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Abstract: This paper proposes a thrust estimation scheme for marine propellers in four-quadrant operations. To calculate 

the thrust and torque coefficients of screw propeller in four-quadrant, a Chebyshev fit expression of the propeller 

properties in four-quadrant for surface vessel is given, and then it is changed into an ordinary polynomial expression. 

These expressions are suitable for calculating the value of the propeller thrust and convenient for studying the ship’s 

maneuverability. On the basis of ship-propeller movement characteristics, the dynamical models of propeller in four-

quadrant operations are given. The effectiveness of the proposed thrust estimation scheme is validated by experimental 

results derived from an electrically driven fixed pitch propeller, which provides a good reference for the vessel operations. 
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INTRODUCTION 

 In the design of vessel control system, such as Dynamic 
Positioning (DP), thruster assisted position mooring (PM), and 
autopilot, the high-level control approaches have received more 
attention compared to the propeller dynamics [1]. However, the 
issue of local thruster dynamics and control has been fully 
studied in the last ten years (see [2-9] and the references 
therein). There are two difficulties in the design of effective 
propeller controllers: 1) the propeller’s dynamics modeling, and 
2) measuring the environmental state. In extreme conditions, 
thrusters on ships are frequently subject to thrust losses that are 
caused by ventilation and in-and-out-of water effects. Moreover, 
due to the interaction between vessel hull and propeller, there 
are also losses of thrust. Industrial experience showed that the 
propulsion unit would be severe mechanical wear and tear due 
to the high thrust losses [10]. Therefore, the knowledge of the 
propeller thrust, either measured or estimated, could be used to 
improve the total performance of the vessel and reduce power 
fluctuations as well as wear and tear of the propulsion in 
extreme conditions [1]. 

 All these considerations motivate the development of 
schemes to estimate the propeller thrust since in general it 
can’t be measured directly. The incorporation of the 
estimated thrust in a controller is essential for the total 
performance of the vessel. In addition, the performance 
monitoring could improve fault detection and thrust 
allocation from calm to extreme sea conditions [11-15]. 

 Zhinkin [16] proposed a thrust estimation scheme for the 
propeller, where the thrust values were computed on the 
condition of positive shaft speed and vessel speed in calm sea. 
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Its estimation was based on the measurement of the propeller 
torque and a linear relation between thrust and torque. The topic 
of thrust estimation has also been investigated in [17], the 
propeller thrust values were provided by the propeller torque 
obtained with a Kalman filter where a linear shaft friction torque 
was considered. The relation between thrust and torque 
involved an axial flow velocity model and a requirement of the 
knowledge of the advance speed, both of which are very 
difficult to measure. Furthermore, simulation results showed 
that the scheme was highly sensitive to hydrodynamic and 
mechanical modeling errors. Another example of thrust 
estimation scheme can be found in [1, 5, 18]. This scheme 
involved a nonlinear observer to estimate the propeller torque as 
well as shaft speed and computed the thrust from the observer 
estimates by a mapping. 

 In this paper, a thrust estimation scheme that works in four-
quadrant plane is given. Unlike the method in [1, 5, 18], our 
new scheme just need to know the propeller speed so as to 
compute the thrust by the relation between thrust and propeller 
speed, which makes it very convenient for studying the ship’s 
maneuverability. In order to simulate the dynamic properties of 
the propeller load, this paper selects advance ratio of the 
bounded mode along with the test atlas of Nordstrom series and 
adopts the fitting method of Chebyshev polynomial. The thrust 
and torque coefficients can also be adjusted according to 
different numbers of propeller blades and area ratio. The thrust 
estimation scheme presented in this paper is based on the results 
achieved in these work. 

 This paper is organized as follows. Section 2 introduces 
the propeller model and the bounded form of advance ratio J. 
Section 3 presents the Chebyshev polynomial expression of 
propeller properties and its ordinary polynomial expression. 
Section 4 is devoted to verifying the effectiveness of our new 
thrust estimation scheme by experiment results. Finally, the 
conclusions were drawn in Section 5. 
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PROPELLER MODEL 

Propeller Mathematical Model 

 As shown in Fig. (1), the propeller system composed of 
an electric motor attached to the propeller through a shaft 
and a gear-box. 

 

Fig. (1). Propeller system. 

 The function of motor is to provide power, then with the 
form of torque output, which is converted to thrust through 
the propellers rotating to push the ship forward. The 
propeller thrust and torque mathematical model can be 
written as [19]: 

FT = n2D4KT   (1) 

MQ = n2D5KQ   (2) 

where FT  is the propeller thrust (N), MQ  is the propeller 

torque (Nm), n is the propeller speed(r/s), is water density 

(kg/m
3
), D is propeller diameter(m), KT  is the thrust 

coefficient, and KQ  is the torque coefficient. 

 

Fig. (2). Measurement system. 

 In this paper, a supply ship model with two tunnel 
thrusters and two azimuth thrusters is presented. PLC analog 
output module output voltage (0~6v) corresponding to the 
propeller speed n (0~3000rpm) by controlling the motor 
servo drive. The azimuth thrusters’ orientation is controlled 
by the synchronous measurement system, which is composed 
of the rotating transformer and the decoder board. A picture 
of the measurement system is presented in Fig. (2). This 
guarantee high reliability when it works in extreme sea 
states. 

Advance Ratio J with Bounded Form 

 If the propeller speed n 0 , the thrust coefficient KT , 

torque coefficient KQ  and advance ratio J can be written as: 

KT = FT / ( n
2D4 )   (3) 

KQ = MQ / ( n
2D5 )   (4) 

J =
vp
n D

  (5) 

where J is the advance ratio, vp  is advance speed of the 

propeller relative to water. Note that although in general vp  

is not available, it can be estimated by the following 

formula: 

vp = vs (1 w)   (6) 

where vs stands for vessel speed (m/s); w stands for the wake 

fraction number. 

 For a given screw pitch ratio H/D, KT KQ  are plotted as 

functions of J: 

KT = KT (J )   (7) 

KQ = KQ (J )   (8) 

 Generally speaking, the KT  and KQ curves may stride 

across four quadrants. That is, when n 0 , J,KT ,KQ . 

This expression is usually called the non-bounded form. 

Theoretically, the curves can be established even though 

J>1, but it’s troublesome for both analog simulation and 

digital simulation when the variable range is very large. It 

will be more convenient to use the following form to 

analysis the propeller’s dynamic property in four-quadrant. 

When n and vp are not equal to zero simultaneously, they are 

defined as 

KT ' = FT / [ D2 (vp
2
+ D2n2 )]   (9) 

KQ ' = MQ / [ D3(vp
2
+ D2n2 )]   (10) 

J ' = vp / [(D n ) 1+ (vp /Dn)
2 ]   (11) 

 The following transformation relation holds: 

J ' =

1 n = 0,vp > 0

J / 1+ J 2 n > 0

J / 1+ J 2 n < 0

1 n = 0,vp < 0

  (12) 

 It can be seen that by (12), J ( ,+ )  is mapped 

into J ' [ 1,1] . That is, the propeller’s all-round dynamic is 

expressed by the bounded mode. The relationships between 

KT  and J’, KQ and J’ become: 

KT ' = (KTn
2D2 ) / (vp

2
+ n2D2 ) = KT (1 J '2 )   (13) 

KQ ' = (KQn
2D2 ) / (vp

2
+ n2D2 ) = KQ (1 J '2 )   (14) 

CHEBYSHEV POLYNOMIAL EXPRESSION OF 
PROPELLER PROPERTIES 

 A continuous function over the interval of [-1 1] can be exp-
ressed approximately as an μ-th order Chebyshev polynomial: 
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f (x) =
1

2
a0g0 (x)+ a1g1(x)+ + aμT gμ (x)  (15) 

where g0 (x) = 1 , g1(x) = x , g2 (x) = 2x
2 1 ,  . The general 

recursive formula for gk (x)  is: 

gk (x) 2xgk 1(x)+ gk 2 (x) = 0  ( k 2 )  (16) 

 Note that gj  and gk  are orthogonal to each other, and 

the polynomial coefficients are independent of the order μ. 

Besides, the fitting error is small and the fitting result with 

finite order μ is the best approximation in the sense of 

minimal square error. It’s also convenient to change a given 

Chebyshev polynomial expression into an ordinary 

polynomial. The Chebyshev polynomial coefficients a0 ~ aμ  

are substituted into (15) and g0 ~ gμ are extended by 

definition, and then the ordinary polynomial and its 

coefficients b0 ~ bμ  can be obtained. KT
'

 and KQ
'

 show as 

functions of the bounded advance ratio J’, which can be 

written as 

 

KT '(J ') =
1

2
a0T g0 (J ')+ a1T g1(J ')+ + aμT gμ (J ')   (17) 

 

KQ '(J ') =
1

2
a0Qg0 (J ')+ a1Qg1(J ')+ + aμQgμ (J ')   (18) 

where coefficients a0 ~ aμ  can be obtained from Tables 1 

and 2 in [20]. Extending g0 ~ gμ  in (17) and (18) by 

definition, the ordinary polynomials corresponding to (17) 

and (18) can be written as: 

 
KT '(J ') = b0T + b1T J '+ + bμT (J ')

μ
  (19) 

KQ '(J ') = b0Q + b1QJ '+ + bμQ (J ')
μ

  (20) 

 Trading off the accuracy and efficiency in terms of actual 

simulation of the ship, the 8-th order Chebyshev polynomial 

is adopted in this study. Therefore, a0 ~ a8  can be obtained 

from Tables 1 and 2 in the appendix of [20]. With the pitch 

ratio H/D=1.0, the coefficient are listed in Table 1 for ease of 

reference. 

 The test atlas of Nordstorm series in [21] can estimate the 

propeller characteristics curve in four-quadrant. The 

principal parameters of this series of propellers are: 1) disc 

square ratio A / Ad = 0.45 , 2) number of blades Z=4, and 3) 

screw pitch ratio H/D=0~1.6. In case the actual parameters 

are different from the test atlas of Nordstorm series, that is, 

A / Ad 0.45 , and/or Z 4 , the following formulas can be 

used [21]: 

KT "= KT '   (21) 

KQ "= KQ '   (22) 

where KT '' , KQ '' are the modified coefficients, The 

conversion factor = Z0 (A / Ad )0 / [Z(A / Ad )]3 , where 

Z0 = 4 , (A / Ad )0 = 0.45 , Z is the actual number of blades, 

A / Ad is the actual disc square ratio. The characteristics of 

KT '' = KT '(J ')  and KQ '' = KQ '(J ')  are shown in Fig. (3a, 

b). For the convenience of simulation, the Chebyshev 

polynomial is often changed into an ordinary polynomial, 

namely, (17) and (18) are changed into (19) and (20). 

Respectively, the results are shown in Table 2 with respect to 

the method mentioned above 

EXPERIMENTAL RESULTS 

A. Ship-Propeller model 

 According to theorem of momentum and Newton's 
second law, the motion equation of the ship-propeller system 
is established as follows 

2 In = RabQm Qp Qf   (23) 

(m + m)
dvs
dt

= FTE R   (24) 

where I is the total moment of inertia including additional 

moment of inertia, Qm is the motor torque, QP is the 

propeller torque, Rab is the gear ratio, Qf is the static friction 

torque, m is the quality of the ship (kg), m is additional 

quality of the ship (kg), and R is total resisting force, which 

can be written as [22]: 

R = rvs
2
  (25) 

with r being the total resistance coefficient of the ship and 
constant at given condition. 

 Here, the gear ratio and the static friction torque are 
chosen as 

Rab = 3 ,Qf = (0.02 ~ 0.04)Qm   (26) 

 According to the analyses in previous sections, a 
combination of (1) (2) (9) (10) (21) and (22) yields: 

FT = KT D2 (vp
2
+ n2D2 ) = KT ' D

2vp
2 / J '2  (27) 

Table 1. Chebyshev Polynomial Coefficients of Thrust and Torque Properties 

 

a a0 a2 a2 a3 a4 a5 a6 a7 a8 

n > 0  0.3888 -0.2338 -0.1664 -0.02003 0.001340 0.05341 -0.02842 0.02029 0.01766 
KT '  

n < 0  -0.2641 -0.2274 0.1254 -0.02646 -0.001524 0.04883 0.02704 0.01888 -0.006320 

n > 0  0.05315 -0.03093 -0.02260 -0.004060 0.0008315 0.006672 -0.001843 0.004078 0.002371 
KQ '  

n < 0  -0.04467 -0.03423 0.02490 -0.004576 -0.001535 0.007792 0.004162 0.004694 -0.001648 
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MQ = KQ D3(vp
2
+ n2D2 ) = KQ ' D

3vp
2 / J '2  (28) 

 For thrust deduction coefficient t: 

t = (FT FTE ) / FT , the propeller effective thrust FTE  (N) is 

given by 

FTE = (1 t)FT = (1 t) KT ' D
2vp

2 / J '2   (29) 

 In the ship simulation, due to lack of the measured data, 
especially the data of backward navigation, t and w are 
determined as [22]: 

t = 0.33 n < ne
t = 0.33n / ne ne n < 0

t = 0.13n / ne 0 n < ne
t = 0.13 n ne

  (30) 

w = 0 vs 0

w = 0.22vs / vse 0 vs < vse
w = 0.22 vs vse

  (31) 

where vse  stands for ship rated speed. Fig. (4) summarizes 

the motion equation of the ship-propeller system. 

B. Result Analysis 

 The main purpose of this paper is to estimate the thrust 

from the relation between the thrust and the propeller speed. 

A ship-propeller model is given for the test of electric 

propulsion system with propellers. The test were performed 

at the ocean engineering Dynamic Positioning System lab in 

Guangdong university, where has a pool with length L=11m, 

wide H=6m. A 2.8m ship model of an offshore supply vessel 

with a scale of 1:26 has been conducted (See Fig. 5). Fig. (6) 

shows design of the thrust estimate experiment scheme. The 

main parameters are shown in Table 3. At the condition of 

the given initial ship speed vs , J’ is computed from (6) and 

(11), KT ' , KQ ' can be obtained by (17) and (18). Then the 

propeller torque and effective thrust can be calculated by 

(27) and (28). Ship speed can be obtained by (24) (27) and 

(29). 

 The rated vessel speed of 2.8m ship model is vse=1m/s by 
test. This measuring experiment record a propeller thrust of 
the corresponding propeller speed every 20 RPM from-1000 
~ 1000 RPM. Fig. (7) gives the experiment and theoretical 
values of propeller thrust.  

 Using the model given in (27) and (28), combined with 

the KT ' , KQ ' values obtained by (17) and (18), the propeller 

thrust can be estimated under the given propeller speed. Fig. 

(7) shows the measured and estimated thrust from the static 

water. It can be seen from Fig. (7) that the propeller thrust 

increases with the increase of the propeller speed n; and for 

the same propeller speed n, the thrust in the case of the 

propeller reverse is less than that when the propeller is in 

positive rotation. That is, for positive values of n, the 

efficiency is higher because the propeller was designed to 

work mainly at forward vessel speed. 

 

Fig. (3). Four-quadrant propeller characteristics. 

 

Table 2. Ordinary Polynomial Coefficients of Thrust and Torque Properties 

 

b b0 b1 b2 b3 b4 b5 b6 b7 b8 

n>0 0.4082 -0.0487 -1.4202 -0.0121 4.2005 -1.4179 -5.4304 1.2986 2.2605 
KT '  

n<0 -0.2923 -0.0360 0.9520 -0.0252 -2.3213 -1.3333 2.4832 1.2083 -0.8090 

n>0 0.0542 -0.0139 -0.1609 0.0787 0.4745 -0.3500 -0.6660 0.2610 0.3035 
KQ '  

n<0 -0.0546 -0.0144 0.1897 0.0887 -0.4757 -0.4011 0.5551 0.3004 -0.2109 

        

a) Thrust characteristics                    b）Torque characteristics 
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Fig. (4). Ship-propeller system. 

 

 

Fig. (5). Ship model: scale 1:26 of a supply vessel. 

 

Fig. (6). Thrust estimate experiment scheme design. 
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Fig. (7). Thrust experiment and theoretical values. 

CONCLUSIONS 

 In this paper, a thrust estimation scheme for marine 
propellers across the full four-quadrant range is presented. 
First, the propeller properties across four quadrants described 
with Chebyshev polynomial and its ordinary polynomial are 
given. Based on such polynomial, the simulation model of 
propeller in four-quadrant operations is established. The 
experiment results show that the performance of the thrust 
estimation scheme using the algorithm mentioned above is 
satisfactory. The proposed thrust estimation scheme will be 
used in high performance propeller controllers and thrust 
allocation for ship control. 
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