastic  problems  based  on  σ  =  cε  is  identical  to  the  solution  based  on  σ  =  Eelasticε.  The  only  difference
between the two solutions is that the symbols in one equation represent numerical value and dimension, whereas the
symbols in the other equation represent numerical value but not dimension.

13.2. Why Inelastic Stress/Strain Problems Are Much Simpler to Solve if the Solution is Based on σ = f{ε} Rather
Than σ = Esecantε

In the inelastic region, E is the variable Esecant. Because σ = Esecantε contains three variables whereas σ = f{ε} contains
two variables, inelastic problems are much simpler to solve if the solution is based on σ = f{ε}.

The bar problem below demonstrates that inelastic problems are much simpler to solve if the solutions are based on
σ = f{ε} rather than σ = Esecantε.

13.3. The Solution of a Stress/Strain Problem Using σ = Eε.

Using modulus, determine the strain in the bar shown in the following sketch.
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13.3.1. Given:

The stress in the bar is 45,000 kg/cm2.
Ebar{ε} is described in Fig. (1).

Fig. (1). Bar modulus curve.

13.3.2. Analysis

The analysis based on σ = Ebarε is not difficult, but it is time-consuming, and there is a considerable likelihood of
error.

13.4. Solve the Problem in Section 13.3 Using σ = f{ε}

Determine the strain in the bar.

13.4.1. Given:

The stress in the bar is 45,000 kg/cm2.
σ = f{ε} is described in Fig. (2).

Fig. (2). Bar stress/strain curve.
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13.4.2. Analysis and Solution

Inspection of Fig. (2) indicates that the strain in the bar may be .0015, .0036, or .0068. The given information is not
sufficient to determine a unique solution.

13.4.3. The Purpose of the Bar Problem

The purpose of the bar problem is to demonstrate that it is much easier to solve inelastic problems if E is not used in
the solution. If E is not used, the correct and complete solution of the bar problem requires less than ten seconds, and
there  is  virtually  no chance of  error.  If  E is  used,  the  correct  and complete  solution requires  much longer  than ten
seconds, and there is a considerable chance of error because the problem does not have a unique solution.

14.  WHY  “STRESS/STRAIN  CHARTS”  ARE  NOT  CHARTS  OF  STRESS  VS  STRAIN,  AND  WHY
“STRESS/STRAIN CHARTS” ARE IN PRECISELY THE FORM REQUIRED IN THE ALTERNATE VIEW
OF HOMOGENEITY

It is important to note that charts never describe how parameters are related. They always describe how numerical
values of parameters are related.

For example, stress/strain charts describe the equation σ = f{ε} in which σ and ε represent numerical value but not
dimension.  The  dimension  units  that  underlie  σ  and  ε  must  be  specified  on  the  chart,  or  in  an  accompanying
nomenclature.  Note  that  if  the  dimension  units  were  not  specified  on  Figs.  (1  and  2),  the  figures  would  not  be
quantitative.

In  other  words,  charts  are  in  precisely  the  form  required  in  the  alternate  view  of  homogeneity  because  charts
describe how numerical values are related.

CONCLUSION

The alternate view of dimensional homogeneity described herein should replace the current view, and engineering
parameters and laws should be revised accordingly.

SYMBOLS

Note: Depending on the context in which a parameter symbol is used, parameter symbols may represent numerical
value and dimension, or numerical value but not dimension,

a = acceleration

c = proportionality constant

Cp = heat capacity

D = Diameter

E = σ/ε

F = Force

G = mass velocity

h = q/ΔT

I = electric current

k = q/(dT/dx)

Nu = qD/(ΔTk)

Pr = Cpμ/k

q = heat flux

R = V/I

Re = DG/μ

s = distance traveled

t = thickness or elapsed time

T = Temperature

Ti2 = Temperature of the interface in Fluid 2

U = q/ΔTtotal
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V = average velocity or electromotive force in volts

ε = strain

μ = viscosity

σ = stress
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