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Abstract: An experimental set-up of the method of caustics was proposed for the accurate evaluation of stress intensity 
factor. The stress intensity factor evaluation was based on a new formula which was based on the caustic shape area. The 
new formula was based on the shape area of the caustics. The stress optical constants were evaluated according to the new 
formula of the stress intensity factor. The stress optical constants can be calculated by the shape area of the caustics. For 
simple and accurate evaluation of the stress intensity factor, the caustic formed by the convergent light beams (caustic (f)) 
was used. For this caustic, the stress optical constant is cf = ν/E, where ν is the Poisson’s ratio and E is the modulus of 
elasticity of the material. The Poisson’s ratio and the modulus of elasticity were evaluated by the method of strain-gauges. 
The stress intensity factor must be independent on the z0 (z0 is the distance between reference plane and specimen) and the 
magnification ratio λm (λm is dependent on the z0 and zi). Experiments have shown that the stress intensity factor was 
changed for deference z0 and λm (deference zi). The accurate value of the stress intensity factor is that which is closed to 
theoretical one. So, for a proper experimental set-up (combination of the z0 and zi) the evaluating stress intensity factor 
values are accurate and independent of the z0 and zi. 
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INTRODUCTION 

 The optical method of caustics [1, 2] has been shown to 
be very effective for the determination of the characteristic 
parameters of singular elastic fields, where the 
corresponding stress parameters in these particular regions 
are governed by singularities which render the solution of 
the difficult problem, if not impossible, by conventional 
stress analysis methods. The difficulty arises mainly from 
the fact that the highly strained region at the singularity is 
very small and therefore, the information gathered by 
classical experimental methods is rather vague and 
inaccurate. 
 According to the method of reflected caustics, a light 
beam impinges in the immediate vicinity of the singularity 
and is reflected from the front and rear faces of the plate (for 
the case of transparent materials). The reflected rays are 
collected along a singular surface, which is strongly 
illuminated. A reference screen, placed at some distance 
from the plate, intersects this surface and yields a singular 
curve, the caustic, which is, for all cases studied up to now, a 
generalized epicycloid. In this way, and by applying simple 
laws of geometric optics, that is the reflection laws, the 
singular stress field is transformed into an optical singularity, 
the caustic, which yields all the necessary information for 
evaluation of the stress singularity. 
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 The method of reflected caustics was used for the 
solution of several elasticity problems of particular interest 
in engineering applications. The method was applied 
primarily to cases with singularities, such as those appearing 
in cracked plates under plane stress conditions; to contact 
problems; and to problems of multiwedges (composite 
materials). However, the method works equally satisfactorily 
in elastic problems with any type of stress concentration, not 
necessarily including singularities. In such cases the caustic 
is generated from a deformed boundary instead of from a 
singular curve in the interior of the plate (initial curve). For a 
review of all these applications the reader is referred to a 
review papers [3-10]. 
 The method of caustics was theoretically developed for 
elastic homogeneous and isotropic materials. For virtual 
materials, the caustic shape is dependent on the material 
behavior at crack tip, at the board of which, is defined by the 
initial curve. Also, the caustic shape is dependent on the 
plastic zone, core region, which is developed at crack tip 
because of Poisson’s phenomenon. The shape of the caustic 
can be changed by the specimen surface curvature [11,12]. 
 The experimental method of caustics was applied to 
evaluate the stress intensity factors by the caustic diameters. 
Then, a new formula for the evaluation of the stress intensity 
factor which was based on the caustic area, was applied [10]. 
By this formula, a new approach to evaluate the stress 
optical constants [13]. Recent work [14-16] has 
demonstrated that the method of caustics can be used to 
study the plasticity around the crack tip. Surface properties 
are changed after fatigue and a permanent plastic zone at the 
crack-tip is remained [17-19]. 
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 The present work illuminates the complicated problem of 
the stress intensity factors evaluation by the caustic 
diameters which are dependent on the experimental set-up. 
This problem was solved by the use of the caustic area and a 
proper experimental set-up for the evaluation of the accurate 
stress intensity factors at the crack tip. 

METHOD OF REFLECTED CAUSTICS 

 The optical method of caustics is able to transform the 
stress singularity into an optical singularity, using the 
reflection laws of geometric. For divergent or convergent 
light beam the reflected light rays from front, (f) and rear, 
(r), face of the plate form two caustics, the caustic (f) and the 
caustic (r). The experimental set-up is appeared in Fig. (1). 
For a cracked isotropic elastic specimen, the parametric 
equations of the two caustics are [8]: 

Xr , f = λmro(cosθ ±
2
3
cos 3θ

2
)   (1) 

Yr , f = λmro(sinθ ±
2
3
sin 3θ

2
)   (2) 

where ro  is the radius of initial curve of the caustics. This 
radius is given by: 

 
Fig. (1). Experimental optical set-up. 
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with: 

λm =
zo ± zi
zi

  (4) 

where zo  is the distance between specimen and reference plane 
(Fig. 1), d is the thickness of the specimen, λm  is the 
magnification ratio of the experimental set-up, zi  is the distance 
between specimen and light beam focus (Fig. 1), ε = 2  for 
caustic (r) and ε =1  for caustic (f) and KI  is the stress intensity 
factor for the mode-I stress state. The cr  and cf  are the stress-
optical constants of the material. The stress-optical constant cf  
is given by: 

cf =
ν
E

  (5) 

where ν  is the Poisson’s ratio and E  is the modulus of 
elasticity of the material. 

 The experimental stress intensity factor KI  is estimated 
by the relation [8]: 
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with

C =
1

εzodλm
3/2cr , f

  (6) 

where Dt ,l  are the maximum diameters of the caustics ( Dt

transverse and Dl  longitudinal) and δt ,l  are the correction 
factors with: 

δt = 3.1702 and δl = 3.00   (7) 

 If the caustic is about circle (Fig. 2), (theoretical caustic), 
the diameters ratio is: 

Dt

Dl

=
δt
δl
=1.056   (8) 

 Then, the KI  values are: KI (Dt )
= KI (Dl )

. If the caustic 

becomes oval (Fig. 2), (experimental caustic), Dt

Dl

≠1.056,  

the KI  values are different, KI (Dt )
≠ KI (Dl )

. In this state, the 
relation between the values of the KI  is: 
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 Fig. (2) illustrates the experimental caustics at crack tip 
for crack length α = 0.028m, 0.040m, 0.056m and 0.069m,  
respectively and for the same stressσ = 2.42MPa . 

 The flat specimens were made of Lexan (PCBA) with 
free length L = 0.250m , width w = 0.100m , and thickness 
d = 0.003m.  
 Because the shape of caustic is about ellipse, its area is 
given by the relation: 

A = π
4
DtDl   (10) 

 According to caustic theory [8] the diameters of the 
caustic are: 

Dt = 3.1702λmr0, Dl = 3.00λmr0   (11) 

 Then, from Eqs. (3, 6, 10, 11), the stress intensity factor 
KI  becomes: 

KI = 0.1358CA
5/4   (12) 

 Then, the energy release rate or the J integral is given by 
the relation: 

GI = JI =
KI
2

E
=
0.0184C 2A5/2

E
, for plane stress state   (13) 

 Fig. (3) illustrates the experimental stress intensity 
factors (normalized to C) calculated by the diameters Dt  and 
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 D  and shape area, A, of the caustic versus the tensile stress 
for the same crack length α = 0.040m.  From this figure, it is 
appeared that the curve of the stress intensity factor, which 
was calculated by the area of the caustic, lies between the 
two others. From these curves a linear variation and values 
coincidence of the stress intensity factor up to σ =12MPa  
can be observed. After this stress, a non-linear variation and 
values deviation can be observed. This means that the stress 
intensity factors values in this stress region, which were 
calculated with the area of the caustic, are more accurate 
than the others. 

 

EVALUATION OF THE STRESS OPTICAL 
CONSTANTS 

 The cr  and cf  are the stress-optical constants of the 
material. The stress-optical constant cf  is given by:
cf =ν / E,  where ν  is the Poisson’s ratio and E  is the 
modulus of elasticity of the material. The stress optical 
constant cf can be calculated according to method of [20] or 
by the method of strain gauge. The plotting of the two 
caustics for divergent light beam is illustrated in Fig. (4). 
The parametric equations of the caustics (r) are: 

 

 

 
Fig. (2). Experimental caustics in Lexan (PCBA) specimen with stress σ = 2.42MPa,  for crack length (a) α = 0.028m,  (b) α = 0.040m,   
(c) α = 0.056m and (d) α = 0.069m.  
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where ro  is the radius of initial curve of the caustics. This 
radius is given by: 
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 From Eqs. (14,15), according to Fig. (4) for θ = 0 , we 
get: 

cr =
cf

2 5− 8.18Δx / A(r )
1/2#$ %&

5/2   (17) 

where Δx  is the distance (ΒΑ)  and A(r )  is the area of the 
(r)  caustic. By the Eq. (3) the ratio of the stress-optical 
constants cr , cf  is estimated. Analogous relation to Eq. (17) 
from Fig. (5) can be written by combination of caustics (r) 
and (f) for convergent light beam. The parametric equations 
of the caustic (f) are: 

X f = λmro(cosθ +
2
3
cos 3θ

2
)   (18) 

Yf = λmro(sinθ +
2
3
sin 3θ

2
)   (19) 

where ro  is the radius of initial curve of the caustics. This 
radius is given by: 
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with: 

λm =
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 From Eqs. (18, 19), according to Fig. (5) for θ = 0 , we 
get: 

cr =
cf
2
5− 8.18Δx / A( f )

1/2#$ %&
5/2

  (21) 

 
Fig. (4). Geometry of caustics (r) and (f) for divergent light beam. 

 
Fig. (3). Variation of the stress intensity factors calculated by the diameters, KI (Dt ),

KI (Dl )
 and shape area, KI(A), of the caustic vs the crack 

length for the same stress. 
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Fig. (5). Geometry of caustics (r) and (f) for convergent light beam. 

 The experimental stress intensity factor KI  is estimated 
by the Eq. (6). From Eqs. (6 and 17), the accurate stress 
intensity factor can be estimated from Poisson’s ratio ν  and 
the modulus of elasticity E or the stress-optical constant cf  
and the caustic area: 

KI =
0.1358
zodλm

3/2cf
5A(r )

1/2 − 8.18Δx( )5/2 , cf =
ν
E

  (22) 

 For convergent light beam, the stress intensity factor is 
estimated by the relation: 

KI = 0.1358CA
5/4 with C =

1
zodλm

3/2cf
and cf =

ν
E

  (23) 

EXPERIMENTAL SET-UP AND ITS INFLUENCE ON 
THE STRESS INTENSITY FACTOR 

 The stress intensity factor must be independent on the 
experimental set-up. In order to prove that the stress intensity 
factor is independent on the experimental set-up, a series of 
experiments were undertaken with an edge cracked 
specimen. The specimen was made of Plexiglas with free 
length  L = 0.020m,  width  w = 0.080m, thickness 

 d = 0.004m and crack length α = 0.020m.  The crack width 
was about 0.0003m . The parametric equations of the 
reflected caustics (f) which were formed by the convergent 
light beam, reflection from the front face of the specimen, 
are the Eqs. (18 and 19). The modulus of elasticity and the 
Poisson’s ratio of the specimen materials were calculated by 
the method of strain-gauges. The modulus of elasticity was 
E =1.54GPa , the Poisson’s ratio was ν = 0.4 and the stress 
optical constant was cf =ν / E = 2.6×10

−10m2 / N . 

 The theoretical stress intensity factor was estimated by 
the equation: 

KI
th =1.12σ πα  (24) 

while the experimental stress intensity factor was estimated 
by the relation [10]: 
 

KI
exp = 0.1358

zodλm
3/2cf

A5/4 with cf =
ν
E

  (25) 

where A is the shape area of the experimental caustics. 

 Three experiments were undertaken. For the first 
experiment, the specimen was loaded with constant tensile 
stress σ = 2.69MPa,  the zi  was constant equals zi = 0.380m  
and the z0  was varied from 1.18m  up to 2.10m , Fig. (1). 
The theoretical stress intensity factor was calculated by the 
Eq. (24) equals KI

th = 0.76MPam1/2 . A series of experimental 
caustics were taken and the experimental stress intensity 
factors were calculated by the Eq. (25). For the second 
experiment, the tensile stress was remained the same, the z0  
was constant equals z0 =1.33m  and the zi  was varied from 
0.045m  up to 0.380m  (Fig. 1). The theoretical stress 
intensity factor was remained the same. For the third 
experiment, the z0  and zi  were constant equal z0 =1.58m  
and the zi = 0.360m  (Fig. 1), and the tensile stress σ  was 
varied from 0.90MPa  up to 4.04MPa.  The theoretical 
stress intensity factor was varied analogous to variation of 
the tensile stress. 

 Fig. (6) illustrates the experimental caustics (f) at crack 
tip for the three experiments. The experimental stress 
intensity factor KI

exp  was calculated by the Eq. (25). The 
results from the first experiment are presented in Fig. (7). 
Fig. (7) illustrates the variation of the experimental stress 
intensity factor KI

exp  versus the variation of the distance z0  
for constants σ and zi .  In the same figure the constant 
theoretical stress intensity factor KI

th  was plotted. The 
experimental values of the stress intensity factor are very 
close to theoretical one. 

 The results from the second experiment are presented in 
Fig. (8). Fig. (8) illustrates the variation of the experimental 
stress intensity factor KI

exp  versus the variation of the 
distance zi  for constants σ and z0 . In the same figure the 
constant theoretical stress intensity factor KI

th  was plotted. 
The experimental values of the stress intensity factor are 
converged to theoretical one for zi > 0.20m.  

 The results from the third experiment are presented in 
Fig. (9). Fig. (9) illustrates the variation of the experimental 
and the theoretical stress intensity factors KI

exp , KI
th versus 

the variation of the tensile stress σ for constants z0  and zi .  

 The experimental values of the stress intensity factor are 
converged to theoretical one for stresses σ < 2.5MPa  while, 
it is appeared a declination for stresses σ > 2.5MPa.  
 From Figs. (7, 8), it is concluded that a proper 
combination of z0  and zi ,  the stress intensity factors 
become independent from the experimental set-up. So, for 
zi > 0.20m  and for any z0  the calculated stress intensity 
factors are remained constants and close to theoretical one.  
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From Fig. (9), it is appeared that for stresses σ > 2.5MPa  
the stress intensity factors are remained smaller than the 
theoretical one because of plastic zones are created at crack 
tip which are dependent on the type of the materials. 

CONCLUSION 

 The proposed new formula, Eq. (12), which depends on 
the shape area of the caustic, was given more accurate and 

stable values of the stress intensity factors. The stress 
intensity factor becomes independent from the diameters of 
the caustic, which were difficultly calculated if the caustic is 
not about circular [10]. Frequently, the stress intensity 
factors are dependent on the experimental set-up, mainly on 
z0  and zi .  For a proper combination of z0  and zi , for 
example for zi > 0.20m  and for any z0 , the stress intensity 
factors are remained constant and close to theoretical one. 

 
Fig. (6). Experimental caustic (f) from (a) first experiment, (b) second experiment and (c) third experiment. 

 
Fig. (7). Variation of the stress intensity factors vs the distance z0. 

 
Fig. (8). Variation of the stress intensity factors vs the distance zi. 
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Fig. (9). Variation of the stress intensity factors vs the tensile stress σ. 


