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Abstract: Considering backlash, time-varying mesh stiffness and radial clearance of bearing, nonlinear dynamic model of 
gear bearing flexible shaft system is established taking into account breathing crack in shaft and tooth wear. Nonlinear 
dynamic equations are solved by Runge-Kutta method. Effect of backlash, crack in shaft and tooth wear faults on the 
nonlinear dynamic behavior of gear-shaft-bearing system is studied. The results show that gear-shaft-bearing system may 
change from periodic motion to non-periodic motion as backlash increases, and gear pair change from normal mesh to 
tooth separation, double-sided impact fault. If crack fault appears, quasi-periodic and chaos motion region increases, and 
gentle crack fault can result in instantaneous tooth separation and double-sided impact faults. Serious tooth wear fault will 
also induce tooth separation and double-sided impact faults. If both shaft crack and tooth wear faults exist, tooth wear 
fault will be intensified by double-sided impact fault from shaft crack, which will result in early failure of the gear system. 
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1. INTRODUCTION 

 Nonlinear dynamics behavior of gear-shaft-bearing 
system has gained great importance. The faults in the system 
may change dynamic characteristics. If crack fault appears in 
shaft, it will result in shaft stiffness changes periodically 
because of opening and closing movement of the crack, 
which may induce typical non-linear dynamic characteristics 
in the system. If gear tooth wear fault occurs, mesh stiffness 
changes and nonlinear dynamics behavior of the system may 
also be changed. 
 Many researches have studied the stability and non-linear 
dynamic analysis of rotor bearing system. Harsha [1] 
simulated some dynamic response of rotor supported by ball 
bearings, in his works non-linear dynamic responses were 
found to be associated with the ball passage frequency and 
severe vibrations occur when number of balls and waves of 
outer race are equal. Awrejcewicz [2-4] studied nonlinear 
characteristics of rotor bearing system using numerical 
method, instability regions of the rotor system were given for 
engineering applications. Dynamic behavior of gear-shaft-
bearing system is more complex because of time-varying 
mesh stiffness. Dynamic characteristics of gear-shaft-bearing 
system were studied but the coupling effect of the whole 
system was often ignored in existing models. Zeman [5] 
constructed dynamic model of gear system considered 
backlash, but the shaft was regarded as rigid shaft and only 
four degrees of freedom was considered. In the following 
studies [6-8], although the bending and torsion vibration of 
the gear meshing were considered, but a variety of non-linear  
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factors in the system and the flexible shaft were not 
considered. 
 Walha [9] investigated the dynamics of a two-stage gear 
system involving backlash and time dependent mesh 
stiffness, which found phenomenon of loss of teeth contact 
because of the discontinuity of the kinematic movement. 
Byrtus [10] established a gear system dynamics model using 
modal synthesis method, in which the time-varying mesh 
stiffness, side gear clearance, non-linear bearing forces were 
considered, but impact of flexible shaft was not studied. 
 Fewer studies were reported on dynamic behavior of 
gear-shaft-bearing system with faults. Sinou [11] studied the 
dynamic behavior of rotor system with crack fault and effect 
of crack depth and location on dynamic characteristics was 
given. Bajpai [12] constructed dynamic model of gear rotor 
system considering tooth wear fault, also experiments were 
performed to verify the model. Lina [13] presented a 
dynamic model of a plastic gear pair considering tooth wear 
fault, results show that variation of tooth profiles caused by 
cumulative sliding wear effect had a significant influence on 
contact load. Parey [14] developed a six DOF gear dynamic 
model including localized tooth defect, sinusoidal pulse had 
been used to simulate the effect of pitting in the gear 
dynamic model, dynamic responses were solved by 
differential method, however, effect of faults to the dynamic 
state of the system were not analyzed. 
 In this paper, considering breathing crack in shaft and 
tooth wear faults, nonlinear dynamic model of gear-flexible 
shaft-bearing system is constructed, in which time-varying 
mesh stiffness of gear and nonlinear bearing force are also 
considered. The effects of backlash of gears, breathing crack 
and tooth wear faults on the dynamic response of the gear 
system are studied. 
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2. DYNAMIC MODEL OF GEAR-FLEXIBLE SHAFT-
BEARING SYSTEM 

2.1. Dynamic Model of Gear Pair 

 Mesh stiffness varied periodically as rotating of gear 
system. Time-varying mesh stiffness are considered [15]. 
The gear transmission model is given in Fig. (1). Six 
freedoms are considered in the model of gear pair, 
displacements of drive gear and driven gear can be assumed 
as 

Xg{ } = y1,z1,θ1x ,{ y2,z2,θ2x}T   (1) 

Drive 
gear

Driven 
gear

z1

z2

y1 y2
θ1x θ2x

cm

km(t)

 
Fig. (1). Model of gear transmission system. 

 The displacements difference of drive gear and driven 
gear in the mesh direction is 

Δd = rb1θ1x + rb2θ2x + (z1 − z2 )cosα + (y1 − y2 )sinα − em   (2) 

where, em is static transmission error of gear system，α is 
pressure angle of gear. rb1, rb2 stand for base circle radius of 
drive and driven gear. Assuming backlash of gears is 2bn, 
time-varying deformation in the mesh direction can be 
described as piecewise function shown in Fig. (2), and can 
be written as 

f Δd( ) =
Δd − bn Δd > bn
0 −bn < Δd < bn

Δd + bn Δd < −bn

⎧

⎨
⎪⎪

⎩
⎪
⎪

  (3) 

bn-bn ∆d

f(∆d)

 
Fig. (2). Function of backlash. 

 Time-varying meshing force of gear pair can be 
calculated from the deformation in the mesh direction. 
Backlash of gear pair may cause tooth separation and tooth 
impact faults, if Δd > bn , gear pair can mesh normally, if 
−bn < Δd < bn , instantaneous tooth separation fault appears, 
if Δd < −bn , tooth back side contact, which is called back-
sided impact fault. The faults will accelerate tooth wear or 
tooth broken, which will result in early failure of gear pair. 
 If displacement response of gear pair in y direction is 
large enough, both tooth face and tooth back side contact, 
double-sided impact fault occurs. Double-sided impact will 
appear when displacements difference in y direction of drive 
gear and driven gear meet the following requirement 

Δy = y1 − y2 −
bn
sinα

≥ 0   (4) 

 Dynamic model of gear pair can be constructed as 

 

m1y1 = km (t) f Δd( )sinα + cm (( z1 − z2 )cosα +

( y1 − y2 )sinα + rb1 θ1x + rb2 θ2x − em )sinα
  (5) 

 

m1z1 = ±km (t) f Δd( )cosα ± cm (( z1 − z2 )cosα +

( y1 − y2 )sinα + rb1 θ1x + rb2 θ2x − em )cosα −m1g
  (6) 

 

I1x θ1x = T1  km (t)rb1 f Δd( )cosα  cmrb1(( z1 − z2 )cosα+
( y1 − y2 )sinα + rb1 θ1x + rb2 θ2x − em )cosα

  (7) 

 

m2y2 = −km (t) f Δd( )sinα − cm (( z1 − z2 )cosα +

rb1 θ1x + rb2 θ2x + ( y1 − y2 )sinα − em )sinα
  (8) 

 

m2z2 = km (t) f Δd( )cosα  cm (( z1 − z2 )cosα +

( y1 − y2 )sinα + rb1 θ1x + rb2 θ2x − em )cosα −m2g
  (9) 

 

I2x θ2x = T2  km (t)rb2 f Δd( )cosα  cmrb2 (( z1 − z2 )cosα+
( y1 − y2 )sinα + rb1 θ1x + rb2 θ2x − em )cosα

  (10) 

where, m1 and m2 are mass of drive and driven gear. T1 and 
T2 are torque of drive and driven gear. km (t) , cm  are 
stiffness and damping of gear pair. When gear mesh 
normally, the upper signs are used, the nether signs are used 
when gear back contact occurs. 

2.2. Model of Breathing Crack Fault in Shaft 

 Model of shaft cross-section with crack fault is shown in 
Fig. (3). Where, OYZ is inertial coordinate system, oyz is the 
moving coordinate system fixed on the rotating shaft. 
 Dimensionless parameter of crack depth is defined as 

λ = h
R

  (11) 

where, h is crack depth in the shaft, R is radius of the shaft 
cross-section. 
 Stiffness of the shaft with crack fault can be obtained by 
finite element method: 
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where, IY , IZ  are inertia moment of the shaft about Y and Z 

axis, respectively. IY = Iy − AY
2 , IZ = Iz . Iy , Iz  are inertia 

moment of the shaft about y and z axis, A is area of the cross-
section without crack, Y is distance of mass center of the 
shaft and mass center of cross-section without crack. E is 
modulus of elasticity, l is shaft length. 

Iy =
πR4

8
− R

4

4
1− λ( ) 2λ 2 − 4λ +1( )γ + sin−1 1− λ( )( ) ,

Iz =
R4

12
1− λ( ) 2λ 2 − 4λ − 3( )γ + 3sin−1 γ( )( )  

A = R2 1− λ( )γ + α
2

⎛
⎝⎜

⎞
⎠⎟ , Y = 2

3A
R3γ 3 , γ = 2λ − λ 2 , 

α = 2cos−1 1− λ( ) . 
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Fig. (3). Model of cracked element cross-section of shaft. 

 Considering breathing effect of the crack fault, stiffness 
of the shaft with crack can be written as 

KCrack =
1− cosωt

2
kcrack   (13) 

2.3. Model of Tooth Wear Fault 

 Tooth wear fault of gear can be simulated by pulse signal 
[9]. Rectangle wave pulse can be used to simulate easily but 
it can not simulate meshing process of the fault gear very 
well, in this paper, half sine function is used to simulate gear 
tooth wear fault 

G t( ) = Aw sin
ω z
2
t⎛

⎝⎜
⎞
⎠⎟ g t( )   (14) 

where, Aw is amplitude of gear tooth wear fault, which varies 
in the range of 0 to 1 and is proportional to the wear fault 
degree. g(t) is periodic pulse function. 

g t( ) = 1 tw ≤ t − n ⋅
2π
ω

≤ tw +
2π
ω z

0 other

⎧

⎨
⎪

⎩
⎪

  (15) 

where, tw = int
z
nw

⋅ni
⎛
⎝⎜

⎞
⎠⎟
⋅ 2π
ω z

,  ni = 0,1,2,Nw , nw  is 

number of teeth with wear fault. 
 Gear tooth wear affects stiffness of the gear, therefore, 
mesh stiffness of gears considering wear fault is written as 

kwear t( ) = khlwG t( )   (16) 

where, kh =
πEg

4 1− µ2( ) , kh  is Hertz contact stiffness, lw  is 

wear length, Eg is modulus of elasticity of gear teeth, µ is 
Poisson's ratio of gear. 

2.4. Dynamic Model of Gear-Flexible Shaft-Bearing 
System with Faults 

 Fig. (4) gives nodes model of gear bearing rotor system, 
shafts are separate into some segments using finite element 
method, in which two-nodes Euler element model is used. 

 
Fig. (4). Nodes of gear bearing rotor system. 

 Through Euler beam model, mass, stiffness, damping 
factor, gyroscopic and load matrix of the shaft nodes can be 
obtained by finite element method. Taking responses as 

  
X = X1,X 2,,X n1+n2

⎡⎣ ⎤⎦ , where 
 
X i = xi , yi ,zi ,θxi ,θyi ,θzi{ } . 

Mass, stiffness, damping factor, gyroscopic and load matrix 
of the gear bearing system can be obtained by integrated 
assemble method and finite element method, in which six 
degrees are considered for every node, the total degrees of 
every matrix are 6 n1 + n2( )× 6 n1 + n2( ) . The method for 
assembling these matrixes is shown in Fig. (5). 

crack

1 2 3 i i+1 n1
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bearing bearing

bearing bearing



486    The Open Mechanical Engineering Journal, 2015, Volume 9 Cui and Cai 

The node has 
bearing

Solve and assemble mass, damping of 
bearing and bearing force matrix by Newton-

Raphson method

The node has 
gear pair

Solve and assemble mass, stiffness, and load 
matrix

Node number
=n1+n2?

Nodes matrix

Yes

Yes

No

No

No

Yes

Node number+1

Start

End

Input structure parameters 
and operating parameters

Solve and assemble mass, stiffness, damping , 
gyroscopic matrix by FEA method

First node

 
Fig. (5). Integrated assemble method and finite element method. 

 Taking the far left node of the two shafts as the first 
node, assemble mass, stiffness, damping and gyroscopic 
matrix into the integrated corresponding matrixes. If the ith 
shaft node has crack, then the stiffness matrix should be 
written as 

Ki = Ki − Kcrack , Ki+1 = Ki+1 − Kcrack   (17) 

 If the node is rolling bearing, because of varying 
compliance vibration in rolling bearing, nonlinear bearing 
force acting on the shaft should be considered in the dynamic  
model, which can be obtained by solving bearing 
equilibrium equations use Newton-Raphson method [16-18]. 
Assemble mass, damping and nonlinear bearing force matrix 
are assembled into the integrated corresponding matrixes. 
 If the node has gear pair, mass, coupling stiffness and 
load matrix are assembled into the integrated corresponding 
matrixes, if the gear has tooth wear fault, then the stiffness 
matrix should be changed as 

km t( ) = km t( )− kwear t( )   (18) 

 When these matrixes finish assembling, dynamic model 
of gear bearing rotor system with crack and tooth wear faults 
can be obtained 

  M
X{ }+ C + G( ) X{ }+ K X{ }= P t( )   (19) 

where,  M ,  C , G, K are mass, damping, gyroscopic and 
stiffness matrix.  P t( ) is load matrix, which including 
unbalance, nonlinear bearing force, gravity and external 
force. 

3. CALCULATION METHOD 

 There may be a variety of incentive frequency in the 
gear-shaft-bearing system. Such as meshing of gear pair, 
time-varying stiffness excitation of bearing and other faults 
incentives. In order to search periodic solutions, a modified 
FPA are used to analyze the responses [19], which defines an 
unified solving time period satisfying the following equation 

T =κTg   (20) 

T
TVC

mod  1( )−1 < ε   (21) 

where, T is the time period to solve the response, Tg  is 
period of gear meshing, TVC is period of varying compliance 
frequency of ball bearing, ε is a very small number. κ=1, 2, 
3,… 
 Do the calculation until finding a κ meet equation (21), 
then the solving time period can be determined. Runge-Kutta 
method is used to solve the nonlinear dynamic equations. 

4. RESULTS AND DISCUSSIONS 

 Taking a gear-shaft-bearing system as an example, length 
of two shafts are same as 350 mm, modulus of elasticity is 
2×1011 Pa, Poisson's ratio is 0.3, the shafts are supported 
symmetrically by two 7306 ball bearings. Torque of gear 
transmission is 200 N·m. Structural parameters of drive gear 
and driven gear are shown in Table 1. Every shaft is divided 
into 5 nodes. Taking response results at gear node, effect of 
breathing crack and tooth wear faults on the nonlinear 
response of the system are analyzed. 

4.1. Effect of Backlash on Dynamic Behavior 

 Fig. (6) studies effect of backlash on bifurcation responses. 
If backlash of drive gear and driven gear changes from 60 µm to 
100 µm, displacement response amplitude increase and non-
periodic motion speed region increases obviously. 
Table 1. Structure parameters of gears. 
 

Parameters Drive Gear Driven Gear 

Tooth number 40 50 

Mass/kg 1.82 2.13 

Module/mm 3 3 

Pressure angle/° 20 20 

Radius of base circle/mm 57.3 71.6 

Moment of inertia /kg·m2 0.0034 0.0017 

Backlash/µm 60 
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(a) Backlash is 60 µm 

 
(b) Backlash is 100 µm 

 
Fig. (6). Bifurcation of responses at gear node as backlash changes. 

 Fig. (7) shows responses of gear node at 7500 r/min and 
backlash of 60 µm. Fig. (7a, b) indicate that dynamic 
behavior of gear system is periodic motion, in which fb is 
varying compliance vibration frequency of bearing, fg is 
mesh frequency of gear. From formula (3) and formula (4), 
tooth separation, back-sided impact and double-sided impact 
faults can be determined. Fig. (7c) shows displacement 
difference in mesh direction Δd >30 µm, Fig. (7d) shows Δy 
<0, it can be concluded that the gears mesh normally. 
 Fig. (8) gives responses of gear node at 7500 r/min and 
backlash of 100 µm. Fig. (8a, b) indicate that continuous 
spectrum and irregular map in the Poincare section, it can be 
known that the system changes into chaos motion. Fig. (8c) 
shows displacement difference in mesh direction Δd <50 µm 
regularly, Fig. (8d) shows Δy <0 occasionally, it can be 
concluded that tooth separation and slight double-sided 
impact faults appear in the gear system. 

4.2. Effect of Breathing Crack Fault on Dynamic 
Behavior 

 Assuming breathing crack fault occurs in drive shaft, 
effect of crack depth is analyzed. Fig. (9) gives bifurcation 
behavior of responses at gear node when crack depth 
parameter λ are 0.5 and 1. It can be seen that displacement 
response increase as crack depth increases. Fig. (7) shows 
periodic motion in most speed region if no crack fault in 
shaft, however, Fig. (9) demonstrates the speed region of non 
periodic vibration obvious increase gradually as crack depth 
increase. 

(a) Frequency spectrum 

 
(b) Poincare map 

 
(c) Displacement difference in mesh direction 

 
(d) Displacement difference in y direction 

 
Fig. (7). Responses at 7500 r/min and backlash of 60 µm. 
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(a) Frequency spectrum 

 
(b) Poincare map 

 
(c) Displacement difference in mesh direction 

 
(d) Displacement difference in y direction 

 
Fig. (8). Responses at 7500 r/min and backlash of 100 µm. 

(a) λ=0.5 

 
(b) λ=1 

 
Fig. (9). Bifurcation at gear node as crack depth changes. 

 Fig. (10) gives response at 7500 r/min when crack depth 
λ is 0.5. If there is no crack fault, Fig. (7) indicate that gears 
mesh normally. When crack depth λ is equal to 0.5, Fig. 
(10a) shows displacement difference in mesh direction Δd 
<30 µm frequently, it can be known that gently instantaneous 
tooth separation appears. Fig. (10b) shows displacement 
increase and Δy >0, it can be concluded that serious double-
sided impact faults occurs, and response changes in cosine 
function because of breathing action of crack. 
 Fig. (11) gives response at 7500 r/min when crack depth 
λ is equal to 1. When crack depth λ is equal to 1, Fig. (11a) 
shows displacement difference in mesh direction Δd <30 µm 
regularly, it can be seen that instantaneous tooth separation 
occurs. Fig. (11b) shows more larger displacement response 
and more serious double-sided impact faults. 
 It can be concluded that dynamic behavior of gear 
bearing system may change from periodic motion into non-
periodic motion when shaft crack fault exist, simultaneously, 
the gentle crack fault can induce tooth separation and serious 
double-sided impact faults. 

4.3. Effect of Gear Tooth Wear Fault on Dynamic 
Behavior 

 Assuming there are three tooth in drive gear have wear 
fault, Fig. (12) gives bifurcation responses at gear node when 
wear length is 1 mm and 2 mm. Fig. (12a) shows speed 
region in non-periodic motion increases compare with Fig. 
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(6a). If wear length is increased to 2 mm, Fig. (12b) shows 
most speed region changes into non-periodic motion. 

(a) Displacement difference in mesh direction 

 
(b) Displacement difference in y direction 

 
Fig. (10). Responses at 7500 r/min with crack fault λ=0.5. 

 Fig. (13) gives response at 7500 r/min when tooth wear 
length lw is 1 mm. Fig. (13a) shows displacement difference 
in mesh direction Δd >30 µm, Fig. (13b) shows displacement 
response Δy <0, it can be concluded that the gears mesh 
normally. 
 Fig. (14) gives response at 7500 r/min when wear length 
lw is 2 mm. Fig. (14a) shows displacement difference in 
mesh direction Δd <30 µm regularly, it can be concluded that 
instantaneous tooth separation occurs. Fig. (14b) shows 
displacement response increase and Δy >0 frequently, it can 
be seen that serious double-sided impact faults occurs, and 
response changes in periodic function because of pulse 
excitation action of tooth wear fault. 
 It can be concluded that dynamic behavior of gear 
bearing system may change from periodic motion into non-
periodic motion when tooth wear fault exists. The gentle 
tooth wear fault may not affect gear meshing, serious tooth 
wear fault will induce tooth separation and double-sided 
impact faults. 

CONCLUSION 

 Backlash of gear pair has important effect on dynamic 
behavior of gear-shaft-bearing system. If backlash is too 
large, dynamic state of gear system may change from 
periodic motion to non-periodic motion, and tooth separation,  
 

(a) Displacement difference in mesh direction 

 
(b) Displacement difference in y direction 

 
Fig. (11). Responses at 7500 r/min with crack fault λ=1. 

(a) lw=1 mm 

 
(b) lw=2 mm 

 
Fig. (12). Bifurcation responses as wear length changes. 
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(a) Displacement difference in mesh direction 

 
(b) Displacement difference in y direction 

 
Fig. (13). Responses at 7500 r/min with wear fault lw=1 mm. 

(a) displacement difference in mesh direction 

 
(b) Displacement difference in y direction 

 
Fig. (14). Responses at 7500 r/min with wear fault lw=2 mm. 

behavior of gear bearing system may change from periodic 
motion into non-periodic motion when shaft crack fault or 
tooth wear fault exist. The gentle crack fault can induce 
instantaneous tooth separation and serious double-sided 
impact faults. Serious tooth wear fault will also induce tooth 
separation and double-sided impact faults. If both shaft crack 
fault and tooth wear fault exist in the gear-shaft-bearing 
system, double- sided impact fault caused by crack fault will 
intensify tooth wear fault, which will result in early failure of 
gear system. 
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