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Abstract: In order to derive the equation of the contact line of the involute curvilinear-tooth cylindrical gear pump for the 
agricultural tractor, the tooth surface of the involute curvilinear-tooth cylindrical gear is firstly generated as that of the 
spur or helical gear. Then the equation of the tooth surface is derived from changing the settings and orientations of the 
coordinate systems after the equation of the tooth profile in an arbitrary radial section is calculated by the methods of 
differential geometry. Based on the equation of the tooth surface, the meshing equation of the two gears is further 
acquired and then the equation of the contact line. Finally, the tooth surface and the contact line are simulated with 
mathematical software. The results suggests that the contact line between two curvilinear-tooth cylindrical gears is an arc 
line in the surface of action; and this line, shaped as an arc line in the generating plane of the tooth surface, is longer than 
that of the spur or helical gear with the same face width. 

Keywords: Curvilinear-shaped tooth, equation of the contact line, gear pump, tractor. 

1. INTRODUCTION 

 As one of the irreplaceable machinery, the tractor plays a 
very important role in the modern agricultural production. 
The working conditions of the tractor influence the 
performance of its gear pump, whose characteristics greatly 
affect the performance of the tractor. 
 Currently, most of the tractor pumps are transmitted by 
spur gears, which are often prone to produce big vibrations 
and noise. Thus, the curvilinear-tooth gear is proposed [1], as 
shown in Fig. (1). As the spur gear, the tooth profile curves 
of this type of gear can be either involute or in other forms. 
But the teeth on the base cylinder of the gear are curvilinear 
shaped. Researches about the curvilinear-tooth gear are 
continually conducted [2-7]. 

 
Fig. (1). The curvilinear-tooth cylindrical gear. 

 

 In this study, the tooth surface of the involute curvilinear-
tooth gear is firstly generated as that of the spur or helical 
gear; then the equation of the tooth surface and the meshing 
equation are derived; and finally the equation of the contact 
line is calculated. After that, those equations are simulated 
by the computer and their correctness is proved by the 
mathematical software. 

2. GENERATION MECHANISM OF THE TOOTH 
SURFACE 

 At present, the equation of the contact line between two 
curvilinear-tooth gears are mainly obtained by the following 
two methods. 
 The first method suggests that the tooth surface should be 
firstly generated through scanning of an involute line along a 
curve on the base cylinder of the gear [8]. Then the equation 
of the tooth surface can be calculated by the method of 
geometric transformations. And then the equation of the 
surface of action can be established and lastly the equation of 
the contact line between two gears. However, this method 
fails to derive the equation of the curve on the base cylinder 
before the equation of the tooth surface was set up [9]. 
 The second method, however, proposes that the equation 
of the tooth surface should be derived by the principles of 
processing and the movement rules between the work piece 
and the cutter [10]. Then the meshing equation and the 
equation of the contact line can be calculated. The major 
disadvantage of this method is: only the tooth profile curves 
in the middle section of the gear are involutes; while the 
others in the other sections are all hyperbolas. 
 In this paper, the tooth surface of the involute 
curvilinear-tooth gear is generated as that of the spur or 
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helical gear. As shown in Fig. (2), the arc line CGD is 
located in the generating plane of the tooth surface of the 
curvilinear-tooth gear. CD symbolizes its string line parallel 
to the axis of the base cylinder of the gear. The curve C 'G' D' 
denotes the imprinted line of CGD on the surface of the 
cylinder while the generating plane rotates about the 
cylinder. Thus, the tooth surface of the gear can be 
interpreted as the loci of CGD. Now if we consider the tooth 
face width of the gear is B, the radius of CGD is Rt; then Rt 
should be theoretically longer than half of B. In this case, 
when Rt→+∞, the gear will become an involute spur 
cylindrical gear. 

 
Fig. (2). Generation mechanism of the tooth surface. 

 According to the features of ISMR, inspired by the met 
synthesis, the ways and means of achieving comprehensive 
and integrated are concluded as follow. 

3. THE EQUATION OF THE TOOTH SUREFACE 

 Fig. (3) shows the base cylinder of No.1 gear. In this 
figure, if the axis z is the axis of the base cylinder and the 
coordinate plane xoy is the middle radial section of the 
cylinder; then the coordinate system S (x, y, z) can be 
established on the rack of No. 1 gear. If the axis z1 is the axis 
of the cylinder and the coordinate plane x1o1y1 is the middle 
section; then the coordinate system S1 (x1, y1, z1) can be 
established on No. 1 gear. The axes y1 and y are initially 
located at the same position. Now if the coordinate system S1 
(x1, y1, z1) is moved the distance h (h is variable) along the 
positive direction of the axis z1; then the coordinate system 
S1h (x1h, y1h, z1h) can be obtained on No. 1 gear. Again, on the 
generating plane, Ot indicates the center of the circle made 
by the arc line CGD. CD denotes its string line parallel to the 
axis z1. G represents its middle point of CGD initially 
located in the axis y1. 
 Now if the generating plane rotates about the base 
cylinder, the imprinted curve of the straight line OtG should 
fall in the intersection of the coordinate plane x1o1y1 and the 
surface of the base cylinder. And the generating plane rotates 

to the plane α (an arbitrary plane). In this case, if the 
rotational angle is θb, the tangent line between the plane and 
the surface of the cylinder is AB, the intersection between 
CGD and AB is M and N, and the intersection between OtG 
and AB is F; then the value of θb can be expressed as 

θb = GF / Rb1   (1) 

where GF symbolizes the length between G and F in 
generating plane, and Rb1 denotes the radius of the base 
cylinder of No.1 gear. 

 
Fig. (3). Coordinate systems on the cylinder. 

 And if the generating plane keeps rotating, then point M 
and N in the generating plane should begin to make an 
involute movement. If the generating plane rotates through 
an angle θt  to the plane γ, the abduction angle of point M or 
N is φ, PQ indicates the tangent line between the generating 
plane and the surface of the cylinder, and E is the 
intersection between PQ and GOt; then we have 

GE = Rb1θt   (2) 

and 

θt = φ+θb  (3) 

 Now in Rt△OtFM of the generating plane, if OtM is Rt 
and MF is h (h is the distance between M and OtG; also the 
distance between M and the coordinate plane xoy; and also 
the coordinate value of M in the axis z of the coordinate 
system S (x,y,z)), then the value of h should be between -B/2 
and B/2. According to the Pythagorean Theorem, we have 

GF =OtG −OtF = Rt − Rt
2 − h2   (4) 

 The cylinder is now cut apart across point M and its 
radial section is shown in Fig. (4). In this figure, point M´ is 
the corresponding point of M on the surface of the cylinder; 
the curve MM´ is the cutting line of the involute tooth face; 
and PM is the cutting line of the generating plane. Thus, if 
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the involute abduction angle at point M is φ, then the value 
of φ should be 

φ = EF / Rb1 = (EG − FG) / Rb1
= (Rb1θt + Rt

2 − h2 − Rt ) / Rb1
  (5) 

 
Fig. (4). Section across point M. 

 Then the coordinate system S1h´ (x1h´, y1h´, z1h´) can be set 
up on the above radial section, provided that the axis y1h´ 
passes through point M´ while point O1h´ and point O1h 
coincide. Hence the equation of the curve MM´ in the 
coordinate system S1h´ (x1h´, y1h´, z1h´) can be expressed as 
follows. 

x1h
' = Rb1(sinφ −φ cosφ)
y1h
' = Rb1(cosφ +φ sinφ)
z1h
' = 0

⎧

⎨
⎪

⎩
⎪

  (6) 

 Now if the coordinate system S1h´ (x1h´, y1h´, z1h´) rotates 
anticlockwise about the axis z1h´ through an angle θb to the 
coordinate system S1h (x1h, y1h, z1h), then the coordinate 
system S1h (x1h, y1h, z1h) can be acquired. Then the coordinate 
system S1 (x1, y1, z1) can be obtained after the coordinate 
system S1h (x1h, y1h, z1h) is moved h (the distance) along the 
negative direction of the axis z1h. Hence, the equation of 
M´M in the coordinate system S1 (x1, y1, z1) can be expressed 
as formula (7). 

x1 = Rb1(sinθt −φ cosθt )
y1 = Rb1(cosθt +φ sinθt )
z1 = h

⎧
⎨
⎪

⎩⎪
  (7) 

 Since plane α and plane γ is arbitrary, the value of h is 
variable between -B/2 and B/2. In this case, formula (7) can 
also be regarded as the equation of the tooth surface of the 
involute curvilinear-tooth gear in the coordinate system 
S1(x1,y1,z1). 
 
 

4. THE MESHING EQUATIION 

 Fig. (5) reveals the meshing of No.1 gear and No.2 gear. 
In this figure, No.1 gear and No.2 gear are meshed together, 
with their axes parallel to each other. O1 and O2 represent the 
centers of No.1 gear and No.2 gear respectively. e indicates 
the distance between the two centers. Rb1 and Rb2 symbolize 
the radii of the base cylinders of the two gears respectively. 
w(1) andw(2)  denote the angular velocity of the two gears 
respectively. Point m（1）and m（2）, located at the tooth 
surface ∑1 and ∑2, contact at the point m. No.1 gear and 
No.2 gear rotate through an angle β1 and β2 respectively 
from their initial position. Now if the two gears are cut apart 
across point m, then their intersection can be illustrated by 
Fig. (5). (O1 and O2 are the projection of the centers of the 
two gears.) 

 
Fig. (5). Meshing of no.1 gear and no. 2 gear. 

 As shown by Fig. (5), the tooth surfaces of the two gears 
are working well together without deviation or interference, 
their tooth surfaces are also tangential to each other. Thus, 
point m（1）and m（2） should rotate through point m with the 
relative velocity  v


1
(12) (or  v


1
(21) ) in the coordinate system S1 

(x1,y1,z1); And the relative velocity  v

1
(12)  should be on the 

plane tangential to plane ∑1 and ∑2. Now if n is the common 
normal line of ∑1 and ∑2 at point m, then the relative velocity 

 v

1
(12) should be vertical to n at point m. Hence, the meshing 

equation of No.1 gear and No.2 gear can be expressed as 
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 v

1
(12)

i n = 0   (8) 

 Now if  W


1
(1)  indicates the angular velocity vector of 

point m（1） in the coordinate system S1(x1,y1,z1), then the 
value of  W


1
(1)  can be calculated by 

 
W


1
(1) = 0 0 −w(1)⎡⎣ ⎤⎦

T  

and if  W


1
(2)  indicates the angular velocity vector of point  

m(2） in the coordinate system S1(x1,y1,z1), then the value of 

 W


1
(2)  can be calculated by 

 
W


1
(2) = 0 0 w(2)⎡⎣ ⎤⎦

T
 

 Since the coordinate value of point m（1） is (x1,y1,h) in 
the coordinate system S1 (x1,y1,z1) (  O1m

(1)
 

= r

1 ),  r

1  can be 

symbolized as 

 
r1

= x1 y1 h⎡
⎣

⎤
⎦
T

 

 Thus, the velocity  V1
 (1) (the velocity of point m（1） in the 

coordinate system S1(x1,y1,z1)) can be calculated by 

 V1
 (1) =W


1
(1) × r1

=y1w

(1)i − x1w
(1) j   (9) 

and since the coordinate value of O2 is (esinβ1, ecosβ1, 0) in 
the coordinate system S1(x1, y1, z1), we have 

 O2m
(2)

 
=O1m

(2)
 

-O1O2

 
  (10) 

and point m（1）and m（2）coincide at point m, so we have: 

 

O2m
(2)

 
=O1m

(1)
 

-O1O2

 

=( x1 − esinβ1 y1 − ecosβ1 h )
  (11) 

 Thus, the velocity  V1
 (2)  (the velocity of point m（2） in the 

coordinate system S1(x1,y1,z1)) can be calculated by 

 V1
 (2) = (ecosβ1 − y1)w

(2)i + (x1 − esinβ1)w
(2) j   (12) 

and finally, the velocity  V1
 (12) (the deference between  V1

 (1)  

and  V1
 (2) in the coordinate system S1(x1,y1,z1)), can be 

expressed as 

 

V

1
(12) = [y1(w

(1) +w(2) )− ecosβ1w
(2) ]i +

[esinβ1w
(2) − x1(w

(1) +w(2) )] j
  (13) 

and the vector  n

1 , the vector of the normal line of point  

m（1）, can be represented as 

 
n

1 =

∂r1


∂θt
× ∂r1


∂h
  (14) 

and with  v1
 (12) ⋅n1


= 0 , the meshing equation can eventually 

be represented as 

(w(1) +w(2) )(y1 cosθt+x1 sinθt )
−ew(2) cos(θt − β1) = 0

  (15) 

5. THE EQUATION OF THE CONTACT LINE 

 If i12  indicates the transmission ratio of No.1 gear and 

No.2 gear and the value of i12  is 
w1
w2

, then we have 

(1+ i12 )Rb1 − ecos(θt − β1) = 0   (16) 

and 

θt = arccos(
(1+ i12 )Rb1

e
)+ β1   (17) 

 Now since the contact line, located at the tooth surface of 
No.1 gear, meets the meshing equation; the solution of the 
equation of the tooth surface and the meshing equation 
should be the equation of the contact line. 

 Let θt
' = arccos((1+ i12 )Rb1

e
)+ β1  

 Substituting the value of θt
'  into formula (7), we have the 

equation of the contact line as follows. 

x1 = Rb1[sinθt
' −φ cosθt

' )
y1 = Rb1(cosθt

' +φ sinθt
' )

z1 = h

⎧

⎨
⎪

⎩
⎪

  (18) 

 Now if the value of θt
'  is certain, then h is the only 

variable parameter. In this case, the contact line can be 
expressed as the arc line C (C: r(h)=(x(h), y(h),z(h)); h∈ 
[-B/2, B/2]). 

r ' (h) = ( h
Rt
2 − h2

cosθt
' , −h

Rt
2 − h2

sinθt
' ,1) ≠ 0  (19) 

 Thus, the contact line becomes the regular curve; and the 
length of the contact line can be represented as 

L(C) = r ' (h)
−B/2

B/2

∫ dh   (20) 

and because 

r ' (h) = Rt
Rt
2 − h2

  (21) 

so, 

L(C) = r ' (h)
−B/2

B/2

∫ dh

=2R t arcsin(B / 2Rt )
  (22) 

 Again, we have 

∠DOtG=arcsin(B/2Rt)  (23)  

 Therefore, formula (22) also expresses the length of the 
arc line on the generating plane of the tooth surface, i.e. the 
length of the intersection line between the generating plane 
and the tooth surface. 
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6. SIMULATIONS OF THE EQUATIONS 

 The gear parameters are given as follows: if d1=40 mm 
(d1 denotes the diameter of the standard pitch circle of No.1 
gear), b1= 20 mm (b1 indicates the tooth face width of No.1 
gear), the pressure angle is 20°, Rt =12 mm; and θt is 
between 0 and 1; then Rb1 should be 18.7939 mm 
(Rb1=(d1/2)×cos20°). 
 While if d2= 60 mm (d2 denotes the diameter of the 
standard pitch circle of No.2 gear), b2= 20 mm (b2 expresses 
the tooth face width of No.2 gear), the pressure angle is 20°, 
Rt =12 mm, and θt is between 0 and 1; then Rb2 should be 
28.1908 mm (Rb2=(d2/2)×cos20°). 

 Thus, the center distance e should be 50 (e= d2/2+ d1/2); 
and the transmission ratio i12 should be 3/2 ( i12 = d2/d1=3/2). 

 Again, let β1  be π/12 and θt
'  be 0.6109. 

 According to formula (7) and formula (18), the equations 
of the tooth surface and the contact line can be simulated 
with mathematical software, as shown in Fig. (6). In this 
figure, the two tori are respectively the surfaces of the base 
cylinders of No.1 gear and No.2 gear. The arc surface is the 
tooth surface of No.1 gear. The inner common tangential 
plane is the surface of action of the two gears. 

 
Fig. (6). The line of contact between two curvilinear-tooth gears. 

 After magnifying Fig. (6) into Fig. (7), we can see that 
the contact line coincides with intersection line between the 
surface of action and the tooth surface. 

7. DISCUSSION 

 When Rt→+∞, the involute curvilinear-tooth gear 
becomes to involutes spur gear. Under this condition, the 
length of the contact line between two curvilinear-tooth 
gears is the face width of the involute spur gear 

( lim
Rt→+∞

L(C)= lim
Rt→+∞

2R t arcsin(B / 2Rt ) = B ). 

Let u = B/ 2Rt  u∈(0,1)  (24) 

F1(u) = arcsinu   (25) 

F2 (u) =
u
1− u2

  (26) 

 When Rt→+∞, namely u→0, we have 

F1(u) = F2 (u) = 0 . 

 Thus, we have 

∂F1(u)
∂u

= 1
1− u2

> 0   (27) 

∂F2 (u)
∂u

= 1
1− u2

+ u2

( 1− u2 )3
> 0   (28) 

and ∂F2 (u)
∂u

> ∂F1(u)
∂u

> 0  

 Now when u∈(0, 1), we have 

1
1− u20

u

∫ < 1
1− u2

+ u2

( 1− u2 )30

u

∫ , 

namely arcsinu < u
1− u2

 

 Again, 
Barcsinu

u2
< B
u 1− u2

 and 

∂L(c)
∂u

= ∂(Barcsin(u) / u)
∂u

= B
u 1− u2

− Barcsin(u)
u2

> 0
 

 
Fig. (7). The intersection of the line of contact, the tooth surface 
and the surface of action. 

 Therefore, when u∈ (0, 1), the contact line L(C) is 
monotone increasing. When u→0, the value of L(C) is the 
minimalist B; and when Rt=B/2, the value of L(C) is the 
maximalist (Bπ)/2. 
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CONCLUSION 

(1) The equation of the contact line between two involute 
curvilinear-tooth gears can be derived from the 
meshing equation and the equation of the tooth 
surface. The contact line is shaped as an arc line in 
the generating plane of the tooth surface. 

(2) When Rt→+∞, the involute curvilinear-tooth surface 
becomes to involutes spur gear. Under this condition, 
the length of the contact line is the minimalist, i.e. the 
face width B. 

(3) When Rt=B/2, the line contact is the longest one 
(Bπ)/2. 
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