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Abstract: The paper addresses the optimal design of parallel manipulators based on multi-objective optimization. The 
objective functions used are: Global Conditioning Index (GCI), Global Payload Index (GPI), and Global Gradient Index 
(GGI). These indices are evaluated over a required workspace which is contained in the complete workspace of the 
parallel manipulator. The objective functions are optimized simultaneously to improve dexterity over a required 
workspace, since single optimization of an objective function may not ensure an acceptable design. A Multi-Objective 
Evolution Algorithm (MOEA) based on the Control Elitist Non-dominated Sorting Genetic Algorithm (CENSGA) is used 
to find the Pareto front. 
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1. INTRODUCTION 

 Parallel manipulators have closed kinematic chains; due 
to this feature, they have some advantages over serial mani-
pulators. Among these advantages are: low inertia, high 
stiffness, high speed, and better position accuracy. However, 
parallel manipulators have some disadvantages: a reduced 
workspace and kinematic singularities inside the complete 
workspace. Parallel manipulators have been widely used in 
high performance positioning systems, such as flight 
simulators [1], machine-tools [2], biped locomotion systems 
[3] and surgical robots [4]. 
 The optimal design problem of parallel manipulators 
consists in determining a set of design parameters of the 
parallel manipulator to guarantee an optimal criterion. Many 
works have addressed the optimal design of parallel mani-
pulators with different approaches depending on the charac-
teristics to be optimized. In those works, the main approach 
has been to solve the optimal design problem using diverse 
methods, in which the optimum criteria are: the maximum 
dexterity [5,6], the maximum stiffness [7], the minimum 
position error in the movable platform [8], the maximum 
velocities in the platform [9] and the required maximum 
workspace [10-13]. 
 Proposing new synthesis methods for the optimal design 
of parallel manipulators ensures high kinematic performance 
for the growing number of new applications. Optimal design 
often depends on some required characteristics, such as 
required workspace or limits on the dimensions of the mani-
pulator. For this purpose, it is interesting to evaluate simulta-
neously dexterity measures to improve kinematic perfor-
mance. Aiming to achieve good dexterity, high payload  
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capability, and uniformity of the dexterity over a required 
workspace, an optimal design method is proposed to opti-
mize the geometric architecture of a parallel manipulator. 
 Some works have been addressed following this direc-
tion. Ceccarelli and Lanni [14] proposed a design formula-
tion for the workspace restricted to a serial manipulator with 
three revolute joints; this was formulated as a multi-objective 
optimization problem by using the workspace. Hao and 
Merlet [15] proposed an optimal design methodology based 
on interval analysis that allows one to determine all possible 
geometries satisfying two simultaneous and compulsory 
requirements, accuracy and workspace, through an algorithm 
with acceptable computational performance. Lara et al. [16] 
developed a virtual environment simulation of kinematics 
and dynamics of Stewart-Gough platforms to test different 
control strategies and thus establish the relation between 
kinematic and dynamic performance of parallel manipula-
tors. They remarked the necessity of optimal kinematic 
design. Lanni and Ceccarelli [17] have also used a multi-
objective optimum algorithm for finger grippers with respect 
to an imposed workspace area which considers four different 
objective functions. Gao et al. [18] optimized the system 
stiffness and dexterity of a parallel manipulator using optimi-
zation methods based on artificial intelligence techniques: 
genetic algorithms and artificial neural networks. They 
demonstrate the validity of artificial intelligence for optimal 
design of parallel manipulators. 
 In the works mentioned above, the requirements of dex-
terity are generally evaluated at a local kinematic configura-
tion, consequently, for a constant kinematic configuration 
and not for a required workspace. Thus, global measures 
have not always been used in optimal design, with the 
exception of: [7,9,13,19]. 
 In the same way, single-objective optimization (SOO) is 
not enough to ensure an optimal design of parallel mani-
pulators. For this reason, some authors have developed new 
performance indices that combine different kinematic mea-
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sures, for example: Miller [13] used an index that combines 
dexterity and workspace, Zhang [9] proposed a global index 
to measure the joint velocity in an imposed workspace. 
 In this work, we propose a multi-objective design of 
kinematic parallel manipulators based on Multi-Objective 
Evolutionary Algorithm (MOEA). For this purpose, three 
kinematic performance indices are the objective functions for 
optimization, these indices are: Global Conditioning Index 
(GCI), Global Payload Index (GPI), and Global Gradient 
Index (GGI). The multi-objective optimization (MOO) is 
performed using CENSGA to search for the Pareto front 
which is a set of optimal design parameters. Thus, two simu-
lations are performed to demonstrate the design procedure. 
In the first simulation, a GAs is used to maximize the GCI 
and examine the behavior of the other indices, GGI, and 
GPI. The second simulation, CESGA is used to reach the 
optimal design parameters. 
 This paper is organized in several sections. Section 2 
presents the kinematic and geometric modeling, to introduce 
the design parameters. In section 3, the three global per-
formance indices are presented: GCI, GPI, and GGI. In 
section 4, the optimization problem of parallel manipulator is 
formulated. Section 5 presents the simulations and results. 
Finally Section 6 covers the conclusion.  

2. KINEMATIC AND GEOMETRIC MODELING 

 Fig. (1) shows the Stewart-Gough platform. Six identical 
legs connect the movable platform to the fixed base by 
universal joints denoted by U at points Bi and spherical joints 
denoted by S at points Ai, i =1,2,...,6 , respectively. Both the 
universal and the spherical joints are passive. Each leg has 
an upper and a lower member connected by a pris-matic joint 
denoted by P. The prismatic joint is activated to extend/ 
retract the leg. The universal joint can be substituted by a 
spherical joint without changing the motion of the movable 
platform. 

 
Fig. (1). Spatial Stewart-Gough platform. 

 The six degrees of freedom (DOF) in the movable plat-
form are linear and angular motions. Linear motions consists 
of longitudinal motions in x-y-z-axes. Angular motions are 
expressed as Euler angles with respect to x-y-z-axes. 

 Two coordinate frames {A} and {B} are attached to the 
movable and fixed based platforms respectively. The vector 

bi = [bix biy biz]T describes the position of the reference point 
Bi with respect to the frame {B}; thus bi is expressed as: 

bi =

rb cos(! i )

rb sin(! i )
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 In the same way, the vector ai = [aix aiy aiz]T describes the 
position of the reference point Ai with respect to the 
reference frame {A}; then ai is expressed as: 

ai =

ra cos(! i )

ra sin(! i )
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 The Stewart-Gough platform geometry was defined with 
two coplanar semiregular hexagons; the first corresponds to 
the base hexagon and the second to the movable platform. 
According to equations (1) and (2), the Stewart-Gough 
platform can be defined with five kinematic design para-
meters: rb is the radius of the fixed base, ra is the radius of 
the movable platform, ϕb is the spacing angle of the vectors 
bi, ϕa  is the spacing angle of the vectors ai and finally, z0 
which is the center z-axes coordinate of the constant 
workspace. Consequently, a vector n of design parameters is 
defined. 
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Fig. (2). Stewart-Gough platform geometry: joints of movable and 
fixed base platform. 

 The pose of the centroid {A} of the movable platform 
respect to frame {B} is described by six generalized 
coordinates  
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 According to [20], the differential kinematics can be 
written as, 

 
!l = J(x,!)!x  (5) 

in which J(x,λ) is the 6 by 6 Jacobian matrix of Stewart-

Gough platform, 
 

!l = !l
1
" !l

6

!
"

#
$

T

 are the articular 

coordinates velocities and 
  

!x = !p !!
"

#
$

T

 are the 

generalized coordinates velocities. 

 

J(x,!) =

s
1

T
(Ra

1
" s

1
)
T

s
2

T
(Ra

2
" s

2
)
T

! !

s
6

T
(Ra

6
" s

6
)
T

#

$

%
%
%
%
%

&

'

(
(
(
(
(

 (6) 

 Remarking that the Jacobian matrix depends on the 
design parameters n and the pose x. si, such as it is presented 
in Fig. (1). In the same way, the static model can be whiten 
as, 

 
! = H(x,!)g  (7) 

 in which H(x, λ) = JT(x, λ),  !  = [f m]T is the total force and 
moment in the centroid {A} of the movable platform, and 
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 the forces along the legs. 

 Since the Jacobian matrix establishes a kinematic relation 
between articular and generalized coordinates, the Jacobian 
matrix is useful in evaluating the performance for different 
design parameters and poses. However, when | J(x,!) |  is 
close to zero, there are problems in the kinematic perfor-
mance, because the matrix is near a singular point and there 
may be numerical difficulties in calculating the inverse 
matrix; thus, the position accuracy is decreased, small errors 
in actuators cause a large error in the movable platform. 
Analogously, some loads in the movable platform cannot be 
controlled by the forces in the legs due to |H(x,!) |  being 
close to zero. This phenomenon is related to singularities 
within the complete workspace [21]. 
 Hence, performance indices, to measure the kinematic 
condition over the workspace are essential to prevent the 
problems from carry to singularities. Accordingly, perfor-
mance indices are used in optimal design to determine the 
optimal kinematic design parameters of parallel manipu-
lators. 

3. KINEMATIC PERFORMANCE INDEX 

 Dexterity is an important factor to be considered in 
optimal design of parallel manipulators. Intuitively, dexterity 
is the skill to handle an object with accuracy. The dexterity 
refers to a kinematic characteristic of the manipulator that is 
measured in terms of the Jacobian matrix due to the physical 
meaning. 

 Any m x x matrix J can be factored in the following 
form: 

J
m!n

= [U
T
]
m!m
["]

m!n
[V]

n!n
 (8) 

in which Σ is a diagonal composed of the singular values. 
For m = 6 and n = 6, we have six singular values σ1 > σ2 > K 
σ5 > σ6 > 0. The condition number is k(J) = σ1 / σ6. 

 The condition number of Jacobian matrix k(J) has been 
used to measure the dexterity in a kinematic pose of a 
parallel manipulator. As a measure of dexterity it varies from 
1 (isotropic condition) to infinite (singular condition). The 
condition number is related to the accuracy of the parallel 
manipulator in a specific configuration. 
 The condition number expresses the dexterity at an 
specific pose. The global kinematic indices use the condition 
number to express a dexterity measure of a workspace. 

3.1. Global Conditioning Index 

 A commonly used criterion to evaluate the dexterity is 
the global conditioning index (GCI) [22]. The reciprocal of 
the condition number is used as the measure of local 
dexterity, thus 1/k(J) varies from 0 (singular condition) to 1 
(isotropic condition). For a defined workspace w, the GCI is 
defined as: 

GCI = w
! 1 / k(J)dw

w
! dw

 (9) 

 In practice, the GCI is approximated by a discrete sum. 
Thereby, the workspace w is discretized in Nw points. 

 

GCI !
1

N
w i=1

Nw

!1 / ki (J)  (10) 

 in which, i is one of the discretizing points in the workspace. 
 The greater the global conditioning index, the more 
dexterity over the workspace, therefore the global condi-
tioning index should be maximized. 

3.2. Global Gradient Index 

 This index was first used by Kurtz and Hayward [23] and 
has also been used by Lee et al. [24]. This index is used to 
measure the uniformity of kinematic dexterity, the relative 
variation of this measure should be as small as possible to 
ensure an uniform dexterity over the workspace. Any small 
displacement of the movable platform would increase the 
singular condition, thus increasing the position error. 

 In order to verify uniformity of any function, the magni-
tude of its gradient is evaluated. Thus, a local measure of 
flatness of dexterity is given by 

 
!!1 / k(J) ! . Integrating this 

to obtain a global measure would not be a good idea. Hence, 
the global gradient index is defined as follows: 

 

!GCI =
w

max !!1 / k(J) !  (11) 

 GGI is approximated by calculating the maximum of 
local flatness of dexterity over the workspace. If GCI is zero, 
then the dexterity is uniform throughout the workspace. The 
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local gradient is calculated numerically, because there is no 
analytic expression for this purpose. The gradient will be 
approximated by first-order difference equations. Thus, the 
gradient for a six DOF manipulator can be approximated as: 
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 The smaller the GGI, the less variation of dexterity over 
the workspace; therefore the global gradient index should be 
minimized. 

3.3. Global Payload Index 

 Payload capability measures have been widely used in 
parallel manipulator design [25-27]. This index represents 
force transmission capability, thereby determining if the 
manipulator can support loads on the movable platform. In 
the equation (7), the relationship between the forces in legs 
and the force and total moment at the centroid of the 
movable platform was presented. Thus, 

 
! = H(x,!)g . Using 

the left pseudoinverse, the minimum norm solution to this 
equation is, 

 
g = J(x,!)(J(x,!)

T
J(x,!))

"1
!  (14) 

 From the singular value decomposition theorem, the 
bounds on ||g|| can be established as, 

 
|| ! || /!

max
"|| g ||"|| ! || /!

min
 (15) 

 Since the minimum force bound depends on the mini-
mum singular value σmin, this measure is used to calculate 
the payload capability; thus, 1/σmin is the local value of 
payload capability, whose minimum value is 0 in the 
singular condition; and it does not have a maximum limit 
value bound. Maximizing this value would reduce the force 
along the legs. The global payload index (GPI) is defined as. 

GPI =
w
! "min

dw

w
! dw

 (16) 

 Therefore, the larger the GPI, the bigger the force 
transmission in the movable platform. 
 Finally, according to the three global performance indi-
ces presented, the optimal design corresponds to selecting 
the design parameters simultaneously and over a required 
workspace, so that they:  
• maximize dexterity, i.e., maximize GCI.  
• maximize payload transmission capability, i.e., maxi-

mize GPI.  
• maximize dexterity uniformity over the required work-

space, i.e., minimize GGI.  

 The conventional Jacobian matrix expresses a mixed 
relation of both translational and rotational degrees of free-
dom. The elements of the conventional Jacobian matrix have 
nonhomogenous physical units. Therefore, the use of perfor-
mance indices such as the condition number of the Jacobian 
matrix may lack in physical meaning. To avoid the unit 
inconsistency problem, Gosselim [28] proposed a formula-
tion of a dimensionally homogeneous Jacobian matrix of 
planar and spatial manipulator, the new condition number is 
invariant under of scaling of manipulator. 
 We we treat separately orientation and position dexterity 
[5,9]. Let us rewrite the Jacobian matrix 

J(x,!) = Jp JR"
#

$
%

 (17) 

 Thus, k(Jp) and k(JR) respectively give measures for 
position and orientation dexterity. 
 To guarantee position and orientation dexterity, they are 
applied in design by computing separately the global 
kinematic indices. 

4. METHODOLOGY 

 Optimal design aims to reach the optimal geometric 
configuration according to objective functions and geometric 
constraints. For parallel manipulators, optimization is add-
resses the maximization of kinematic dexterity and payload 
capability and the minimization of variation of kinematic 
dexterity over a required workspace. Since these three 
aspects are considered simultaneously, then a multi-objective 
optimization is considered. 

4.1. Formulation of Parallel Manipulator Optimization 

 Accordingly, the optimal design problem became in a 
multi-objective optimization problem, in which two or more 
conflicting objective functions are optimized subject to cer-
tain constrains. Based on kinematic performance indices, the 
optimal kinematic performance is achieved when dexterity 
and force transmission capability are maximized and varia-
tion of dexterity over a required workspace is minimized. 
The required workspace and geometric constraints are 
important issues in optimization. 

 For practical purposes, the required workspace w is 
hyper-parallepiped with constant orientation; the workspace 
is shown in Fig. (3), in which x

w
= y

w
= 2z

w
.  

Thus, 
w = [!x

w
/ 2, x

w
/ 2]" [!y

w
/ 2, y

w
/ 2]"

[!z
w
/ 2, z

w
/ 2]" [#]" [#]" [#]

 

The maximum and minimum length limit of the legs, for the 
required workspace, is given by 

 
Fig. (3). Hyper-parallepiped required workspace. 
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 In which, vi is the inverse kinematic. Moreover, restric-
tions on the design parameters are considered as functions of 
the dimensions of the required workspace. The geometric 
restriction is given by the following equality. 

i=2

m

!"
i
= x

w
 (19) 

 Thus, the multi-objective optimization to reach the opti-
mal design parameters of the parallel manipulator is given by 
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 To solve this optimization, genetic algorithms are 
reviewed in the next section. 

4.2. Genetic Algorithm 

 Traditional optimization methods use local search by 
sequential procedures, such as gradient and Hessian, which 
compare the values of the subsequent points and then 
examine the relative optimal points; hence, local optima can 
be taken for global optima. Conventional methods can fail, 
since they converge to a local optima. 
 Genetic Algorithms (GAs) are heuristic search algori-
thms based on the mechanism of natural selection and 
natural genetics initially proposed by Holland [29]. GAs are 
high performance and robust optimization methods to solve 
engineering problems. They have been used in a variety of 
engineering fields such as in machine design [30]. 
 In general, a genetic algorithm has five basic com-
ponents:  
1. A genetic representation of solutions to the problem 

[31], the diagram of this procedure is presented in 
Fig. (4) 

2. A way to create an initial population of solutions  
3. Selection of the population for next generation 4. An 

evaluation function rating solutions in terms of their 
fitness  

4. Genetic operators that alter the genetic ascendants 
during reproduction  

 GAs start with an initial set of random solutions, this set 
of solutions are called the population. Each individual of the 
population, which is a chromosome, represents a potential 
solution to the problem. The encoding is a genetic represen-

tation of the chromosome. In the evaluation, a measure of 
fitness is assigned to each individual. Individuals called 
parents are selected, the parents contribute to the population 
at the next generation. Some individuals of the population 
suffer genetic operations to create new individuals through 
stochastic transformations. There are two types of genetic 
operations: crossover and mutation. Crossover creates new 
individuals by combination of the parts of two parents; and 
mutation creates new individuals by randomly altering 
chromosome characteristics to guarantee genetic diversity in 
the population. New individuals of the population are called 
offspring. A new population is formed by selecting the more 
fit individuals from the present population and the offspring 
population. After successive iterations called generations, the 
algorithm converges to the best individual, which hopefully 
represents an optimal solution to the problem [31]. 

 
Fig. (4). Genetic algorithm. 

4.3. Pareto Front 

 The principle of multi-objective optimization is different 
from single-objective optimization. In the single-objective 
optimization case, the solution of the optimization aims to 
obtain the best solution over all other alternatives. In the case 
of multi-objective optimization, there is not necessary a best 
solution due to conflicts among all objective functions. 
Therefore, the result of the multi-objective optimization is a 
set of solutions for multiple objectives. The solutions are 
called non-determinant or Pareto-optimal solutions when an 
improvement in one objective requires a degradation of 
another. The multi-objective optimization can be formally 
represented as follows: 

 
min{z

1
= f

1
(x), z

2
= f

2
(x),…, zq = fq (x)}  

subjectto  

 
g
j
(x) ! 0 j =1,2,…,m  (21) 

 S is used to denote the feasible region in the decision 
space and Z is used to denote the feasible region in the 
criterion space. 

 
S = {x !R

n
| gj " 0, j =1,2,…,m, x # 0}  (22) 

in which, z ∈ Rn is a vector of n decision variables, f(x) is the 
objective function and gi are m inequalitiy constraint 
functions. 
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zq = fq (x), x !S}  (23) 

 A given z0 ∈ Z, it is a Pareto solution if and only if there 
does not exist another point z ∈ Z, such that 

 
zkzk

0
forsome k !{1,2…,q}  

z
l
! z

l

0
forall l " k  (24) 

4.4. Controlled Elitist Non-dominated Sorting Genetic 
Algorithm 

 Multi-Objective Evolutionary Algorithm (MOEA) are 
used to find the Pareto front. Aiming to find the real Pareto 
front, an evolutionary algorithm can be used to find multiple 
Pareto font solutions in a single simulation run. 
 The MOEA used to solve this optimization is the Con-
trolled Elitist Non-dominated Sorting Genetic Algorithm 
(CENSGA), a variant of NSGA-II [32]. 
 CENSGA [33] offers a quantitative control over the 
algorithm selection. Since, it is important to maintain the 
diversity of the population to converge to Pareto front, the 
activity of CE focused in two factors: smooth the elitism of 
the NSGA II, and limits the number of individuals on each 
Pareto front. Elitism in the NSGA-II is in two phases. 
Elitism in the CE has two steps. First, next generation 
population is selected from the best individuals using the 
Pareto criterium from the parent and offspring of present 
population. Then, the selection is performed with a random 
procedure. Furthermore, the number of individuals on each 
Pareto front is limited by a geometric decreasing function, in 
which the reduction rate is r. 

5. SIMULATION AND DISCUSSION 

 Three simulations are performed using matlab optimiza-
tion tool [34] and simulink. The first simulation is single 
objective optimization to maximize the global conditioning 
index and examine the behavior of the other indices, GGI 
and GPI. The second simulation is multi-objective optimiza-
tion to reach the optimal parameters, optimizing all perfor-
mance indices simultaneously. In both simulations, only 
Jp(x,λ) is considered to compute the global performance 
indices, since the orientation over the hyper-parallepiped 
workspace is constant. Finally, throughout the dynamical 
simulation of dynamics and control, position error analysis is 
performed to validate multi-objective optimization results. 

5.1. Optimization of Global Conditioning Index 

 In the first example, the five design parameters of vector 
λ are optimized for obtaining the maximum GCI and 
therefore maximum dexterity on the Stewart-Gough platform 
showed in Figs. (1 and 2). For this optimization, the behavior 
of global gradient GGI and global payload GPI are evaluated 
to determine how these indices vary when GCI is maximized 
in the hyper-parallepiped workspace with constant orien-
tation. 
 In this case, the optimization problem is formulated as 
follows. 

!

max{GCI(!)}  

subject to 

!r
a
+ r

b
= 0.1m  

r
a
,r
b
![0.05m,0.2m],"

a
,"

b
![3,117]  

z
0
![0.05m,0.25m]  

! x"w  

w = [!0.05m,0.05m]" [!0.05m,0.05m]"  

[!0.025m,0.025m]" [0]" [0]" [0]  

 After some preliminary simulations, we use the para-
meters in Table 1 to run GAs.  
Table 1. Parameters Used for Runing GA 
 

Parameter  Setting  

 Population size   50  

 Maximum of generations   52  

 Encoding type   Real  

 Selection strategy   Stochastic sampling 

 Crossover type   Scattered  

 Mutation type   Adaptive  

 

 The evolution of the design parameters to the best indivi-
dual is shown in Fig. (5). Through a simultaneous adjust-
ment of five parameters the design parameters converge to 

!
b
= 0.096m 0.197m 9.5 116.8 0.108m"# $%

T

  
and after 40 generations. 

 

 
Fig. (5). Evolution of design parameters for GCI optimization with 
Gas. 

 

 The evolution of the GCI as a function of the generations 
is presented in Fig. (5), in which, the best GPI converged in 
40 generations and its value is GCI=0.814. In Fig. (6), we 
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can appreciate how the GGI varies when GCI is maximized, 
remembering that the condition number is non-dimensional; 
GGI suffers a small decrease along the evolution of the 
optimization; the total decrease is 3 units per meter, from 17 
to 14 units per meter. When GCI is maximized, GGI holds 
constant. Thus, with increasing dexterity, the uniformity of 
dexterity inside the hyper-parallepiped workspace holds 
constant. 

 

 
Fig. (6). GCI optimization with GAs and GGI behavior. 

 
 In the same way, for this optimization: the maximization 
of GCI, the evolution of the GCI, and the behavior of GPI is 
present in Fig. (7), when GCI is maximized, GPI decreases; 
therefore, when dexterity is maximized, the force trans-
mission capability decreases. 

 

 
Fig. (7). GCI optimization with GAs and GPI behavior. 

 
 In Fig. (8) the hyper-parallepiped workspace w is inside 
of constant-orientation workspace of Stewart-Gough plat-
form, the constant-orientation workspace is calculated with 
the optimal design parameters !

b
. Both volumes have 

constant orientation ! = 0 0 0"# $%
T

. 

 

Fig. (8). Constant-orientation and hyper-parallepiped workspace. 

 

 The inverse condition number 1/k(Jp) is evaluated to 
determine how the local dexterity varies inside hyper-
parallepiped workspace. For this purpose, the local dexterity 
is calculated for the xy plane and the followings z 
coordinates: z = z

0
 in Fig. (9a), and z = z

0
+ z

m
 in Fig. (9b). 

Althought the dexterity was maximized, the uniformity of 
the dexterity is very low the over the hyper-parallepiped 
workspace, this can be appreciated in Figs. (9a and 9b). 
Hence, it is not sufficient maximize the GCI, because any 
small movement would reduce dexterity, causing configura-
tions with high sensitive to error. This problem would be 
solved with dexterity maximization and dexterity variation 
minimization. 

 

 
 

(a) xy plane for z = z0 
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(Fig. 9) Contd….. 

 

(b) xy plane for z = z0 + zm 

Fig. (9). Local dexterity 1/k(J(x,np)) in xy plane for z = z0 

 

 We can conclude that GCI, GGI, and CPI have conflicts 
between them. In the following section, the performance 
indices: GCI, GGI, and GPI will be optimized simulta-
neously to find the optimal design parameters such that 
satisfy optimal the condition. 

5.2. Multi-Objective Optimization 

 Multi-objective optimization delivers a set of optimal 
solutions that corresponds to the Pareto front solution. This 
set of solutions is used in the design process to select one 
optimal design parameter. 

!

max{GCI(!),GPI(!)}
!

min{GGI(!)}  

subject to 

!r
a
+ r

b
= 0.1m  

r
a
,r
b
![0.05m,0.2m] "

a
,"

b
![3,117]  

z
0
![0.05m,0.25m]  

! x"w  

w = [!0.05m,0.05m]" [!0.05m,0.05m]"  

[!0.025m,0.025m]" [0]" [0]" [0]   (25) 

 After some preliminary simulations, we use the para-
meters in Table 2 to run CENSGA. 

 All possible and optimal solutions in decision space are 
found considering the three different objective functions 
simultaneously. In Fig. (10), the Pareto front is shown in  
 

Table 2. Parameters Used for Running CENSGA 
 

Parameter  Setting 

 Population size   50  

 Maximum of generations   66  

 Encoding type   Real  

 Selection strategy  Tournament 

 Tournament size   2 

 Crossover type  Intermediate  

 Crossover ratio   1  

 Mutation type   Adaptive  

 Reduction factor r    0.7  

 
criterion space. Values outside of the Pareto front may be 
unreachable (unimplementable) or solutions with lower 
performance (not optimal). 

 
Fig. (10). MOO Pareto front in criterion space. 

 
 From the 43 different solutions obtained in MOO, we 
have selected eight solutions for each of the three objective 
functions (GCI, GPI, GGI), thus, fi for i = 1,…,8. In Table 3 
the Pareto front solutions are presented in the criterion space. 
Table 3. Pareto Front, Criterion Space 
 

   GCI   GPI   GGI  

 f1 0.8199   0.7808   13.9766  

 f2 0.8223   0.7831   10.0887  

 f3 0.7113   0.8207   8.1121  

 f4 0.6594   0.8555   6.2877  

 f5 0.5671   0.9278   3.9260  

 f6 0.4487   1.0822   2.3368  

 f7 0.3708   1.2519   1.8549  

 f8 0.2670   1.6408   1.3313  
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 In the same way, in Table 4, the Pareto front fi is given in 
decision space. It corresponds directly to the set of optimal 
design parameters for the Stewart-Gough platform. 
Table 4. Pareto Front, Decision Space 
 

  ra[m] rb[m] ϕ a[] ϕ b[] z0[m] 

f1  0.0945   0.1941   3.09 116.79  0.120 

f2  0.0945   0.1939   3.07  116.97  0.117 

f3  0.0949   0.1944   3.19  116.79  0.153 

f4  0.0945   0.1951   4.85  112.03 0.160 

f5  0.0948   0.1949   4.58  115.08  0.193 

f6  0.0953   0.1949   6.30  110.77 0.237 

f7  0.0974   0.1976   10.56  89.68 0.249 

f8  0.0990   0.1981   12.11   12.08 0.249 

 
 We can observe how the kinematic proprieties vary along 
the Pareto front. This observation is useful for selecting 
design parameters from the optimal solution set. 
 

 
Fig. (11). MOO Pareto front, GCI and GPI. 

 

 In Fig. (11), when kinematic dexterity increases, the 
payload capability decreases. The ideal solution would be to 
maximize both proprieties, but for practical purposes, an 
intermediate solution must be chosen depending on the 
required working conditions. For example, if a high load 
must be carried by the manipulator and position accuracy is 
not preponderant, GPI must have maximum value, thus f8 
would be selected. 
 Another important consideration is the uniformity of 
kinematic dexterity to ensure a high positioning accuracy 
over the required workspace. In Fig. (12) the Pareto front is 
showed. When the kinematic dexterity increases, the unifor-
mity of kinematic dexterity decreases due to the increment of 
GGI. Again, we have two conflicting requirements, hence, to 
select the design parameters from the optimal solution set, 

the use of an intermediate solution is recommended. Thus, it 
is clear that the selection of the solution with higher GCI 
would not be useful because the kinematic dexterity would 
decrease considerably in the hyper-parallepiped workspace 
limit as presented in Figs. (9a and 9b) of section 5.1. 

 
Fig. (12). MOO Pareto-optimal front, GCI and GGI. 

 

 
Fig. (13). MOO Pareto front, GPI and GGI. 

 

 In Fig. (13), we can see that increasing of payload cap-
ability also increases and the uniformity of kinematic 
dexterity over the required workspace. The optimal solution 
from Pareto front is f8, considering only two kinematic 
proprieties: payload capability and uniformity of dexterity. 
However, for selecting the optimal design parameters 
kinematic dexterity also has to be considered. 

6. CONCLUSION 

 This work presented a design procedure to reach kine-
matic parameters of a parallel manipulator, optimizing three  
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global kinematic performance indices. Optimization design 
is a complex procedure because compulsory and, at the same 
time, contradictory objective functions have to be satisfied. 
Optimal criteria were established for the kinematic pro-
prieties: payload capability, uniformity of the dexterity, and 
kinematic dexterity. 
 Consequently, the CENSGA was shown to be a robust 
optimization tool to reach optimal parameters for geometric 
configuration of parallel manipulators. The CENSGA pro-
vides the Pareto front, a set of optimal parameters to select 
the geometric configuration of the parallel manipulator in the 
design procedure. 
 Future work will relate to considering kinematic cons-
traints of parallel manipulators in the model and optimization 
process. Among these kinematic constraints we can find: 
actuator limits, passive joint limits, and leg collision. In the 
same way, we will include additional geometric parameters 
to optimize different geometric architectures and not only 
standar form of the Stewart-Gough platform. 
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