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Abstract: A new like-U type flexure hinge structure is proposed, based on Castigliano’s second theorem and calculus 
theory. Taking the centrifugal angle parameters as the integration variable, and defining the intermediate parameters, it 
deduces the analytic computational formula for the like-U type flexure hinge flexibility. By changing the structural 
parameter of the flexure hinge, it is able to transform four different structure flexure hinges, and the deduced analytic 
computation formula can be applied to all of these four structures flexure hinges. After the twelve flexure hinges of 
different structures have been analyzed by applying finite-element method, it is found that the results are in good 
agreement with the results of analytic computation formula. Thus, the validity of the analytic computation formula is 
verified, realize accurate design and computation for such flexure hinges is realized, and the theoretical base for technical 
application of like-U type flexure hinge is provided. 
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1. INTRODUCTION 

 Due to the development of aerospace and aviation 
technology, it requires not only the high resolution but also 
the micromation of the size and dimension in order to realize 
the deflection bearing in small area. After conducting various 
experiments exploring different types of elastomeric bearing, 
people progressively developed the flexure hinge with small 
dimension, without mechanical friction and without gap. 
Flexure Hinge is widely used in gyroscope, acceleration 
meter, precision balance, missile control nozzle shape 
waveguide antenna and etc., and immediately, and it 
achieves unprecedented high precision and stability. In 
recent years, flexure hinge has been also applied in precision 
displacement operating stage and field of robotics [1]. 
 Currently, in for the study of flexure hinge, the 
researchers focus on various performance objectives of 
various structure flexure hinges. Y. Tian of Tianjin 
University, developed V type flexure hinge structure, 
deduced the flexibility computation formula for V type 
flexure hinge, analyzed the stiffness properties and motion 
precision properties in different loads and along different 
axes, and conducted their finite-element verification [2]. 
Researchers such as Zhang Jing zhu and Xu Cheng studied 
single-axis straight circular arc flexure hinge [3]; Nicolae 
Lobonity studied the rotation capacity, rotation accuracy, 
maximum stress and strain efficiency of double axis flexure 
hinge, and verify its correctness by applying biaxial flexure 
hinge parabola [4]; Chen Guimin focused on the properties 
of elliptical flexure hinge to conduct the analytical 
computation [5, 6]; Ren Ning conducted the computation 
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for measuring the stiffness of quadratic curve straight beam 
composite flexure hinge, and analyzed the influence of 
structure parameters on the stiffness [7-9]; Liu Qingling 
Studied the variable section flexible hinge and unilateral 
REC mixed flexible hinge [10, 11]; Zhou Xiaolin, etc., 
calculated rotation stiffness of straight circular flexible 
hinges, obtained parameters of flexible hinge to find how it 
affected the stiffness of the flexible hinge in PW full model, 
PW simplified model and WZ model [12]; Zhang Zhijie, 
etc., analyzed and calculated the secant curve shaped flexible 
hinge [13]; Cao Feng and Cheng Aiwu respectively analyzed 
and calculated biaxial elliptical and straight round flexure 
hinges [14, 15]. 
 This article provides a like-U Type Flexure Hinge which 
is able to transform four different structures by changing the 
main structure parameters. Based on the Castigliano second 
theorem, applying the calculus theory, taking the eccentric 
angle parameters as the integration variable [5], and defining 
the proper intermediate parameters, the flexibility analytic 
computation formula has been deduces in this article that can 
be applied to all of these four different structures flexure 
hinges. After analyzed twelve flexure hinges of different 
structures. By applying finite-element method, it is found 
that the results are in good agreement with the results of 
analytic computation formula; thus verifying the validity of 
the analytic computation formula, realizing accurate design 
and computation for such flexure hinges, and providing the 
theoretical base for technical application of like-U type 
flexure hinge. 

2. FLEXIBILITY CALCULATION AND MODEL 

2.1. Flexibility Model 

 The formulation that follows is based on the following 
simplifying assumptions:(1) The flexure hinges consist of 
two symmetric cutouts: The flexure hinges are modeled and 
analyzed as small-displacement fixed-free Euler–Bernoulli 
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beams subjected to bending produced by forces and 
moments; axial loading is also considered while shearing and 
torsional effects are not taken into account. (2) Flexure hinge 
is the linear elastic body. The model of like-U Type Flexure 
Hinge is shown in Fig. (1). Symmetrical curve in flexure 
hinge is formed by a straight line and an elliptical arc or 
circular arc. So for the like-U Type Flexure Hinge, 
“a”means elliptical arc semi-major axis; “b” means semi-
minor axis; “W” means hinge's width; “m” means kerf 
width; “n” means depth of kerf line section; “t” means the 
minimum thickness of the hinge. As shown in Fig. (2), when 

 and , it is the straight U elliptical arc flexure 
hinge, when  and , it is the elliptical arc U type 
flexure hinge; when and , it is the straight U 
circular arc flexure hinge; when  and , it is the 
circular arc U type flexure hinge, and in this article, all of 
these four structures are called like-U Type Flexure Hinge. 
In this paper, the straight U elliptical arc flexure hinge has 
been selected, which has the general parameters as the object 
to do the mechanical analysis, as shown in Fig. (3). The 
Cartesian coordinate frame is utilized where the origin is 
located at the minimum thickness of the flexure hinge, and 
the x and y axes are in the height and longitudinal directions, 
respectively. In the mechanical analysis, set the upper end as 
the fixed end, and the lower end as the free end; in order to 
facilitate the integral calculus computing, conduct the 
infinitesimal dividing for the model which is based on the 
Cartesian coordinates, and apply load on O point, since the 
displacement is generated on O point. As shown in Fig. (4), 
segment the integral region for the divided infinitesimal, and 
set infinitesimal thickness as dx and set eccentric angle as , 
as shown in Fig. (5). Thus, in three regions A, B and C, there 
are respectively: 

 
Fig. (1). The structural parameters of like-U Type flexure hinge. 
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Fig. (2). The four different structures model of like-U Type flexure 
hinge. 

 
Fig. (3). The loads of like-U Type flexure hinge. 

2.2. Flexibility Computation 

 In order to derive closed-form compliance equations of 
filleted U-shaped flexure hinges, the Castigliano’s second 
theorem is adopted and written as follows: 
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  (1) 

 Where, “ ”is the structural distortion energy, is 

generalized force,  is displacement corresponding to 
force, curving distortion energy is: 

  (2) 

tension distortion energy is 

 
Fig. (4). The flexibility calculation partition. 

  (3) 

in the formula, “ ” is the elastic modulus of the material, 
and “ ”is the moment of inertia, then there is: 

 
Fig. (5). Eccentric angle of an ellipse. 

(1) Angular compliance of z-axis 
 The flexure hinge subject to the bending moment Mz will 
rotate about z-axis, and the angular displacement is denoted 
by αz, the compliance equation is developed as follows: 

  (4) 

 

 The application of force at the free end of the flexure 
hinge can generate bending moment acting on the hinge; the 
compliance equation about z-axis is obtained as follows: 

  (5) 

 

 

 
 Among them:  

 

 
(2) Angular compliance about y-axis 

 The angular displacement of the “y” axis is generated by 
two parts of load; the angular displacement generated by 
moment “ ”; and the angular displacement generated by 

force “ ”, their flexibilities are: 
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 Among them:  

 
(3) Linear compliance along -axis 

 The bending moment  and force can also result in 
the linear displacement of the flexure hinge along z-axis. The 
linear compliances along z-axis under the bending moment 

and force are respectively given as follows: 

  (8) 

 

 

 

 Among them:  

 

 

 The linear distortion “ ” along “ ” axis generated by 
moment “ ”, the flexibility expression is 
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(4) Linear compliance along -axis 

 The flexure hinge can generate linear displacement along 
y-axis due to the bending moment . and force , The 
linear compliances along -axis are respectively given as 
follows: 
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Fig. (6). Finite element model and boundary conditions of flexure hinge. 

Table 1. Physical parameters and geometric parameters of flexure hinges. 
 

                       Parameters 
Number 

2a/mm 2b/mm m/mm W/mm t/mm 

1 12 8 3 20 5 

2 10 6 4 25 5 

3 14 10 6 30 3 

4 8 6 6 20 3 

5 12 8 8 25 4 

6 14 8 8 30 3 

7 6 6 3 20 2 

8 10 10 6 25 4 

9 12 12 8 30 3 

10 8 8 8 20 3 

11 10 10 10 25 4 

12 12 12 12 30 5 



Flexibility Calculation of Like-U Type Flexure Hinge The Open Mechanical Engineering Journal, 2015, Volume 9    537 

 

Table 2. Comparison between finite element and analytical results for the compliance factors. 
 

Flexibility 
Linear Mixed Elliptical arc Flexure Hinges Elliptical arc U-Type Flexure Hinges 

Analytic FEM Error (%) Analytic FEM Error (%) 

 
    10.01 8.329 

58.28 51.1 7.18 3.17 3.211 1.29 

5.115 4.91 4 4.072 3.986 2.11 

 
38.96 38.89 1.79 24.49 22.79 1.33 

17.08 17.69 3.571 5.178 5.083 1.83 

3.352 3.421 2.06 2.135 2.133 0.2 

 
33.43 31.68 5.23 14.21 14.76 3.871 

12.79 12.81 0.16 9.06 9.048 0.132 

6.908 6.743 2.39 4.523 4.641 2.405 

 
8.356 7.764 7.085 4.736 4.812 1.605 

4.363 4.415 1.183 2.265 2.247 0.795 

1.382 1.295 6.295 1.131 1.348 2.645 

 
27.86 26.65 4.343 15.79 15.72 0.443 

22.21 22.76 2.495 11.8 12.13 2.797 

10.36 10.44 0.772 8.48 8.454 0.307 

 
58.12 58.67 0.946 8.109 8.202 1.148 

33.9 34.58 2.005 8.24 8.035 2.448 

25.48 24.06 5.572 12.98 12.88 0.77 

 
41.03 40.25 1.901 4.236 4.158 1.841 

10.8 10.99 1.759 12.99 12.57 3.233 

20.16 20.62 2.298 6.336 6.348 0.189 

Flexibility 
Linear Mixed arc Flexure Hinges Arc U-Type Flexure Hinges 

Analytic FEM Error (%) Analytic FEM Error (%) 

 
8.5 8.476 0.282 11.07 11.26 1.716 

11.23 11.45 1.959 9.866 9.669 2.831 

2.573 2.398 6.801 8.448 8.505 0.675 

 
23.39 23.46 0.727 42.93 41.88 2.443 

48.02 47.16 1.791 47.11 48.05 1.995 

2.871 2.968 3.383 47.12 47.48 0.764 
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8.424 8.391 0.392 17.03 17.62 3.464 
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6.972 6.811 2.309 19.44 19.87 2.212 

29.91 29.76 0.502 27.31 27.63 1.172 

13.73 12.88 6.191 38.89 37.58 3.368 
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33.23 34.58 4.063 35.11 35.62 1.453 

20.35 19.92 2.13 27.94 26.07 6.693 
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 For the linear distortion “ ” generated by moment “

”, the flexibility expression is: 

  (11) 

on the basis of reciprocal theorem, there is: 

 
 (5) Linear compliance along -axis 

 The linear distortion “ ” generated by force Fx, the 
linear compliances along x-axis are given as follows: 

  (12) 

 

 

3. FINITE ELEMENT SIMULATION AND ANALYSIS 

 In order to verify the flexibility formula, for the four 
structures Like-U type flexure hinges, we selected three 
groups of total twelve models to conduct the model analysis, 
fixed the upper end, and apply unit load on center of 
symmetry “O” point:  

, 

, 

, the models of four types flexure hinge 
finite-element analysis are shown in Fig. (6). The Physical 
parameters and geometric parameters of flexure hinges is 
shown in Table 1. The contrast results of finite element 
analysis and analytical solution is shown in Table 2. It can be 
seen that the results of the finite element analysis and closed-
form equations are in good agreement with the maximum 
deviation being less than 9%. 

CONCLUSION 

 This article develops a like-U Type Flexure Hinge, which 
is able to transform four different structures by changing the 
structure parameters, and deduces the flexibility analytic 
computation formula that can be applied to all of these four 
different structures flexure hinges. The process of formula 
deducing and computing is very intricate, but the result is 
simplified by defining the intermediate parameters. The 
maximum deviation between analytic computation formula 
result and finite-element analysis result is less than 9%, 
which proves the validity and reasonability of the deduced 
computation formula and provides the theoretical basis for 
technical application of like-U type flexure hinge. 
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