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Abstract: The optical methods of Caustics, Photoelasticity and Isopachics for the evaluation of the stress intensity factors 

and the distribution of the principal stresses at a bi-material interface crack-tip, were proposed. The caustics, isochromatic 

and isopachic fringes are developed from the stress field which results from a stress function X(r, ). When the crack-tip, 

which is perpendicular to interface, is at the interface of the bi-material, the caustics, isochromatic and isopachic fringes 

depend on the properties of the two materials. So, the caustic, isochromatic and isopachic fringes are divided into two 

branches, which present a jump of values at the interface. The shape and size of the two branches of caustics, isochromatic 

and isopachic fringes depend mainly on the elastic modulus and Poisson’s ratio of the two materials. From the caustics the 

stress intensity factor KI can be calculated, while from the combination of the isochromatic and the isopachic fringes, the 

principal stresses 1, 2 can be theoretically and experimentally calculated. The optical evaluation of the stress intensity 

factors and the distribution of the principal stresses from isochromatic and isopachic fringes is presented. The stress 

intensity factors and the principal stresses at the bi-material interface crack-tip, were experimentally determined using the 

caustics and the combination photoelastic and isopachic measurements. The size and shape of the crack-tip caustics, 

isochromatic and isopachic fringes, at a bi-material interface under static load, were theoretically and experimentally 

studied. 

INTRODUCTION  

 The experimental method of transmitted caustics was 
first developed by Manogg [1] while, the experimental 
method of reflected caustics was developed by Theocaris [2]. 
The experimental method of caustics, which is based on the 
laws of geometrical optics, transforms the stress singularity 
into an optical singularity. This optical singularity gives 
much information for the evaluation of the stress field. 
According to the method of caustics, a coherent light beam 
from a laser impinges normally on the specimen in the 
vicinity of the crack tip, and the reflected rays are received 
on a reference screen at some distance from the specimen. 
When a certain load is applied to the specimen, the reflected 
light rays in the vicinity of the crack tip, where there is an 
abrupt thickness variation due to the existence of a 
singularity, are scattered and when projected on a reference 
screen placed at some distance from the specimen are 
concentrated along a curve, the so-called caustic [3]. The 
optical method of reflected caustics, as it has been developed 
during the last thirty five years, was extensively applied to 
various elastic problems containing singularities and 
especially to the problems with cracked plates, which were 
made of isotropic or birefringent materials [4].  

 The study of the behavior of a transverse crack, 
propagating through the mesophase of composites, has 
become a subject of great interest. The problem of crack 
propagation in a duplex plate was studied by Williams et al. 
[5-9] and later was approached by Dally and Kobayashi [10], 
by means of dynamic photoelasticity. Theocaris et al. [11- 
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13], have studied the influence of both the mesophase and 
the material characteristics of either phase, in biphase plates 
consisting of different materials, on the stress distribution 
around the crack tip. They have extended their study to the 
magnitude and the variation of the crack propagation 
velocities during fracture in duplex plates under dynamic 
loading [14]. Also, Theocaris et al. [15,16], have studied the 
influence of the hard or soft fiber and the mesophase layers 
in a soft-hard-soft or hard-soft-hard combination of biphase 
plate subjected to a dynamic tensile load, on the fracture 
mode and bifurcation process in both phases. Also, 
theoretical studies on this subject were carried out by 
Gdoutos et al. [17-19], Theotokoglou et al. [20-22]. The 
study of size and shape of the crack-tip caustics at a bi-
material interface, was carried out by Papadopoulos et al. 
[22,23]. 

 This work is an attempt to study the size and shape of 
crack-tip caustics, isochromatic and isopachic fringes, and 
the estimation of the principal stresses and its contour from 
the combination of the isochromatic and the isopachic 
fringes, at a bi-material interface under static load. 

Stress-Field Around The Crack-Tip 

 Two plates of moduli E1 and E2 and Poisson’s ratios 1 
and 2, are perfectly bonded along their common interface 
(see Fig. (1)). In plate (1), there is a crack perpendicular to 
the interface. The crack-tip is placed exactly at the interface 
of the two plates. To study this problem the Airy stress 
function X(r, ) used by Zak and Williams [5], is taken into 
account. This stress function is of form: 

X(r, ) = r +1F( )   (1) 

with: 
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F( ) = sin( +1) + b cos( +1) +

c sin( 1) + d cos( 1)
  (2) 

where ,b,c,d are constants and  takes values between 0 
and 1, which depends on the ratio E12=E1/E2 of the two 
plates moduli [22,23]. 

 From the stress function (1) the polar stresses at the 
crack-tip are taken: 

r = r 1

( +1) sin( +1) +

b( +1) cos( +1)

+c( 3) sin( 1) +

d( 3) cos( 1)

  (3) 

= ( +1)r 1

sin( +1) +

b cos( +1)

+c sin( 1) +

d cos( 1)

  (4) 

r = r 1

( +1) cos( +1)

b( +1) sin( +1)

+c( 1) cos( 1)

d( 1) sin( 1)

  (5) 

 The boundary conditions of the problem are written as: 

r 1
= 0 and

1
= 0 for 1 = 2

 

r 2
= 0 and 2 = 0 for 2 = 2

  (6) 

 

Fig. (1). Geometry of bi-material plate. 

1
=

2
, r 1

= r 2
, u1 = u2 ,

1 = 2 for 1 = 0 and 2 = 2

 

where u1,2, 1,2 are the displacement components. 

 

Fig. (2). Variation of  versus ratio E12=E1/E2 for Poisson’s ratios 

1= 2=0.30. 

 From the boundary conditions (6) the values of the  can 
be determined. Fig. (2) presents the variation of  versus the 
ratio E12 of the moduli of the plates. Various values of  
according to ratio E12 and Poisson’s ratios 1, 2 are given in 
Table 1. 

Table 1.  Values of  for Various Values of E12 and 1, 2 

 

E12 1 2  

1.2142 0.34 0.36 0.48 

0.82353 0.36 0.34 0.5192 

0.10 0.30 0.30 0.6966 

0.1428 0.30 0.30 0.6764 

0.2016 0.30 0.30 0.6525 

0.336 0.36 0.34 0.603 

1.00 0.30 0.30 0.50 

2.97 0.34 0.36 0.3803 

4.96 0.30 0.30 0.323 

7.03 0.30 0.30 0.2852 

9.985 0.30 0.30 0.249 

Theory of Caustics 

 The deflection of light, either reflected from, or passing 
through a generic point P of the plate in the vicinity of the 
crack-tip, is given by the deviation vector W, which, for an 
optically isotropic material, is expressed by [1-3]: 

Wr ,t , f = Xr ,t , f i +Yr ,t , f j = r + wr ,t , f   (7) 

with: 

wr ,t , f = z0tcr ,t , f gradx,y ( r + ),

r = r cos i + r sin j
  (8) 

where  is a multiplying factor, which is equal to unity, for 
reflected from the front (f) face or transmitted (t) light rays 
and equal to 2 for light rays reflected from the rear (r) face of 
the plate, cr,t,f are the stress-optical constants for the material, 
t is the thickness of the plate and z0 is the distance between 
the plate and the reference screen. The stress-optical constant 
cf = v1,2/E1,2 for the materials 1 and 2, respectively. 

 The sum of the stresses r and  (Eqs (3) and (4)) is: 

r + = r 1 ( +1)2F( ) + F ( )   (9) 

The grad of the sum of the stresses is: 

gradx,y ( r + ) =

( 1)r 2 ( +1)2F( ) + F ( ) (cos i

+ sin j) + r 2 ( +1)2F ( ) + F ( )

( sin i + cos j)

  (10) 

and from the relations (7) and (8) the parametric equations of 
the caustics (r) and (t) ((r) is the caustic which is formed by 
the reflected light rays from the rear face of the plate and (t) 
is the caustic which is formed by the transmitted light rays 
through the plate) are obtained as [22]: 
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Xr ,t = mr01,2

cos 1,2

1

( 2) c2
2
+ d2

2

c2 sin( 2) 1,2 +

d2 cos( 2) 1,2

  (11)  

Yr ,t = mr01,2

sin 1,2

1

( 2) c2
2
+ d2

2

c2 cos( 2) 1,2

d2 sin( 2) 1,2

 (12) 

where m is the magnification factor of the optical set-up, 
which is given by: 

m =
z0 ± zi
zi

  (13) 

where zi is the distance between plate and focus of the light 
beam, (+) for the reflected and (-) for the transmitted, 
through the plate rays. 

 The parametric equations of the caustic (f) ((f) is the 
caustic which is formed by the reflected light rays from the 
front face of the plate) are: 

X f = mr01,2

cos 1,2 +
1

( 2) c2
2
+ d2

2

c2 sin( 2) 1,2 +

d2 cos( 2) 1,2

  (14) 

Yf = mr01,2

sin 1,2 +
1

( 2) c2
2
+ d2

2

c2 cos( 2) 1,2

d2 sin( 2) 1,2

  (15) 

 The radius of the initial curve of the caustics is: 

r01,2 =
4 ( 1)( 2)Cr ,t , f

c1,2
2
+ d1,2

2

1/(3 )

  (16) 

with: 

Cr ,t , f =
z0tcr ,t , f

m

  (17) 

where the indices 1,2 are the materials 1 and 2 of the bi-
material plate are represented. The polar coordinate 1takes 
values in the region [ /2, ]U[- , - /2] (material 1) and 2 
takes values in the region [- /2, + /2] (material 2). 

 The constants 1,2, b1,2, c1,2, d1,2, which are calculated by 
the boundary conditions (6), are given by the relations: 

2 = c2 = 0, d2 = arbitrary cons tan t   (18) 

1 = {E12 ( 1)[b2 ( 2 +1)( +1) d2 ( ( 2

+1) + 3 2 )] [b2 ( +1) + d2 (1 )][ 1( 1)

+ + 3]} cos( / 2) / 4( +1)

  (19) 

b1 = {E12[b2 ( ( 2 +1) + 2 +1) d2 ( ( 2

+1) + 2 3)] 1( +1)(b2 d2 ) + b2 ( 3)

+d2 (3 )}0.25 sin( / 2)

  (20) 

c1 = {E12[b2 ( 2 +1)( +1) d2 ( ( 2 +1)

+3 2 )] [b2 ( +1) + d2 (1 )]( 1

+1)}0.25 cos( / 2)

  (21) 

d1 = {E12[b2 ( 2 +1)( +1) d2 ( ( 2 +1) + 2

3)] ( +1)(b2 d2 )( 1 +1)}0.25 sin( / 2)
 (22) 

b2 = {d2[[E12[ (3 2 5) + 2 3] [ 1(3

+1) +1 ]]cos( ) + [ 1(2
2
+ +1)

+( 1)(2 + 3)] E12[2
2 ( 2 +1) + ( 2 +1)

+ 2 3]]} / {[[E12 ( 2 +1)

+3 1]cos( ) (2 +1)[E12 ( 2 +1)

( 1 +1)]]( +1)}

  (23) 

 The variables E12, 1, 2 are dependent on the materials 
while, the variable d2 depends on the conditions of the 
experiment and mainly on the stress of loading.  

 

Fig. (3). Theoretical caustics for E12=1.2142, 1=0.34, 2=0.36 and 

=0.48 (Plexiglas 1-Lexan 2). 

 

Fig. (4). Theoretical caustics for E12=0.82353, 1=0.36, 2=0.34 and 

=0.5192 (Lexan 1-Plexiglas 2). 
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 For Plexiglas (PMMA), with E1=3.4 GPa and 1 =0.34, as 
material 1, and Lexan (PCBA), with E2=3.8 GPa and 2 
=0.36, as material 2 (Fig. (1)), the theoretical caustics at the 
crack-tip, at the bi-material interface were plotted according 
to equations (11)-(23). Fig. (3) presents the plotted caustics, 
caustic (r) and caustic (f), for Plexiglas 1 - Lexan 2 bi-
material plate with E12=1.2142, 1=0.34, 2=0.36, =0.48, 
b2=0.353d2, c1=0.826d2, d1=0.78d2, c2=0 and d2=1. The size 
of the caustic (r) depends on the initial curve radius, which 
further depends on the stress optical constants cr,t,f. The jump 
of the values at the interface depends on the polar coordinate 
 of the initial curve. This jump, which is corresponded to 
 = ± /2 of the initial curve, is not placed at the interface 

because the values of the caustic are deviated (relation (8)). 

 Fig. (4) presents the plotted caustics, caustic (r) and 
caustic (f), for Lexan 1 - Plexiglas 2 bi-material plate with 
E12=0.82353, 1=0.36, 2=0.34, =0.5192, b2=0.316d2, 
c1=0.607d2, d1=0.648d2, c2=0 and d2=1. 

 

Fig. (5). Theoretical caustics for E12=0.336, 1=0.36, 2=0.34 and 

=0.6003 (ductile 1-brittle 2). 

 Fig. (5) presents the plotted caustics, caustic (r) and 
caustic (f), for ductile material 1 - brittle material 2 bi-
material plate with E12=0.336, 1=0.36, 2=0.34, =0.603, 
b2=0.275d2, c1=0.307d2, d1=0.487d2, c2=0 and d2=1. 

Fig. (6). Theoretical caustics for E12=0.10, 1= 2=0.30 and 

=0.6966 (ductile 1-brittle 2). 

 Fig. (6) presents the plotted caustics, caustic (r) and 
caustic (f), for ductile material 1 - brittle material 2 bi-
material plate with E12=0.10, 1= 2=0.30, =0.6966, 
b2=0.2816d2, c1=0.151d2, d1=0.406d2, c2=0 and d2=1. 

 The relative size of the caustics (r) and (f) depends on the 
stress-optical constants cr and cf of the two materials of the 
bi-material plate. 

 The stress intensity factor KI can be experimentally 
calculated from the maximum, Dmax, so diameter of the 
caustic according to the relation (Papadopoulos 1993) [3]: 

 

Fig. (7). Experimental caustic (r) at crack-tip of Plexiglas 1 – Lexan 

2 bi-material plate. 

 

KI =
0.04668

z0t m
3/2cr ,t

Dmax
5/2

  (24) 

Fig. (8). Experimental caustic (t) at crack-tip of Plexiglas 1 – Lexan 

2 bi-material plate. 

 Fig. (7) presents the experimental reflected caustic 
(caustic (r)) at the crack-tip of bi-material plate with material 
1 (Plexiglas) – material 2 (Lexan). Fig. (8) presents the 
experimental transmitted caustic (caustic (t)) at the crack-tip 
for the same bi-material plate of Fig. (7). 

Theory of Photoelasticity 

 Isochromatic fringes are loci of points with the same 
value for the difference of the principal stresses or the 
maximum shear stress. According to the stress optical law, 
the difference in the principal stresses is given by [24]: 
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1 2 = 2
max

=
Nc fc
t

  (25) 

where NC is the isochromatic fringe order, t is the thickness 
of the specimens and fc is the material fringe value or stress-
optical constant, which is given by the relation: 

 

fc =
E

2
  (26) 

where E is the elastic modulus, l is the wave length of the 
used monochromatic light and  is the Poisson’s ratio of the 
plate material. 

 From equations (3)-(5) and (25) is obtained: 

r =

1

[ (1 2 )F( ) + F ( ) ]2 +

4 2 (F ( ))2

1/2

Nc ( fc )1,2
t

1

1

  (27) 

with: 

F( ) = 2 sin( +1) + b2 cos( +1) +

c2 sin( 1) + d2 cos( 1)
  (28) 

 The relation between the stress-optical constants of the 
materials 1 and 2 is: 

( fc )2 =
1

E12

1

2

( fc )1   (29) 

where E12=E1/E2 is the ratio of the elastic modulus of the two 
materials, 1  and 2  are the Poisson’ s ratios of the two 
materials. 

 

Fig. (9). Isochromatic fringes of order NC=1 ÷ 10 for E12 = 1.2142, 

1= 0.34, 2= 0.36 and =0.48 (Plexiglas 1- Lexan 2). 

 The isochromatic fringes are plotted around the crack-tip 
by the equation (27) for (fc)1=1, t=0.003m, d2=1. Fig. (9) 
presents the plotted isochromatic fringes of order NC=1 ÷ 10, 
for Plexiglas 1 - Lexan 2 bi-material plate, with E12 = 
1.2142, 1= 0.34, 2= 0.36 and =0.48. It is observed that the 
branches of the isochromatic fringes, which correspond to 

the ductile material (material 2), are bigger than the branches 
corresponding to the brittle material (material 1). This means 
that the maximum shear stress at the crack-tip is 
considerable in brittle material (material 1). The jump of the 
values is exactly placed at the interface. 

 

Fig. (10). Isochromatic fringes of order NC=1 ÷ 10 for E12 = 

0.82353, 1= 0.36, 2= 0.34 and =0.5192 (Lexan 1- Plexiglas 2). 

 Fig. (10) presents the plotted isochromatic fringes of 
order NC=1 ÷ 10, for Lexan 1- Plexiglas 2 bi-material plate, 
with E12 = 0.82353, 1= 0.36, 2= 0.34 and =0.5192.  

 

Fig. (11). Isochromatic fringes of order NC=1 ÷ 10 for E12 = 0.336, 

1= 0.36, 2= 0.34 and =0.603 (ductile 1- brittle 2). 

 Fig. (11) presents the plotted isochromatic fringes of 
order NC=1 ÷ 10, for ductile material 1- brittle material 2 bi-
material plate, with E12 = 0.336, 1= 0.36, 2= 0.34 and 
=0.603.  

 Fig. (12) presents the plotted isochromatic fringes of 
order NC=1 ÷ 10, for ductile material 1- brittle material 2 bi-
material plate, with E12 = 0.10, 1= 2= 0.30 and =0.6966.  
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Fig. (12). Isochromatic fringes of order NC=1 ÷ 10 for E12 = 0.10, 

1= 2= 0.30 and =0.6966 (ductile 1- brittle 2). 

Theory of Isopachic Fringes 

 Isopachics fringes are loci of points with the same value 
for the sum of the principal stresses. The fringe orders Np of 
isopachic are related to the sum of the principal stresses by 
[25]: 

1 + 2 = r + =
Np fp
t

  (30) 

where Np is the order of isopachics, t is the thickness of the 
plate and fp is the isopachic fringe constant, which is given 
by the relation: 

 

fp =
E

2
  (31) 

where E is the elastic modulus, l is the wave length of the 
used monochromatic light and  is the Poisson’s ratio of the 
plate material. 

 The sum of the stresses (from equations (3) and (4)) are: 

1 + 2 = r + =

r 1 ( +1)2F( ) + F ( )
  (32) 

with: 

F( ) = 2 sin( +1) + b2 cos( +1) +

c2 sin( 1) + d2 cos( 1)
  (33) 

F ( ) = 2 ( +1)2 sin( +1)

b2 ( +1)2 cos( +1)

c2 ( 1)2 sin( 1) d2 ( 1)2 cos( 1)

  (34) 

 By substituting the equations (32)-(34) into equation (30) 
is obtained:  

r =
1

( +1)2F( ) + F ( )

Np ( fp )1,2
t

1

1

  (35) 

with:  

( fp )2 =
1

E12

1

2

( fp )1   (36) 

where (fp)1,2 are the isopachic fringe constants of the 
materials 1 and 2 of the bi-material plate, respectively. 

 The isopachic fringes are plotted around the crack-tip by 
the equation (34) for (fp)1=1, t=0.003m, d2=1. Fig. (13) 
presents the plotted isopachic fringes of order Np=1 ÷ 10, for 
Plexiglas 1 - Lexan 2 bi-material plate, with E12 = 1.2142, 

1= 0.34, 2= 0.36 and =0.48.  

 

Fig. (13). Isopachic fringes of order Np=1 ÷ 10 for E12 = 1.2142, 1= 

0.34, 2= 0.36 and =0.48 (Plexiglas 1- Lexan 2). 

 

Fig. (14). Isopachic fringes of order Np=1 ÷ 10 for E12 = 0.82353, 

1= 0.36, 2= 0.34 and =0.5192 (Lexan 1- Plexiglas 2). 

 Fig. (14) presents the plotted isopachic fringes of order 
Np=1 ÷ 10, for Lexan 1- Plexiglas 2 bi-material plate, with 
E12 = 0.82353, 1= 0.36, 2= 0.34 and =0.5192.  

 Fig. (15) presents the plotted isopachic fringes of order 
Np=1 ÷ 10, for ductile material 1- brittle material 2 bi-
material plate, with E12 = 0.336, 1= 0.36, 2= 0.34 and 
=0.603.  

 Fig. (16) presents the plotted isopachic fringes of order 
Np=1 ÷ 10, for ductile material 1- brittle material 2 bi-
material plate, with E12 = 0.10, 1= 2= 0.30 and =0.6966.  
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Fig. (15). Isopachic fringes of order Np=1 ÷ 10 for E12 = 0.336, 1= 

0.36, 2= 0.34 and =0.603 (ductile 1- brittle 2). 

 

Fig. (16). Isopachic fringes of order Np=1 ÷ 10 for E12 = 0.10, 1 = 

2= 0.30 and =0.6966 (ductile 1- brittle 2). 

Principal Stresses Estimation from the Isochromatic and 

Isopachic Fringes 

 The principal stresses can be estimated from the system 
of isochromatic and isopachic fringes (Eqs. (25), (30)). The 
solution of the system is valid at the cross points of the 
isochromatic and isopachic fringes (Fig. (17)). Fig. (17) 
presents the overlapping of isochromatic and isopachic 
fringes by Eqs. (27) and (35), for Lexan 1-Plexiglas 2 bi-
material plate with E12=0.82353, 1=0.36, 2=0.34, =0.5192, 
t = 0.003 and d2 = 1 (d2 is an arbitrary constant which 
represents the tensile load of the plate). Fig. (18) presents 
experimentally the overlapping of isochromatic and 
isopachic fringes for E12 = 1 (one material, Lexan). At the 
cross points of the fringes, the principal stresses can be 
calculated by the Eqs. (25) and (30). Also, at the crack tip, 
the caustics (r) and (f) were taken from which the stress 
intensity factor KI can be calculated. 

 

Fig. (17). Overlapping of Isochromatic (Nc) and Isopachic (Np) 

fringes. 

 From the solution of the equations (25) and (30) system, 
the principal stresses are obtained: 

1 =
r +

2
+
1

2
( r )2 + 4 r

2
=

Np ( fp )1,2 + Nc ( fc )1,2
2t

  (37) 

2 =
r +

2

1

2
( r )2 + 4 r

2
=

Np ( fp )1,2 Nc ( fc )1,2
2t

  (38) 

 By substituting the stresses from the Eqs. (3)-(5) into 
Eqs. (37), (38) the contour curves of the principal stresses, 
around the crack-tip, are obtained: 

r
1
=

2 1

(1+ )2F( )

+F ( )
+

[(1 2 )F( )

+F ( )]2 +

4 2 (F ( ))2

1/2

1

1

 (39) 

r
2
=

2 2

(1+ )2F( )

+F ( )

[(1 2 )F( )

+F ( )]2 +

4 2 (F ( ))2

1/2

1

1

 (40) 

or: 
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r
1
=

Np ( fp )1,2 + Nc ( fc )1,2
t

(1+ )2F( )

+F ( )
+

[(1 2 )F( )

+F ( )]2 +

4 2 (F ( ))2

1/2

1

1

 (41) 

r
2
=

Np ( fp )1,2 Nc ( fc )1,2
t

(1+ )2F( )

+F ( )

[(1 2 )F( )

+F ( )]2 +

4 2 (F ( ))2

1/2

1

1

  (42) 

with: 

F( ) = 2 sin( +1) + b2 cos( +1) +

c2 sin( 1) + d2 cos( 1)
  (43) 

F ( ) = 2 ( +1) cos( +1)

b2 ( +1) sin( +1) + c2 ( 1) cos( 1)

d2 ( 1) sin( 1)

  (44) 

F ( ) = 2 ( +1)2 sin( +1)

b2 ( +1)2 cos( +1) c2 ( 1)2 sin( 1)

d2 ( 1)2 cos( 1)

  (45) 

 

Fig. (18). Experimentally overlapping of Isochromatic and 

Isopachic fringes and caustics at the crack tip in one material 

(Lexan) plate. 

 Fig. (19) presents the contour curves of the principal 
stresses 1 and 2 around the crack-tip for Lexan 1-Plexiglas 
2 bi-material plate with E12=0.82353, 1=0.36, 2=0.34, 
=0.5192, d2=1 and t=0.003 for isopachic fringe order Np=1 

and isochromatic fringe orders Nc=3,4. Fig. (20) presents the 
contour curves of the principal stresses 1 and 2 around the 
crack-tip for the same bi-material with Np=2 and Nc=3,4 and 
Fig. (21) presents the contour curves of the principal stresses 

1 and 2 around the crack-tip for the same bi-material with 
Np=5 and Nc=3,4. A jump of values of principal stresses are 
appeared at the bi-material interface. 

 

Fig. (19). Contour curves of principal stresses around the crack-tip 

for Np = 1 and NC = 3,4. 

 

Fig. (20). Contour curves of principal stresses around the crack-tip 

for Np = 2 and NC = 3,4. 

CONCLUSIONS 

 According to the above study it is concluded that the 
stress state at the crack-tip can be considered by the method 
of caustics, while the stress state far from the crack-tip can 
be considered by the methods of photoelasticity and 
isopachics. The stress intensity factor KI can be calculated 
from the diameters of the crack-tip caustics. The contour 
curves of principal stresses can be plotted around the crack-
tip at the interface of the bi-material from the overlapping of 
the isochromatic and isopachic fringes. Also, the distribution 
of the principal stresses close and far from the crack-tip can 
be experimentally considered by the methods of photoelas-
ticity and isopachics. 
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Fig. (21). Contour curves of principal stresses around the crack-tip 

for Np = 5 and NC = 3,4. 

 The caustics theory and the isochromatic and isopachic 
fringes at a bi-material interface crack-tip was developed in 
Refs [22,23]. In this work the evaluation of principal stresses 
and its contour at a bi-material interface crack-tip were 
developed by the combination of isochromatic and isopachic 
fringes. The principal stresses were calculated at cross points 
of the isochromatic and isopachic fringes. So, the principal 
stresses can experimentally be calculated from the 
photograph of Fig. (18). 

 Fig. (18) illustrates experimentally superposition of iso-
chromatic and isopachic fringes and the caustic at the crack-
tip. The stress intensity factor at crack-tip and far from 
crack-tip and the principal stresses can calculated 
experimentally. The picture of Fig. (18) was generated by 
the overlapping of three photographs. The first photograph 
was taken from the unloading specimen. The second 
photograph was taken from the loading specimen in that 
caustic was formed at the crack-tip. The third photograph 
was taken from the loading specimen in which isochromatic 
fringes were formed around the crack-tip. By the 
superposition of these three photographs, the photograph of 
Fig. (18) was formed. The isopachic fringes are the moiré 
which is formed by the interference fringes of the first and 
second photographs which are dependent on the variation of 
the specimen thickness [25]. 

REFERENCES 

[1] P. Manogg, “Anwendung der Schattenoptik zur Untersuchung des 
Zerreissvorgangs von Platten”. Dissertation 4/64, Universitaet 

Freiburg, 1964. 
[2] P.S. Theocaris, “Local yielding around a crack-tip in Plexiglas”,. 

Journal of Applied Mechanics, vol.37, pp. 409-415,1970. 

[3] G.A. Papadopoulos, FRACTURE MECHANICS, The Experimen-

tal Method of Caustics and the Det.-Criterion of Fracture (G.A. 
Papadopoulos Ed.), Springer-Verlag, London, 1993. 

[4] P.S. Theocaris and G.A. Papadopoulos, “Stress intensity factor 
from reflected caustics in birefringent plates with crack”, J. Strain 

Analysis, vol.16, pp.29-36, 1981. 
[5] A.R. Zak and M.L. Williams, “Crack point stress singularities at a 

bimaterial interface”, Journal of Applied Mechanics, vol. 30, 
pp.142-143, 1963. 

[6] M.L. Williams, “Surface stress singularities resulting from various 
boundary conditions in angular corners of plates under bending”, 

Proceedings, First U.S.National Congress of Applied Mechanics, 
ASME, 1952; pp.325-329. 

[7] M.L. Williams, “Stress singularities resulting from various 
boundary conditions in angular corners of plates in extension”, 

Journal of Applied Mechanics 19, Trans. ASME, vol. 74, pp.526-
528, 1952. 

[8] M.L. Williams, “On the stress at the base of a stationary crack”, 
Journal of Applied Mechanics 24, Trans. ASME, vol. 79, pp.109-

114, 1957 
[9] M.L.Williams, “The stresses around a fault or crack in dissimilar 

media”, Bulletin of the Seismological Society of America, vol. 49, 
pp.199-204, 1959 

[10] J.W. Dally and T. Kobayashi, “Crack arrest in duplex specimens”, 
Int. J. Solids and Structures, vol.14, pp.121-126, 1978. 

[11] P.S. Theocaris, “The Mesophase Concept in Composites”, (P.S. 
Theocaris Ed.), Springer-Verlag, Berlin Heidelberg, 1987. 

[12] P.S. Theocaris and J. Milios, “Dynamic crack propagation in 
composites”, Int. J. Fracture, vol.16, pp.31-51, 1980. 

[13] P.S. Theocaris and J. Milios, “Crack propagation velocities in bi-
phase plates under static and dynamic loading”, Engineering 

Fracture Mechanics, vol.13, pp.559-569, 1979. 
[14] P.S. Theocaris and J. Milios, “Crack arrest at a bimaterial 

interface”, Int. J. Solids Structures , vol. 17, pp.217-230, 1981. 
[15] P.S. Theocaris, M. Siarova and G.A. Papadopoulos, “Crack 

propagtion and bifurcation in fiber-composite models: I Soft-hard-
soft sequence of phases”, J. Reinforced Plastics and Composites, 

vol. 5, pp.23-50, 1986. 
[16] P.S. Theocaris and G.A. Papadopoulos, “Crack propagation and 

bifurcation in fiber-composite models II: Hard-soft-hard sequence 
of phases”, Journal of Reinforced Plastics and Composites, vol. 5, 

pp.120-140, 1986. 
[17] E.E. Gdoutos, “Failure of a bimaterial plate with a crack at an 

arbitrary angle to the interface”, Fiber Science and Technology , 
vol.15, pp.27-40, 1981. 

[18] E.E. Gdoutos and A. Giannakopoulou, “Stress and failure analysis 
of brittle matrix composites. Part I: Stress analysis”, International 

Journal of Fracture, vol. 98, pp.263-277, 1999. 
[19] E.E. Gdoutos, A. Giannakopoulou and D.A. Zacharopoulos, “Stress 

and failure analysis of brittle matrix composites. Part II: failure 
analysis”, International Journal of Fracture,vol. 98, pp.279-291, 

1999. 
[20] E.N.Theotokoglou, G.J. Tsamasphyros and C.P. Spyropoulos, 

“Photoelastic study of a crack approaching the bonded half-plates 
interface”, Engineering Fracture Mechanics, vol. 34, pp.31-42, 

1989. 
[21] C.P. Spyropoulos, E.N. Theotokoglou and G.J. Tsamasphyros, 

“Evaluation of the stress intensity factors for a crack approaching 
the bonded half-plates interface from isopachics”, Acta Mechanica, 

vol.81, pp.75-89, 1990. 
[22] G.A. Papadopoulos, “Crack-tip caustics at a bi-material interface”, 

International journal of Fracture, vol. 98, pp.329-342, 1999. 
[23] G.A. Papadopoulos and N. Moscos,Crack-tip isochromatic and 

isopachic fringes at a bi-material interface”, International journal 
of Fracture, vol.141, pp.327-332, 2006. 

[24] M.M. Frocht, Photoelasticity. John Willey, New York,1948. 
[25] A.J. Durelli and W.F. Riley, Introduction to Photomechanics. 

Prentice-Hall Inc./Englewood Cliffs NI, USA, 1965. 

 

 

Received: March 13, 2008 Revised: April 23, 2008 Accepted: May 16, 2008 

 
© G.A. Papadopoulos; Licensee Bentham Open. 
 

This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.5/), which 

permits unrestrictive use, distribution, and reproduction in any medium, provided the original work is properly cited. 


