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Abstract: The circular tubes containing external pit defects are analyzed in a lower-bound finite element computational 
form based on the static shakedown theorem. The shakedown analysis has not been commonly used in the engineering 
due to the large amount of computations. To overcome the numerical difficulties, a temperature parameter method is used, 
in which a pseudo-temperature field is applied to the structure and the resulting self-equilibrium thermoelastic stress is 
treated as the residual stress field which is used in the analysis. The pseudo temperature is assumed as a harmonic function 
satisfying the uniqueness theorem, therefore the nodal temperature matrix of the whole structure can be expressed by the 
boundary nodal temperature matrix. The nonlinear yield condition is piece-wise linearized so that the shakedown analysis 
is transformed into a linear programming problem in which the strategic variable is boundary nodal temperature and 
objective variable is the loading multiplier. The relations of limit and shakedown pressures to geometric parameters of 
various defects are presented. 
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INTRODUCTION 

 In assessing the load carrying capacity of structures, 
besides fracture mechanics method which is used for 
assessing controlling crack, limit and shakedown methods 
are commonly used for assessing the overall structure 
collapse, in which limit analysis is for monotonous load, 
while for the structures subjected to multiple and variable 
load, shakedown analysis should be required. A combination 
of the two assessment method by using interpolation 
between fracture and plastic collapse is called the two-
criteria method [1]. In the early time, main concern is paid 
for the limit analysis using theoretical method. For circular 
tube with a rectangular slot part through the thickness 
Kitching and Zarrabi [2] presented experimental limit 
pressure and lower bound limit analysis [3] based on the 
assumption of stress resultants in thin shell. The analysis in 
[3] is similar to that for a circular tube with a rectangular part 
through slot. No account has been taken of the fact that the 
mid-surface of the shell in the regions of the slot is offset 
from the mid-surface of the surrounding thicker shell and 
that the stress field in the regions of slots and near the slot 
could not be similar to the stress in thin shell. In the review 
by Miller [4] a number of approximate results of limit pres-
sure for cylindrical and spherical shells containing defects 
are reported. All results were based on 2-D or thin shell 
analysis, however the stress characteristic in a circular tube 
with defect is a real 3-dimensional problem.  
 As to plastic limit and shakedown analysis of structure, 
although the classical shakedown theorem founded by Melan 
[5] and Koiter [6] and recently developed by Konig [7] is 
elegant, it is computationally very difficult in applying to 3- 
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D structures due to the large number of variables and con-
straints. Feng et al., [8-10] investigated a global/local shake-
down computational form for three-dimensional elastoplastic 
strain-hardening and damage structures with cracks. Liu and 
Cen [11,12] presented a upper bound numerical method for 
limit analysis of 3-D structures and investigated the upper 
bound limit analysis of cylindrical shells with part through 
slots. Later, Konig [13] discussed the exactness of the 
kinematical approach in the structural shakedown and limit 
analysis, in which appropriately defined parameters called 
generalized stresses and strains are used in the analysis.  
 Comparing with upper bound limit analysis based on 
displacement variables, lower one on stress has more varia-
bles and restraints so that it is computationally more 
difficult. Fuschi and Polizzotto [14] presented a shakedown 
load boundary for an elastic-perfectly plastic structure. 
Giambanco [15] considered the optimal shakedown design 
of structures discretized by elastic perfectly plastic finite 
elements. Four alternative methods were presented in his 
paper to formulate the design problem. Polizzotto [16] 
provided a unified approach to quasi-static shakedown 
problems for elastic-plastic solids with piecewise linear yield 
surface. A general inequality was given by using a 
perturbation method, from which, by simply specializing the 
perturbing terms, the generalized Melan theorem as well as 
bounds on various deformation parameters (such as displace-
ments or plastic strain intensities) were obtained.  
 The lower bound shakedown analysis of axisymmetric 
structures is presented by the authors [17] and the limit and 
shakedown loading for spherical shells containing part 
through slots and gas holes [18] is investigated. In [17, 18] a 
pseudo-temperature field is put into a structure discretized by 
finite element method and the resulting thermo-elastic stress 
is considered as a self-equilibrated stress field. The yield 
condition is linearized piecemeal. Then the shakedown 
analysis is transformed into a linear programming containing 
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unknown element temperature variables and constraints. By 
means of the further steps the numerical difficulties for 
plastic shakedown analysis of 3-D structures are overcome 
and the results are verified by experiments and by upper 
bound solution. 

DERIVATION OF COMPUTATIONAL FORM 

 Static shakedown theorem by Melan [6] is presented as 
following mathematical programming form 

Max:   µ 
s.t. f ( e

ij
µ! (xk) + ij

! (xk))!  σs   ∀ xk∈ v (1a) 

,
0

ij j
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0
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F
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where e

ij
!  is the elastic stress field, ρij is the self-equilibrate 

residual stress field, f is the yielding function and µ  is the 
load multiplier, v and SF represent the structure body and its 
surface, respectively. The difficulty in lower bound shake-
down analysis is to find ρij(xk), which has six independent 
components at each point xk in a 3-D structure. Since a ther-
moelastic stress field automatically satisfy self-equilibrate 
conditions (1b) and (1c) so that a temperature (scalar) field θ 
(xk), instead of the two-order stress tensor fields ρij(xk), can 
be considered as the optimization variables of the program-
ming problem (1). The procedure may largely simply the 
programming analysis. 
 Suppose that the structure which is discretized by finite 
element method, has M nodes. A pseudo node temperature 
matrix θ  is applied to the structure. Thus the node thermal 
stress matrix ρ  in the structure has the linear relation with θ  
as follows: 
ρ  = Wθ   (2) 
where W is (6M×M) thermo-elastic matrix of the structure. 
The yielding function is simulated by an inscribed poly-
hedron consisting of J planes as shown in [4,5]: 
NjQ = kj                j = 1,2... J (3) 
where Nj is the normal vector to the linearized plane in the 
stress space and kj is the perpendicular distance from point O 
to the j-th linearized plane. Q is the stress of current node, 
including both elastic stress, Qe and pseudo-residual stress: 
Q = µ Qe + Wθ  (4) 
 Therefore the programming problem (1) is transformed 
into the following problem: 
Max: µ 
s.t.  µNQe + NWθ  !  K (5) 
where N is composed of Nj, and K is a vector composed of 
kj of all nodes. Problem (5) contains (M+1) variables includ-
ing both µ and node temperature matrix and (M×J) cons-
traints, so that the scale of the linear programming usually 
dependent on the number of nodes of discretized structure. 
For a 3-D solid finite element analysis the scale of the 
programming is still too large. 
 In order to overcome the above mentioned difficulty, the 
equation for sustained heat conduction without a heat source 
in the structure is considered. Suppose that there are total M 
nodes in the structure in which the number of boundary 

nodes is B, the heat conduction equation in finite element 
form can be expressed as: 
Kθθ  = 0 (6) 
where Kθ is a (M×M) heat conduction matrix and θ  , (M×1) 
node pseudo-temperature matrix. Suppose that the sub-
matrix of the temperature at the boundary nodes, θb, has 
been known and θ i is the sub-matrix of temperature at the 
nodes inner the structure, then equation (6) is transformed 
into: 

 

( ) ( )

( ) ( )

iii ib

bbi bb

! !

! !

!

!

" #" #$ $
% &% &
$ $' (' (

K K

K K
 = 0 (7) 

 Therefore, we have 

!
i
 = 

   
!K

ii

(" )!1
K

ib

(" )

 
!

b
 (8) 

 Thus, θ , can be expressed by 
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where T is a (M×B) matrix: 
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where I is the identity matrix. Substituting equation (9) into 
problem (5), the programming problem is transformed into: 
Max:  µ 
s.t.  µNQe + NWTθb !  K (11) 
 In programming problem (11) the number of optimiza-
tion variables is reduced from (M+1) to (B+1) .The dual 
programming of problem (11) is solved directly as follows: 
Min:  µ = KTY 
s.t. (NQe)TY = 1 
 (NWT)TY = 0 
Y ≥ 0 (12) 
 Problem (12) is a standard linear programming form 
containing (M×J) variables Y and (B+1) constraints. The 
problem is solved by using Fortran program coded by the 
authors. 

THE LIMIT AND SHAKEDOWN ANALYSIS OF 
CIRCULAR TUBE WITH PART THROUGH PIT 

 The tubes containing four kinds of part-through pit, 
which are spherical, ellipsoidal, circular and rectangular, on 
the outside surface shown in Fig. (1) and named for types A, 
B, C and D, respectively, are computed by the presented 
approach. It is simplified by assuming the two symmetrical 
planes of each defect to be in the longitudinal and circum-
ferential directions of the cylinder and the region of the 
defect to be far from the two end of the shell. Therefore, the 
computing model could be taken a quadrant of the cylinder 
shown in Fig. (2). 
 The models are discretized by 3-D 8-node Wilson incom-
patible element [19] with nine additional degrees of freedom 
which is accurate to 20-node isoparametric element but the 
number of degree of freedom decreased by 3/5 (Fig. 3).  
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Fig. (1). Four types of defects. 

 
Fig. (2). Computational model. 

 
Fig. (3). Finite element meshes. 

 As to the linearization of the yield condition, as the 
difference between three principal stresses and stress 
components σθ, σz and σr is not significant, θ, z and r are 
assumed to be principal axis of stress and Tresca yield 
condition is chosen as linearized yield condition.  
 Six steel models are tested and calculated by the 
presented method. The outer diameter of the tested cylinders 
are 140mm and the yielding and ultimate strength of 
material: σs = 400 Mpa, σb = 620 Mpa. The basic parameters 
of six models are shown of in Table 1, where a and b are 
longitudinal and circumferential dimension of slot, 
respectively, c, the depth of the slot and t, the thickness of 
cylinder. According to work criterion for choice of the 
deformation parameter [20] for each model the experimental 
limit pressure ( )ex

lp  is obtained from diagram pressure 
p/volume change (Δv/v) and is that for which the permanent 
volume change is twice the volume change at the initial 
departure from linearity. This definition corresponds to the 
definition of ASME code. However, for No1,3,6 models 
having large areas of defect the definition of ASME code is 
not appropriate because the volume change at the initial 
departure from linearity is too large (Δv/v large than 1.5%) to 
find the limit pressure according to the definition of ASME 
code. Therefore for the three models the limit pressure is that 
giving 0.2% permanent volume change. The tested burst 
pressure ( )ex

bp  for the experimental models is measured too. 
The comparison between experimental and calculated results 
for the six models are given in Table 2. Here, the limit 
pressure of each test model, 

o
p , is calculated with the 

thickness of each model as follow: 

ln( / )
o s o i
p R R!=  (13) 

 
Table 1. Basic Parameters of Six Tested Models 
 

No.  Defect Type a(mm) b(mm) c(mm) t(mm) 

1 C 43.2 8.2 2.8 5.1 

2 B 22.2 7.4 2.9 5.4 

3 D 26.5 26.5 2.9 5.3 

4 A 11.6 11.6 2.9 5.8 

5 B 14.9 2.6 2.5 5.1 

6 C 89.0 8.4 2.7 5.4 

 
 The calculated limit and shakedown pressure, 
( ) /lw

l op p and ( ) /lw

sd op p  by the present method are given in 
Table 2. The upper bound solution, ( ) /up

l op p , for the six 
models is calculated by Liu with the method given in [11] 
and shown in Table 2 as well. 

 Table 2 shows that: 

(1)  The presented results are lower than the upper bound 
solution for all models but they are closed each other. 

(2)  The presented results are in good agreement with and 
lower than the experimental ones. 
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THE EFFECT OF PARAMETERS OF THE DEFECT 
ON THE CARRYING CAPACITY OF THE TUBES  

 The lower bound limit and shakedown pressure of 
cylinders with four kinds of part-though pits having different 
parameters are obtained by the present method and given in 
Figs. (4)~(7) which are for Type A, B, C and D, respectively.  
 

 
Fig. (4). Effect of depth of type A part-through pit on the carrying 
capacity. 

 

 
Fig. (5). Effect of depth of type B part-through pit on the carrying 
capacity. 

 
Fig. (6). Effect of depth of type C part-through pit on the carrying 
capacity. 

 

 
Fig. (7). Effect of depth of type D part-through pit on the carrying 
capacity. 

The diagrams show that: (1) The carrying capacity of the 
tube with rectangular defect (its long axis is in the 

Table 2.  The Comparison between Numerical and Experimental Results 
 

Tested Results Numerical Results 
No 

( )ex

bp (MPa) ( )ex

lp (MPa) ( ) /ex

l op p  ( ) /lw

l op p  ( ) /up

l op p  ( ) /lw

sd op p  

1 26.0 22.4 0.74 0.65 0.69 0.44 

2 28.0 24.1 0.73 0.72 0.73 0.52 

3 28.0 23.2 0.74 0.74 0.78 0.69 

4 40.5 32.3 0.93 0.90 0.92 0.86 

5 30.0 27.3 0.90 0.83 0.90 0.43 

6 23.5 17.9 0.56 0.54 0.59 0.40 
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longitudinal direction of the cylinder) is the lowest and that 
with spherical one is the highest. (2) The carrying capacity 
of the tubes with rectangular or ellipsoidal defect decrease 
with their b/a. (3) The carrying capacity goes down with the 
expansion of the area of the pit, no matter what kinds of the 
pit is. (4) For the same model the shakedown pressure are 
coincident with limit one when the pit is shallow, but it 
descends more rapidly than limit one when the pit is 
deepened. 

CONCLUSIONS 

 A FEM computational form based on the static shake-
down theorem was developed in this paper. The circular 
tubes containing external pit defects were analyzed using 
Temperature Parameter Method, in which the computational 
quantity was largely decreased by simulating the residual 
stress field with a pseudo self-equilibrium thermal stress 
field. The approach was verified by the experimental results 
of six models. Due to the intrinsic characteristics of dis-
placement element, the computational results should be 
greater than the theoretic lower-bound values, which are 
more closed to the real values. From the numerical results 
for the circular tubes with four types of part-though pits, it is 
found that rectangular defect is the most danger defect. The 
carrying capacity of the tubes decreases monotonously with 
the expansion of the pit. When a pit is shallow, the shake-
down pressure of the tube is coincident with the limit one, 
however with deepening the pit, the two load carrying capa-
cities becomes bifurcated, the shakedown pressure descends 
more rapidly than the limit one. 
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