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Abstract: In order to obtain the spiral bevel gear wheel natural frequencies and mode shapes in the unconstrained state for 
the purpose of dynamic characteristics study, the spiral bevel gear wheel three-dimensional solid model of a mini-bus 
main reducer is established in this paper. The finite element model of spiral bevel gear wheel which consists of 32351 
nodes, 18436 solid187 tetrahedrons finite element method elements is established by using free grid meshing method in 
this paper. Extract the first 6 orders modals parameters such as natural frequencies and main vibration mode shapes by 
using the Lanczos method. The new 1st to 4th orders modals are formed by comparing and merging 2 orders repeated 
modals. In order to verify the effectiveness of the finite element analysis results, the experiment modal test based on the 
impulse force hammer percussion transient single-point excitation and multi-point response analysis method has been 
done. The maximum difference value of natural frequency between experimental modal test result and finite element 
modal analysis results is 29.86 Hz, the maximum error rate is 0.41%, which confirmed the result of finite element method 
is effective and  reliable. The conclusions reflect the vibration response characteristics of spiral bevel gear wheel, and 
provide theoretical basis for dynamic response, structure design and optimization of spiral bevel gear wheel. 

Keywords: Experiment modal test, free modal, Lanczos method, mode shape, natural frequency, spiral bevel gear.  

1. INTRODUCTION 

 Spiral bevel gear with the good advantages of stable 
transmission, low noise, high contact coincidence ratio, is 
suitable for application on the automobile main reducer. But 
the vibration, shock and noise problems [1] caused by spiral 
bevel gear work conditions of high speed and heavy load 
influence the ride comfort, manipulation stability and fuel 
economy of the automobile [2]. 
 Modal analysis is a basis of transient dynamic analysis, 
load prediction, spectrum analysis, modal superposition 
method for response (to determine the fatigue life, dynamic 
strength etc.), vibration control, vibration acoustic character-
istics estimation and control, fault vibration and prediction 
and dynamic optimization design [3-5]. Obtained the natural 
frequency of the structure by modal analysis can avoid the 
occurrence of resonance phenomenon, and provide some 
measures to reduced vibration, shock and noise. It is difficult 
to establish a real constraint conditions and the incentives are 
very complex during the finite element constraint modal 
analysis for the spiral bevel gear wheel, because of the spiral 
bevel gear wheel with very complex constraint conditions, 
while the free modal itself reflects the spiral bevel gear 
wheel inherent dynamic characteristics [6-9], so the free 
modal analysis of a mini bus main reducer spiral bevel gear 
wheel has been done in this paper. 
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 There are mainly Lanczos method, Subspace method [10-
17], Power dynamics method [18]. Reduced/ Householder 
[19], Unsymmetric method [20], Damp method and QR 
damping method [21] etc., which extract the modal 
parameters by using the finite element method. The Lanczos 
modal extraction method use three iterative formula to 
produces a set of orthonormal eigenvectors, convert the 
original matrix of real symmetric positive definited into a 
tridiagonal matrix [17，22-26] the modal extraction problem 
is transformed to eigenvalue and eigenvector solving 
problem of a tridiagonal matrix [27-33]. The Lanczos 
method with the smaller amount of computation, faster 
convergence speed [34-35], faster calculation speed and 
higher accuracy, is suitable for solid element and shell 
element in finite element analysis, and has been regarded as 
the most effective algorithms for solving the large sparse 
matrix eigenvalue problem [36-41]. 

2. THE THEORY BASIC OF FREE MODAL 
ANALYSIS 

2.1. Vibration Differential Equation 

 According to the vibration theory, the vibration 
differential equation of n degrees of freedom elastic system 
can be described in the physical coordinates as follow [42]. 

 MX +C X + KX = F(t)   (1) 

where, M is the mass matrix, C is the damping matrix, K is 
the stiffness matrix, X is the displacement column vectors, 
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 X  is the speed column vector,  X is the acceleration column 
vector, f (t)  is the excitation force column vector. 

 For the free vibration system of non damping or can 
negligible damping with no external excitation force, 
substitute the equation f (t) = 0  into Eq. (1) can obtain the 
free vibration differential equation of n degrees of freedom 
elastic system as follow. 

 MX + KX = 0   (2) 
 Generally, Eq. (1) and Eq. (2) described by the physical 
coordinates are coupled with each other, in order to obtain 
the independent equations described by modal coordinates 
and modal parameters, it’s necessary to carry out the 
vibration differential equation as shown in Eq. (2) a series of 
coordinate transformation, which transform the physical 
coordinate into modal coordinates, and makes the vibration 
differential equations decoupled, the homogeneous equations 
can be obtained as following shown. 

(K −ω i
2M )ϕi = 0   (3) 

where, ω i  is the ith order natural frequency of the system, ϕi  
is the ith order main vibration vectors of the system, i=1, 
2,...... n. 

 The process of solving ω i  and ϕi  is the process of modal 
analysis. The non damping free vibration equation Eq. (3) 
described by the modal coordinates has n orders natural 
frequencies ω n (possible value) and the corresponding n 
orders main modal vectors ϕ n , for each group of natural 
frequency ωi and the corresponding main vibration vectors 
ϕi  are represents a freedom vibration shape (modal) of 
single-degree, the free vibration shape of multi-degree 
system can be decomposed into a linear superposition of 
single-degree free vibration shape, that is to say the n 
degrees free vibration system is composed by linear 
combinations of n number of inherent vibration modal, 
therefore, any vibration form of the system is a superposition 
of the n number of main vibration modal. The lower order 
vibration modal of the system has the more prominent 
contribution rate and determines the dynamic response 
characteristics of the system, so, we should more focus on 
the lower order modal while the higher order modals is often 
not easy to stimulate [2]. Therefore, the 1st to 12th orders 
modals natural frequencies and vibration modals of the spiral 
bevel gear wheel are extracted in this paper. 

2.2. Lanczos Numerical Calculation Method 

 The solution of the free vibration differential Eq. (2) can 
be written in the form of 

KΦ =ω 2MΦ   (4) 

where,  Φ = ϕ1,ϕ2,ϕi ,ϕn{ } . 

 Eq. (4) is a generalized eigenvalue problem. For the 
multi-degree of freedom constraints system with non rigid 
motion, the stiffness matrix K is real symmetric positive 
definite matrix which can be carried out Cholesky factor 

decomposition by using the square root method [43-46], the 
Eq. (4) can be rewritten in the form of 

AY = µY   (5) 

where K=LLT (L is a lower triangular matrix), μ=1/ω2, 
A=L-1ML-T, Y=LTФ. 
 And for the multi-degree of freedom system with rigid 
body motion, the stiffness matrix K is positive semi-definite 
matrix which can transform it into positive definite matrix by 
the shift method, and then carry out the Cholesky factor 
decomposition. K and μ are determined by the Eq. (6). 

K + ρM = LLT

µ = 1/ (ω 2 +α )

⎧
⎨
⎪

⎩⎪
  (6) 

where, ρ (ρ>0) is a constant. 

 The characteristics solutions of Eq. (5) are characteristics 
solution of Eq. (4) through a series of matrix transformations. 
Matrix A shown in Eq. (5) can convert into tridiagonal 
matrix by the Eq. (7) through selecting the initial Lanczos 
iterative vector Vi which should satisfy the condition 
Vi

TVi = I , where I is an unit matrix [17, 47-49]. 

VTAVQ = µVTVQ   (7) 

where, VQ=Y，and: 

VT =V −1   (8) 
 The matrix VTAV=T is a three diagonal matrix, VTAV can 
be written as follow: 
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 (9) 

 The following equation can been obtained by combining 
the Eq. (8) and Eq. (9). 

AV =VT   (10) 
 The vector Vi+1 is orthogonal with the former two vectors 
Vi, Vi-1, and the Eq. (10) can be expressed as follows [47-49]: 

AV = βi−1Vi−1 +α iVi + βiVi+1   (11) 

where, αi, βi and Vi+1 can be obtained by the Eq. (12) 
respectively. 

α i =Vi
T (AVi − βi−1Vi ) (β0 = 0)

βi = (Ci
TCi )

1/2 (Ci = AVi − βi−1Vi−1 −α iVi )
Vi+1 = (1 / βi )Ci

⎧

⎨
⎪

⎩
⎪

 (12) 

 After the completion of iterative process can form m 
number of Lanczos vectors Vi(i=1, 2,…, m)， number m is 2 
times to the order of eigenvalues to be solved. 
 Solve the Eq. (8) based on the Sturm dichotomy theory 
can get the characteristics value solutions of specified order 
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[50, 51]. Generally, the Eq. (9) cannot get all the characteristics 
value (n orders), only need to be truncated to m orders (m<n, 
m is usually 2 times to the order of eigenvalues to be solved). 
Solving the eigenvalue problem can be expressed as the 
following Eq. (13) shown: 

TmZ = µiT   (13) 

where, μi is the characteristics value obtained by truncating 
the three diagonal matrix. 

 After obtained the characteristics value μi by using the 
dichotomy method to solve the Eq. (13), the characteristics 
vector Z in the Eq. (13) can obtain by inverse iteration, and 
then can obtain the characteristic vector Y of characteristic 
equation Eq. (5) by equation Y=VZ, then by equation  
Φ=L-TY can get the original characteristics vector Φ and 
characteristics values ω i

2 = 1/ µi  (i =1, 2,…, m) of the Eq. 
(4). 
 In order to improve the stability of the iterative 
algorithm, the Lanczos vector sequence orthogonal method 
[52-54] was introduced, and suppose the following equation 
is established firstly. 

Pi = I − 2 qi{ } qi{ }T   (14) 

where, I is an unit matrix, the (i-1)th element of vector {qi} is 
zero, and qi = 1 . 

 For 1≤i≤m， the following formula can be established: 

 

w{ }i+1 = PiPi−1P1Ci

Pi+1 w{ }i+1 = γ ei+1{ }
Vi+1 = P1P2Pi+1 ei+1{ }

⎧

⎨
⎪

⎩
⎪

  (15) 

where, {ei} is the ith column of the unit matrix, and γi=βi. 

 Solve the characteristic vector Y of matrix A in Eq. (5) by 
Eq. (14), get the original characteristic vector Φ and charac-
teristic value ω i

2 = 1/ µi  (i = 1, 2, …, m) by the equation Φ
=L-TY. 

3. FINITE ELEMENT MODAL 

 There are a pair of spiral bevel gears installed on a mini 
bus main reducer, some parameters are shown in Table 1. 
The three-dimensional model of spiral bevel gear wheel was 
established in the UG NX software. The middle part of the 
spiral bevel gear wheel was hollowed for installation of a 
differential according to the need of the actual work 
condition. Design 8*M10 threaded hole with 18 mm deep on 
the semifinished product of spiral bevel gear wheel for 
power output connecting with the differential case. 
 Export the spiral bevel gear wheel model established in 
UG NX as Parasolid file format, then import the exported 
file to ANSYS Workbench platform. The geometric model is 
shown in Fig. (1). 
 Define the material property of spiral bevel gear wheel 
and mesh the grid, the finite element model was established 
as shown in Fig. (2). 

Table 1. Some parameters of spiral bevel gear wheel. 
 

Parameters Symbol/Unit Wheel 

Number of teeth z 37 

Exterior transverse modulus m/mm 4.5 

Shaft angle ∑/(°) 90 

Reference cone angle δ/(°) 76.3287 

Face width b/mm 28 

Rotation direction  Right 

Pitch circle diameter d/mm 166.5 

Pressure angle αn/(°) 20 

Spiral angle βm/(°) 35 

Face width coefficient ΦR 0.3268 

Addendum ha/mm 3.825 

Dedendum hf/mm 4.671 

 

 
Fig. (1). The geometric model. 

 
Fig. (2). The finite element model. 
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 Some parameters of the finite element model are shown 
in Table 2. 
Table 2. Some parameters of the spiral bevel gear wheel 

finite element model. 
 

Parameters Value 

Element type Solid187 

Material 20 CrMnTi 

Modulus of elasticity/Pa 2.06675×1011 

Poisson ratio 0.3 

Density/( kg/m3) 7.85×103 

Grid partition type Free 

Volume/ m3 3.0828×10-4 

Mass/kg 2.420 

Node number 32351 

Unit number 18436 

Average of Skewness 0.5657 

Standard deviation of Skewness 0.2558 

4. FINITE ELEMENT FREE MODAL ANALYSIS 

 The free modal analysis of spiral bevel gear wheel which 
non constraint and load added on the spiral bevel gear wheel 
was done, and the free modal parameters of the spiral bevel 
gear wheel was calculated. Usually the resonance more 
easily occurs at the lower order frequencies. Therefore, solve 
spiral bevel gear wheel free modal, only expands to the first 
12 orders harmonics, and obtain the corresponding 
frequencies and main vibration mode shapes in this paper. 
The 1st to 12th orders modal parameters of spiral bevel gear 
wheel were calculated by using the Lanczos method. The 
first 6 orders natural frequencies are close to zero, and the 
corresponding main vibration mode shapes do not appear in 
obvious deformations, that is to say, the first 6 orders modal 
are rigid body modals which are three modals along the 
three-coordinate axes translation and three modals along the 
three-coordinate axes rotation. The true modals are the 7th to 
12th order modals. Remove the first 6 orders rigid modals, 
then sorted the 7th to 12th order modals accordance to the 
order of 1st to 6th sequence, the natural frequencies are shown 
in Table 3. 
Table 3. The natural frequencies of the spiral bevel gear 

wheel. 
 

Order Finite Element Method Nature Frequency/Hz 

The 1st order 2795 

The 2nd order 2796.3 

The 3rd order 3536.1 

The 4th order 3536.8 

The 5th order 7127.5 

The 6th order 7230.9 

 

 Select the 1st to 6th order of natural frequencies, take the 
overall deformation value as output indicator, create the 1st 
to 6th order of main vibration mode shape as shown in Figs. 
(3, 8). 
 Fig. (3) is the 1st order main vibration free mode shape, 
mainly indicates the 4 nodes bending vibration, the 
maximum total deformation value is 38.187 units. 

 
Fig. (3). The 1st order main vibration free mode shape. 

 Fig. (4) is the 2nd order main vibration free mode shape, 
mainly indicates the 4 nodes bending vibration, the 
maximum total deformation value is 38.19 units. From the 
different value of the 1st order and 2nd order natural 
frequency is small (only 1.3Hz), the main vibration mode 
shape animation is very similar and the maximum total 
deformation value is very close (only 0.003 unit) can be 
identified that the 1st order and 2nd order should be the same 
order natural frequency (the experimental results also 
verified this conclusion later). So, the 1st order and 2nd order 
natural frequencies should be merged to the new 1st order 
natural frequency. 

 
Fig. (4). The 2nd order main vibration free mode shape. 

 Fig. (5) is the 3rd order main vibration free mode shape, 
mainly indicates the 4 nodes torsional vibration, the 
maximum deformation value is 28.724 units. 
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Fig. (5). The 3rd order main vibration free mode shape. 

 Fig. (6) is the 4th order main vibration free mode shape, 
mainly indicates the 4 nodes torsional vibration, the 
maximum total deformation value is 28.729 units. From the 
difference value of the 3rd order and 4th order natural 
frequency is small (only 0.7 Hz), the main vibration mode 
shape animation is very similar and the maximum total 
deformation value is very close (only 0.003 unit) can be 
identified that the 3rd order and 4th order should be the same 
order natural frequency (the experimental results also 
verified this conclusion later). So, the 3rd order and 4th order 
natural frequencies should be merged to the new 2nd order 
natural frequency. 

 
Fig. (6). The 4th order main vibration free mode shape. 

 Fig. (7) is the 5th order main vibration free mode shape, 
mainly indicates the umbrella vibration, the main vibration 
mode shape is similar like an umbrella opening and closing. 
The maximum total deformation value is 42.501 units. Fig. 
(7) is the new 3rd order natural frequency because the  
 
 
 

influence of the last merged mode shape. Fig. (8) is the 6th 
order main vibration free mode shape, mainly indicates 6 
nodes circumferential modals, the maximum total 
deformation value is 40.194 units. 

 
Fig. (7). The 5th order main vibration free mode shape. 

 Fig. (8) is the new 4th order natural frequency because the 
influence of the last merged mode shape. 

 
Fig. (8). The 6th order main vibration free mode shape. 

5. THE EXPERIMENT MODAL TEST AND 
VERIFICATION 

 In order to verify the accuracy and effectiveness of the 
finite element modal analysis results based on the Lanczos 
method, the impulse force hammer single-point percussion 
transient excitation and multi-point response free 
experimental modal test for spiral bevel gear wheel has been 
done in this paper. The geometric modeling was established 
by using the 8 points octagon in space to approximate  
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Fig. (9). The layout of sensors. 

 

 
Fig. (10). The layout of experimental modal test. 

 

Table 4. The comparisons of natural frequency. 
 

Order Nature Frequency of  
Experimental Test/Hz 

Nature Frequency of  
Finite Element Method/Hz 

Damping  
Ratio 

The Difference/ 
Hz 

The Relative  
Error Rate 

1st  2787.48 2795.0 1.32% 7.52 0.27% 

2nd  3522.95 3536.1 1.56% 13.15 0.37% 

3rd  7146.12 7127.5 2.67% 18.62 0.26% 

4th  7260.76 7230.9 2.89% 29.86 0.41% 
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instead the spiral bevel gear wheel outer contour in LMS. 
IMPACT software. During the experiments, eight number of 
three-direction acceleration sensors for signal acquisition are 
installed uniformly on the back of spiral bevel gear wheel, 
extract the modal parameters through signal processing for 
modal analysis system. 
 The experimental hammer use Modally Tuned hammer 
made by American piezoelectric company with US. Patent 
No.4.799.375. The eight number of three-direction 
acceleration sensors also made by American piezoelectric 
company are uniformly and symmetrical installed on the 
back of the spiral bevel gear wheel by 502# glue as shown in 
Fig. (9). 
 The support is elastic rope suspension strut and the data 
acquisition is the LMS SCADA III with 24 channels of 
acquisition, 2 dedicated channels of speed acquisition, and 2 
channels of signal output. The modal analysis system use 
modal analysis module of the LMS Test lab 9A. The layout 
of experimental modal test is shown in Fig. (10). 
 The modal parameters of the 1st to 4th order within the 
range of 0 kHz to 16 kHz are obtained by the experiment. 
The comparisons of natural frequency between the finite  
 
element analysis results and the experimental modal test 
result are shown in Table 4. 
 The 1st order natural frequency of experimental test is 
2787.48Hz, the damping ratio is 1.32%, the relative error 
ratio is 0.27%. The 2nd order natural frequency of 
experimental test is 3522.95Hz, the damping ratio is 1.56%, 
the relative error ratio is 0.37%. The 3rd order natural 
frequency of experimental test is 7146.12 Hz, the damping 
ratio is 2.67%, the relative error ratio is 0.26%. The 4th order 
natural frequency of experimental test is 7260.76 Hz, the 
damping ratio is 2.89%, and the relative error ratio is 0.41%, 
and all the relative error ratio are the range of the 
engineering permissible value which is less than 5%. 

CONCLUSION 

(1) The three-dimensional solid model of spiral bevel 
gear wheel was established in the UG NX 
environment, and the finite element model of spiral 
bevel gear wheel was built after the definition of 
material property parameters and grid meshing on the 
ANSYS Workbench platform. 

(2) The free modal analysis of spiral bevel gear wheel has 
been done by using the Lanczos method for iterative 
calculation, extract the first 6 orders non zero natural 
frequencies and the main vibration mode shapes 
respectively, merged the 2 repeated orders of natural 
frequencies and obtain the real 4 orders natural 
frequencies and main vibration mode shapes. 

(3) The real first 4 orders of natural frequencies of 
experimental test for spiral bevel gear wheel are  
 
 
 

2787.48 Hz, 3522.95 Hz, 7146.12 Hz, 7260.76 Hz 
respectively by free modal experimental test. The 
relative error rate of extraction for natural frequencies 
by using finite element modal analysis based on the 
Lanczos method are all the range of the engineering 
permissible value. 
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