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Abstract: Parallel manipulators have various advantages over serial robots but they have a few drawbacks mainly 
referring to stiffness and singularities. Close to or in singular configurations the structure can not resist an external wrench 
applied to the mobile platform, therefore it may have uncontrolled movements. The study of the stiffness becomes of 
primary importance to design multibody robotic systems in order to properly choose materials, component geometry, 
shape and size, and the interaction of each component with others. This paper addresses the problem of a numerical 
evaluation of the structure stiffness by using the Matrix Structural Analysis when considering both links and joint 
stiffness, and by analyzing the singularity through stiffness performance indices. In order to prove the feasibility of the 
methodology for design purposes, the case for 5R parallel manipulator is formulated by comparing several stiffness 
performance indices. 
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1. INTRODUCTION 

 Parallel manipulators typically consist of a moving 
platform that is connected to a fixed base by several serial 
chains, called limbs. Features of such systems can be better 
in stiffness and payload capacity with respect to the serial 
architectures, and have high velocity and acceleration during 
the operation. Furthermore, errors in the joints are not 
cumulative which contribute for its overall accuracy. Due to 
their characteristics they have been studied extensively both 
from theoretical and practical viewpoints. Prototypes have 
been conceived and built together with the development of 
theoretical investigations on kinematics and dynamics. The 
attention is focused on a number of possible applications 
such as manipulation [1, 2], packing and assembly/disassem-
bly machines [3], motion simulation [4-7], milling machines 
[8], toys and sensors. However, they have some disadvan-
tages such as small and complex workspace with internal 
singularities and the complexity of their direct kinematics [2, 
9-11]. 
 Therefore, one of the important limitations of parallel 
mechanisms is that they may lead to singular configurations 
in which the stiffness of the mechanism is compromised. The 
physical meaning of a singularity in kinematics refers to 
those configurations in which the number of degree of 
freedom (dof) of the mechanism changes instantaneously. 
 The concept of singularity has been extensively stu- 
died and several classification methods have been defined. 
Gosselin and Angeles [9] suggested a classification of 
singularities for parallel manipulators into three main groups. 
The first type of singularity occurs when the manipulator  
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reaches internal or external boundaries of its workspace and 
the output links loses one or more dof. Second type of 
singularity is related to those configurations in which the 
output link is locally movable even if all the actuated joints 
are locked. Third type is related to linkage parameters and 
occurs when both first and second type of singularities are 
involved. Tsai [12] classify the tree types of singularities by: 
inverse singularity; direct singularity and combined singular-
rity, respectively. Their methods are based on finding the 
roots of the determinant of the manipulator’s Jacobian 
matrices. However, obtaining analytical expressions for the 
singularity loci for mechanisms with more than three dof is 
more difficult due to the complexity of the determinant.  
 Singularities are directly related to stiffness [13]. Stiff-
ness can be defined as the capacity of a mechanical system to 
sustain loads without excessive changes of its geometry [14]. 
The changes produced on geometry, due to the applied for-
ces, are known as deformations or compliant displacements. 
 Compliant displacements in a parallel robotic system 
produce negative effects on static and fatigue strength, wear 
resistance, efficiency (friction losses), accuracy, and dyna-
mic stability (vibration). The growing importance of high 
accuracy and dynamic performance for parallel robotic sys-
tems has increased the use of high strength materials and 
lightweight designs, improving significant reduction of 
cross-sections and weight. Nevertheless, these solutions also 
increase structural deformations and may result in an intense 
resonance and self-excited vibrations at high speed [14].  
 In general, to design a high stiffness mechanism, many of 
its parts should be strong and then, heavy. However, to 
perform a task the robot motion must be as smooth as 
possible, without any sudden change on positions, velocities 
and accelerations and, to obtain optimum trajectories the 
mechanical energy of the actuator must be taken into 



62    The Open Mechanical Engineering Journal, 2010, Volume 4 Gonçalves et al. 

account. This means that the robot parts should be light. 
These objectives are in conflict with each other, mainly in 
the applications where the robot should work at high 
velocities. Therefore, the study of the stiffness becomes of 
primary importance to design multibody robotic systems in 
order to properly choose materials, geometry components, 
shape and size, interaction of components with each other, 
mechanical transmission of mechanisms, actuators and the 
controller [12, 15, 16].  
 Due to the importance of stiffness and singularities, 
attention has been addressed to formulate a standard 
“stiffness performance index” that can be computationally 
efficient, giving a direct engineering insight of the design 
parameter influence, and that can be translated into experi-
mental determinations for validating a design process. 
 A stiffness performance index can be directly related to 
the stiffness matrix by means of different mathematical 
operators that can be applied to a matrix. Feasible choices 
can be the determinant, trace, norm and condition number at 
a given posture [12, 13, 15, 17, 18]. 
 Similar to or in singular configurations, a parallel mani-
pulator becomes uncontrollable. In these configurations, the 
mechanism tends to lose its stiffness while gaining extra 
degrees of freedom. Physically, when the mechanism is in a 
singular configuration, the structure cannot resist an external 
wrench applied to the end-effectors (mobile platform), there-
fore, it may collapse. Several approaches were presented in 
the literature to identify singularities of parallel manipula-
tors. The usual approach is to find the determinant roots of 
the inverse Jacobian, but the expression of the determinant is 
relatively complicated and time-consuming, even with the 
aid of computational software. Indeed, the resulting equation 
is highly nonlinear. 
 This paper addresses the problem of a numerical evalua-
tion of the stiffness and singularity of parallel manipulators 
by using stiffness performance indices that can be used for 
optimum design. 
 Firstly, the structure stiffness matrix is obtained using the 
matrix structural analysis (MSA), where the whole structure 
is considered as being composed of elements: bars and joints 
connected by nodes. After several stiffness performances, 
indices are presented.  
 This methodology is applied for the symmetric 5R 
parallel manipulator as a practical case of study where the 
MSA method enables to obtain its stiffness matrix, and the 
usual stiffness indices are compared to identify the singular 
configurations.  

2. MODELS FOR STIFFNESS ANALYSIS 

 There are three main methods to derive a stiffness model 
of parallel manipulators [19]. These methods are based on 
the Jacobian matrix [20-22]; the Finite Element Analysis 
(FEA) [23-24] and the Matrix Structural Analysis (MSA) [19, 
25-28].  
 The methods based on the Jacobian matrix are usual and 
are useful for the first estimation of the stiffness matrix. The 
uses of Finite Element Analysis models are reliable, but 
these models need to be remeshed over again by involving 

very tedious and time-consuming routines. However, these 
methods are well adapted to validate analytical models, or 
some experimental results. Methods based on matrix 
structural analysis are simple and easy for computational 
implementation.  
 In this paper, the stiffness matrix is obtained from the 
Matrix Structural Analysis (MSA), which is also known as 
displacement method or direct stiffness method (DSM). The 
methods of structural analysis are based on the idea of 
breaking up a complicated system into component parts, i.e., 
discrete structural elements, with simple elastic and dynamic 
properties that can be readily expressed in a matrix form. 
The discrete structure is composed by elements which are 
joined by connecting nodes. When the structure is loaded 
each node suffers translations and/or rotations, which depend 
on the configuration of the structure and boundary condi-
tions. For example, in a fixed linkage no displacement 
occurs. The nodal displacement can be found from a com-
plete analysis of the structure. The matrices representing a 
beam and a joint are considered as building blocks which, 
when fitted together in accordance with a set of rules derived 
from the theory of elasticity, provide the static and dynamic 
properties of the whole structure [25].  

2.1. Stiffness of Joint and Beam 

 The stiffness of a joint is given by [28]: 
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 Where kc = diag(ktx, kty, ktz, krx, kry, krz); ktx, kty, ktz are the 
translation stiffness and krx, kry, krz are the rotational stiffness 
about the x, y and z axes. 
 The stiffness matrix of a three-dimensional straight bar 
with a uniform cross-sectional area can be expressed as  
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 where kbj is given by 
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 (3) 
 In Equation (3) Ej and Gj are the modulus of elasticity 
and the shear modulus of element j respectively; Lj is the 
beam length, Iyj, Iyz are the moment of areas about Y and Z 
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axes, respectively. Jj is the Saint-Venant torsion constant and 
Aj is the cross-sectional area. 
 For application of MSA it is necessary to write the stiff-
ness matrices of all elements in the same reference frame. 
This reference transformation must be computed for all 
elements before the assembly of the stiffness matrix of the 
structure. The transformation matrix, Tj, can be obtained 
from linear algebra. 
 Thus, the stiffness matrix of the elements in a common 
reference frame (elementary stiffness matrix), for segments, 
e

jk , and for joints, e

jok int
can be expressed as 

T
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 After obtaining the stiffness matrix of beans and joints in 
a common reference frame, the stiffness matrix of a structure 
can be obtained by using the MSA. Based on how the 
structure elements are connected through their nodes, it is 
possible to define a connectivity matrix. Since segment and 
joint stiffness are known, the global stiffness matrix can be 
obtained by a superposition procedure. The described 
methodology to obtain the global stiffness matrix considers 
the structure as free, i.e., without any motion constraints. By 
applying boundary conditions when the displacements are 
known, a new invertible stiffness matrix K can be obtained, 
and then the compliant displacement can be computed as 
[28]. 

{U} = K–1 {W}  (6) 
where U is the compliant displacement and W is the applied 
external wrench. 
 Although the FEA and MSA have the same basic equa-
tions, Eqs. (2), (3), (4) and (6), one can point out some 
advantages of the MSA method: (a) Since a robotic structure 
is composed of segments and joints therefore, each segment 
and each joint can be modeled by only two nodes for the 
MSA analysis. On the other hand for FEA, each beam is 
divided into several nodes and the joints stiffness, in general, 
is not considered. (b) Using a commercial FEA software (the 
usual procedure) one does not have the control of the solver. 
Whereas, in the MSA method the stiffness matrix assembly 
can be followed step-by-step. (c) In the FEA method, for 
each change of the structure configuration a remeshed must 
be made, increasing the computational cost. In the MSA 
method, it is only necessary to improve the inverse kinematic 
model to obtain the stiffness mapping for all structure 
configurations. 

3. STIFFNESS PERFORMANCE INDICES 

 A stiffness performance index can be directly related to 
the stiffness matrix by means of different mathematical 
operators that can be applied to a matrix. Feasible choices 
can be the determinant, trace, norm, and condition number at 
a given posture [13].  
 The determinant, det(K), of a stiffness matrix K can be 
computed as 
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where K-i,-j represents the matrix obtained from K, with the 
removal of the i-th row and j-th column. Therefore, the 
determinant of K can be used as a performance index to 
investigate synthetically the effect of the design parameters 
on the stiffness behavior [13]. 
 The trace of stiffness matrix, tr(K), can be expressed as 
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 The trace can be computed as the sum of the components 
for compliant displacements along the principal directions. It 
gives a measure of the compliant displacements per unit of 
external wrench. Nevertheless, it is worth noting that the 
matrix components do not have the same dimensions, and 
thus, the sum has not a full physical interpretation. 
 A norm of a matrix is a scalar that gives some measures 
of the magnitude of the elements of the matrix. The norm of 
K can also be very useful as stiffness index, since it provides 
a measure on how much the stiffness matrix differs from 
zero. In particular, the norm can be defined in various forms 
as outlined in the following. 
 The 1-norm, which represents the absolute maximum 
sum of columns of K, can be calculated as 
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 The Euclidean norm, also called as the 2-norm is the 
square root of the largest (non-negative) eigenvalue of the 
positive semidefinite product of the matrix by its transpose, 
regardless of the ordering of the factors, as: 
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where symbol || || is the norm operator; { }

i
!  is the set of 

non-negative eigenvalues of KKT. It is to note that λi is 
identical to the square of the module of the i-th eigenvalue of 
K itself. In this case, the norm expresses the spectral radius 
whose length is related to the maximum eigenvalue, that is, 
the value of the stiffness in the stiffest direction. A similar 
norm can be related to the minimum eigenvalue of the 
stiffness in the most compliant direction [13]. 
 The Frobenius norm is the square root of the sum of the 
squares of the entries of the matrix K. It can be expressed in 
the form: 
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 The Chebyshev norm or infinity norm is the maximum 
absolute value of the entries of the matrix K in the form: 

{ }
ij

ji
KK

,

max!
"  (12) 

 The condition number has been also proposed as a 
potential candidate for a local index of stiffness perfor-
mance. The condition number, cond, of a square matrix is 
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the product of the norm of the matrix and the norm of its 
inverse [29], Eq. (13). 

1*)( !
= KKKcond

  (13) 
 It is worth noting that one can also define performance 
indices by using the Jacobian matrix in order to characterize 
the stiffness performance. But the analytical expression of 
the determinant of the Jacobian matrix is relatively compli-
cated and time-consuming, even with the aid of symbolic 
computational software. In addition, the resulting equation is 
highly nonlinear. 
 Since the stiffness matrix is a function of the structure 
configuration, a mapping of its workspace must be obtained. 
Then the MSA method is applied to obtain the stiffness 
matrix and the stiffness performance index. The results can 
be used in multi-objective optimization criteria to obtain the 
optimum design parameters of the robot. Numerical results 
for a 5R parallel manipulator optimum design, considering 
the optimum workspace, stiffness and singularities are 
presented in [30]. 

4. THE 5R SYMMETRIC PARALLEL MANIPULA-
TOR  

 A five-bar manipulator is a typical parallel manipulator 
with the minimal degrees of freedom, which can be used for 
positioning a point on a region of a plane. A 5R parallel 
manipulator consists of five bars that are connected end to 
end by five revolute joints, two of which are connected to the 
base and actuated, as shown in Fig. (1). Such a manipulator 
with a symmetric structure has attracted many researchers, 
who have investigated its position [31, 32], workspace [2, 
33], assembly modes [33], singularities [2, 3, 27, 34-37], 
performance atlases [38] and kinematic design [35, 39]. 

      
Fig. (1). The 5R parallel manipulator. 

 For the kinematic model, the used parameters are shown 
in Fig. (1). Each actuated joint is denoted as Ai (i = 1, 2), the 
other end of each actuated link is denoted as Bi and the 
common joint of the two legs is denoted as P, which is the 
output point. A fixed reference frame Oxy is located at the 
center of A1A2 where the y axis is normal to A1A2 and the x 
axis is directed along A1A2. For the structure symmetry, we 
have OA1 = OA2 = r3, A1B1 = A2B2 = r1 and B1P = B2P = r2. 
The kinematic variables are the input angles θ1 and θ2. 

4.1. Inverse Kinematic 

 The input angles θ1 and θ2 can be obtained by using the 
inverse kinematic, when the position of point P is known by 
considering the following restriction: 

2rpbi = , i = 1,2  (14) 
or in the scalar form 
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 If the output point P is known, the inputs angles for 
reaching this position can be obtained as 
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 From Eq. (18) there are four solutions for inverse kine-
matic problem of the 5R manipulator, as shown in Fig. (2a). 
Each solution is named as “working mode”. In Fig. (2a) the 
working modes can be identified by ( ), ( ), ( ) 
and ( ). 

4.2. Direct Kinematic 

 The direct kinematic problem consists in obtaining the 
coordinates of point P with respect to a set of given inputs 
angles θ1 and θ2. From Eqs. (15) and (16) one can write 
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 Equations (20) and (21) yield to 
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 The y coordinate can be obtained by substituting Eq. (22) 
into Eq. (21) as 

0
2

=++ hgydy   (25) 
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 Equations (22) and (26) provide two solutions for the 
direct kinematic problem of the 5R manipulator. They cor-
respond to two types of assembly modes, called the up- and 
down-configurations, identified by ( ) and ( ), respect-
ively, as shown in Fig. (2b). 

     
 (a) (b) 

Fig. (2). (a) Working modes from inverse kinematic model; (b) 
Assembly modes from direct kinematic model. 

4.3. Singularity Positions of 5R Symmetric Parallel 
Manipulator  

 In this structure the direct singularities occur when A1B1P 
or A2B2P is completely extended or folded. These singular 
configurations are complex configurations where the actua-
tors cannot resist to the applied forces and/or moments on 
the moving platform and these loci singularities are inside 
the workspace. The singularities due to the inverse kinematic 
model correspond to the configurations in which the moving 
platform loses one or more degrees of freedom. These singu-
larities occur when A1B1 is perpendicular to B1P or when 
A2B2 is perpendicular to B2P. These singularities are on the 
boundary of the workspace.  
 In Fig. (3) the hatch region corresponds to the workspace 
of point P to the upper assembly mode, ( ), Fig. (2b), and  
 

 
Fig. (3). Singular positions of 5R mechanism, r1 = r2 = 0,1m and r3 
= 0,1m. 

the working mode, ( ), Fig. (2a), where the boundary 
workspace is represented by a dotted red line. When 
segments B1P and B2P are aligned the singular positions are 
represented by a dashed blue line. 

5. MSA MODEL FOR THE 5R SYMMETRIC PARAL-
LEL MANIPULATOR AND RESULTS 

 Fig. (4a) shows the used nodes for the MSA model of the 
5R symmetric parallel manipulator. The links A1B1, B1P, PB2 
and B2 A2 are given by nodes: 1-2; 3-4; 5-6 and 7-8 
respectively. The revolute joints B1, P and B2 are given by 
nodes: 2-3; 4-5 and 6-7, respectively. The actuated joints A1 
and A2 are given by nodes 1 and 8, respectively. Then, the 
model has 8 nodes. 
 The segments are built with steel (E = 2 x 1011 N/m2 and 
G = 0.8 x 1011 N/m2); the cross-sectional area is circular with 
0.005m diameter and r1 = 0.1m; r2 = 0.1m and r3 = 0.1m. 
The boundary conditions are given by actuators considered 
as blocked in nodes 1 and 8. The external force and torque 
are applied on node 5, which is the center of the end-effector. 
The others joints are passive and modeled considering ktx = 
kty = ktz =2 x 1011 N/m; krx = kry = 2 x 1011 N/rad and krz = 
0 N/rad as proposed by [28].  

 
 (a)  (b)  

Fig. (4). (a) Nodes for the 5R mechanism; (b) 5R Mechanism in 
singular positions when the segments B1P and PB2 are aligned. 

 When applying the methodology of the MSA for the 5R 
manipulator, it is possible to map the stiffness using Eq. (6), 
simultaneously with the calculation of the stiffness perfor-
mance indices, Eqs. (7) to (13). 
 Table 1 presented the obtained results for compliant dis-
placements and Table 2 presented the stiffness performance 
indices corresponding to the same configurations. For the 
compliant displacements analysis, in and out of singular 
positions, two forces were applied on node 5, the first force 
in the x-direction and the other one in the y-direction. 
 Whenever angles θ1 and θ2 are equal, links B1P and PB2 
are aligned and then, the 5R symmetric mechanism is in a 
singular position, as shown in Figs. (3 and 4b) and confi-
gurations 1 to 6 in Table 1. On these configurations by 
applying a horizontal force, Fx, the 5R mechanism behaves 
in the same way like a 4 bar mechanism. Then, the compliant 
displacements, both in the x and y directions are insigni-
ficant.  
 Nevertheless, by applying a vertical force on node 5, Fy, 
the compliant displacements in this direction are large. As 
the mechanism is symmetric, the compliant displacements in 
the x-direction are very small. 
 Configurations 7 to 14 correspond to different input ang-
les. One can see on Table 1 that the compliant displace-
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ments, both for horizontal and vertical forces, are very small. 
In fact these configurations do not correspond to singular 
positions. 
 Table 2 presented the values of stiffness performance 
indices described in section 3, corresponding to configure-
tions listed on Table 1. It should be noted that the condition 

number gives the better index to identify the structure 
singularities. On these configurations the condition number 
is bigger than the other ones. 
 In a similar way the analysis can be done for singular 
configurations using the MSA and condition number for 
overall structure workspace. 

Table 1. Compliant Displacements of Node 5 for the Case of Fig. (4b) with Horizontal and Vertical Applied Forces 
 

Forces Input  
Angles [º] Fx = 1 N Fy = 1 N Configuration 

θ1 θ2 Displacement node 5 – 
x[m] 

Displacement node 5 – 
y[m] 

Displacement node 5 – 
x[m] 

Displacement node 5 – 
y[m] 

1 0 0 0.003e-5 0 0 -7.171e+4 

2 10 10 0.084e-5 0.0089e-3 2.8e-6 -7.171e+4 

3 30 30 0.681e-5 -0.0141e-3 -2.4e-6 -7.171e+4 

4 60 60 2.039e-5 -0.0205e-3 -3e-6 -7.171e+4 

5 80 80 2.636e-5 -0.0098e-3 3.6e-3 -4.259e+4 

6 90 90 2.7175e-5 0 0 -7.1709e+4 

7 89 91 2.6989e-5 0 0 7.5303e-4 

8 88 92 2.6407e-5 6.5979e-7 0 3.6170e-4 

9 87 93 2.6156e-5 0 0 2.3044e-4 

10 80 100 2.0420e-5 0 0 4.3968e-5 

11 90 100 2.4859e-5 6.7115e-6 6.7115e-6 1.2422e-4 

12 60 114 2.0464e-6 -1.1537e-6 -1.1537e-6 7.2796e-7 

13 68 89 2.1246e-5 -1.4553e-5 -1.4553e-5 4.0489e-5 

14 64 75 2.3946e-5 -2.5246e-5 -2.5246e-5 1.0635e-4 

 

Table 2. Values for Stiffness Performance Indices for the 5R Parallel Manipulator of Fig. (4b) and Table 1 
 

Input Angles [º] Stiffness Performance Indices 
Configuration 

θ1 θ2 Condition Number Determinant (K) Trace (K) 2-Norm Frobenius Norm Chebyshev Norm 

1 0 0 5.632e+13 -2.9785e+238 6.0002e+012 4.0007e+011 1.5492e+012 4.0008e+011 

2 10 10 6.424e+13 -9.9268e+239 6.0002e+012 4.0007e+011 1.5492e+012 4.0008e+011 

3 30 30 6.661e+13 -8.3347e+240 6.0002e+012 4.0007e+011 1.5492e+012 4.0008e+011 

4 60 60 6.661e+13 -2.7157e+241 6.0002e+012 4.0006e+011 1.5492e+012 4.0008e+011 

5 80 80 3.815e+13 -6.1253e+241 6.0002e+012 4.0006e+011 1.5492e+012 4.0008e+011 

6 90 90 5.632e+13 -3.7686e+241 6.0002e+012 4.0006e+011 1.5492e+012 4.0008e+011 

7 89 91 2.8782e+6 4.7518e+249 6.1374e+012 4.1149e+011 1.5847e+012 4.1152e+011 

8 88 92 2.9253e+6 1.2812e+250 6.2812e+012 4.2347e+011 1.6222e+012 4.2351e+011 

9 87 93 2.9722e+6 2.5953e+250 6.4319e+012 4.3603e+011 1.6616e+012 4.3607e+011 

10 80 100 3.2244e+6 8.0274e+251 7.7195e+012 5.4333e+011 2.0055e+012 5.4336e+011 

11 90 100 2.8058e+6 7.7021e+250 6.7417e+012 4.6550e+011 1.7433e+012 4.6556e+011 

12 60 114 3.4425e+6 2.6219e+255 1.4374e+013 1.1719e+012 3.8825e+012 1.1719e+012 

13 68 89 3.5580e+6 1.1066e+252 7.9036e+012 5.7669e+011 2.0573e+012 5.7674e+011 

14 64 75 3.6057e+6 9.3423e+250 6.8347e+012 4.7792e+011 1.7684e+012 4.7796e+011 
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 It is worth to note that the presented data on Tables 1 and 
2 are obtained by numerical simulations.  

6. CONCLUSION 

 This paper addresses the problem of a numerical evalua-
tion of stiffness and singularities of parallel manipulators 
using stiffness performance indices. 
 Firstly, a methodology has been presented to obtain the 
stiffness matrix by using the matrix structural analysis 
(MSA). Then, a stiffness performance index based on a 
condition number has been used for characterizing the 
stiffness and singularities of parallel manipulators both for 
optimum design and for operation purposes. With these 
results a multi-objective optimization design procedure can 
be formulated. 
 The main advantage of the MSA method to obtain the 
stiffness matrix of a manipulator is that it is not necessary to 
work with differential equations, like the methods based on 
Jacobian matrix; the analysis of the structure does not need 
to remesh the system to each new position, like the Finite 
Element Method and, the flexibility of all elements of the 
structure can be considered simultaneously. 
 The methodology has been applied to a symmetric 5R 
parallel structure and can be applied to other structures 
similarly. 
 The reported case compares usual stiffness indices show-
ing that using the condition number the structure singulari-
ties are efficiently identified. The other ones, i.e., trace(K), 2-
Norm, Frobenius norm and Chebyshev norm are not 
efficient. The determinant of the stiffness matrix can also be 
useful. 
 The mapping of the workspace of the parallel robotic 
structure can be elaborated, because the stiffness matrix is 
dependent on the structure configuration. Simultaneously, 
with the mapping of workspace the MSA method was applied 
to obtain the stiffness matrix of structure, as well as the 
calculation of stiffness performance index. 
 Thus, the MSA method associated to considerations such 
as workspace, stiffness and singularities can be very useful 
to obtain an optimum design of a parallel structure by using 
an adequate multi-objective optimization criteria. 
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