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Abstract: In order to improve the validity and accuracy of fault diagnosis on mechanical equipment, this study applies 
fuzzy nearness approach by adjusting the traditional formulations. Besides, it points out the disadvantages in fault 
diagnosis of traditional nearness approach based on experimental data of gear transmission. A fuzzy nearness function-
based model is constructed to execute the fault diagnosis with the assistance of fuzzy nearness principles and fuzzy 
mathematical membership degree. Following that, a experimental data-based numerical example is implemented, which 
demonstrates that the adjusted fuzzy nearness approach performs better than the traditional one in diagnosing gear fault 
effectively and meeting the practical requirements of gear transmission fault diagnosis. 
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INTRODUCTION 

 Gearbox is a speed-varied transmission mechanism, 
which is commonly used in changing rotation speed and 
transmission power for its inherent characteristics of fixed 
transmission ratio, large transmission torque, compact 
structure, high transmission efficiency and long service time 
etc. [1, 2]. Gearbox is an important component of machinery, 
however, it is very susceptible to damaged for its 
complicated structure and harsh working environment. For 
example, invalid gear transmission is a common fault for 
gearbox. Gear faults are mainly constituted of gear surface 
damage, including gear surface pitting, abrasion, scoring, 
plastics deformation etc., and wheel tooth break-down. It is 
widely known that gear fault has direct negative effects on 
impeding secure reliable operation, reducing production 
efficiency and causing casualties etc [3]. Therefore, in recent 
decades, it draws great attention on researches on faults 
diagnosis on gearbox for its significance. 
 The torsional-vibration assessment and gear-fault 
diagnosis were made by [4] in the simple gearbox-based 
electromechanical system. They found gearbox torsional 
vibrations had a obvious impact on the torque and stator-
current signatures [5]. A new prognosis method for the gear 
faults was started by [6] in dc machines. Moreover, they 
used hidden Markov models (HMMs) to predict the future 
state of fault severity. A new neuro-fuzzy diagnostic system 
found by [7] who developed integrating three robust signal 
processing techniques: the continuous wavelet transform 
(amplitude), beta kurtosis used the overall residual signal and 
the phase modulation [7]. 
 It is very important to have an early faults diagnosis on 
the gears before their operations. Since that the structures of  
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gears are becoming more and more complicated, it is easy to 
have the chain reaction so that the whole system is paralyzed 
once some faults happens [8]. Thus, it is necessary to 
eliminate all faults in an early stage so that the whole system 
can operate in a secure and reliable environment. In previous 
studies, three methods were widely used to diagnose faults, 
including method based on mathematical modeling, method 
based on signal processing and artificial intelligence-based 
method. Besides, more researches concentrate on neural 
networks-based artificial intelligence method, in which a 
large number of fault samples are needed for neural network 
training before diagnosis. However, it is easy to collect 
samples in normal operating state but difficult to obtain fault 
samples. Under the circumstances, the recognition theory 
based on fuzzy nearness was proposed to handle the 
difficulty properly. The principles of the fuzzy nearness 
theory are to firstly make a fuzzy nearness comparison 
between the timely obtained fault samples to be diagnosed 
and the diagnosed standard fault samples. Then, the fault 
causes can be figured out based on the comparison so that a 
better fault diagnosis can be carried out. 
 In this study, the principles of the fuzzy nearness will be 
firstly introduced and some disadvantages of traditional 
nearness-based approaches are discussed. In addition, the 
fuzzy mathematics is applied to adjust the nearness, which is 
then used in a numerical example. It can be concluded that 
the model based on adjusted nearness performs well in 
diagnosing faults. 

THEORY OF FUZZY NEARNESS 

 Concept of nearness: Nearness is used to measure the 
closeness two fuzzy sets degree through a value ranging 
between 0 and 1. When the nearness approaches to 0, it 
denotes that the distance between two sets are becoming 
greater and the relationship is sparser. Otherwise, when the 
nearness approaches to 1, it denotes that the distance 



Fault Diagnosis of Gear Based on the Variable Fuzzy Similarity Nearness The Open Mechanical Engineering Journal, 2015, Volume 9    847 

between two sets are becoming smaller and the relationship 
is closer. The mathematical formula is as follows: 

 Assume domain and mapping n: F(U), in which 
 satisfies the following conditions: 

, 

 Thus, denotes the nearness between A and B. 

 Concept of traditional nearness: The commonly used 
nearness formula is as follows: 
 Min Max nearness can be obtained through the following 
Eq. (1). 

 (1) 

where denotes the eigenvalues number in the samples, 
; and  represent the eigenvalues of the 

fault samples to be tested and the eigenvalues of the 
standard fault samples b, respectively;  and  denote the 
min and max operators, respectively. 

 Although that the traditional nearness formula can figure 
out the closeness of two fuzzy sets, there are some 
disadvantages. Occasionally, the expected conclusions 
cannot be drawn by calculating Eq. (1). In this study, two 
sets of standard fault pressure waveform data from two sets 
of fuel systems are taken as an example. Assume that the 
normal performance  and Spalling  follow distributions: 

, 

. 

 It is calculated that the nearness equals to -1.8829 so that 
it is impossible to make an accurate diagnosis for it exceeds 
the value range of the nearness. In order to avoid 
misdiagnosis of the traditional nearness method, this study 
attempts to improve the disadvantages in the traditional 
nearness formula based on the fundamental principles of 
fuzzy nearness and the membership degree in fuzzy 
mathematics. It can be concluded that it plays well in fault 
diagnosis. 

INTRODUCTION TO THE IMPROVED NEARNESS 

 Definition of membership function: The definition of 
membership function is proposed as follows: 

 For any set  U, there is always a member , 
denotes a fuzzy set of U, then the value is called the 
membership degree of in . When  changes within
and will follow so that becomes a function, which 
is called the membership function of  when is closer  
 

to 1, which means the membership degree is higher. 
Otherwise, when is closer to 0, the membership degree 
is lower. Thus, the membership function ranging is 
applied to reflect the membership degree in . 
 Normalization: The selection of membership function 
influences the accuracy and stability of fault diagnosis on 
system. When collecting the false diagnosed system signals, 
most system have faults that direct influences on its secure 
and reliable operations and they represent alarm values. 
Thus, the collected data from the samples must be 
normalized, in other words, the samples have to be 
standardized or normalized by Eq. (2): 

 (2) 

where means sample parameter’s deviation degree from 
normal value (dimension);  means the normal value;  
denotes the faults values collected during operations and  
represents a reference value, which is the eigenvalues of the 
diagnosed standard fault samples. 
 Constructing membership function: It is common that 
deviation values from the normal ones in gear faults 
diagnosis system are large or are floating besides the normal 
ones and the closeness between various faults and signs are 
different, therefore, a new membership function in Eq. (3) 
based on the aforementioned conditions, the wide 
applicability of membership functions and the inherent faults 
characteristics. 

 (3) 

 In Eq. (3), it is reflected firstly that the variation for
is small when or x = 1, and the function changes 
the fastest when x = 0.5, which demonstrates that the 
changes are rather small when the faults signs approach the 
normal values or some certain faults values. In other words, 

can be used to reflect the fluctuation characteristics of 
the gear faults signs, which is beneficial for recognizing the 
fuzzy modes. Besides, it is also shown that when x = 0, 
which means that the faults signs are normal, then the 
membership function u(x) = 0. Otherwise, when

. This membership function is designed to guarantee 
that the faults signs will vary besides the normal values, in 
which . Thus, the faults values that are deviated 
from or floating besides the normal ones can be expressed 
through different values after being transformed by Eq. (3). 
 The nearness between the faults signs to be tested and the 
standard faults signs can be determined by calculating the 
fuzzy nearness. Additionally, the gear faults can be 
diagnosed by applying the nearness of selection principles, 
which present that the ones nearest to the normal ones will 
be selected. Thus, the nearness formula can be expressed as: 

 (4) 

where  denotes the eigenvalues number and  denotes 
the membership degree of eigen value. 
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NUMERICAL EXAMPLE 

 Vibration signals can properly indicate the state and 
performance of gear transmission system [8]. Based on the 
wavelet transform, the entropy with the mutual information, 
a complete system presented by [9] mixing with signal 
processing, feature extraction, feature selection and 
classification approaches for gear fault diagnosis. In our 
research, we choose the feature values described by [9]. to 
practice fuzzy recognition, which are: wavelet energy 
features (WE1,WE2,WE3), wavelet singular values 
(WS1,WS2,WS3), wavelet energy Shannon entropy(WEE), 
wavelet singular Shannon entropy (WSE), wavelet energy 
Renyi entropy (WER), wavelet singular Renyi entropy( ). 
They can be represented as a set  

. 

 Diagnostic process: The diagnostic process figure of the 
improved fuzzy nearness method is described as Fig. (1). 

 
Fig. (1). Diagnostic process framework. 

 When there are in absence of sample fault data, technical 
staff check the cause of gear faults and record the fault 
eigenvalues. After a period of operation, we can use the 
fuzzy nearness method integrating fault sample data to 
diagnose the gear faults. 
 The comparison analysis by using sample data: Table 1 
shows five common faults of gear system and its 
corresponding wavelet feature values. It can be effective for 
fault diagnosis by comparing the nearness between them and 
the collected fault symptoms. 
 In this study, we compare the diagnosis results between 
traditional nearness equation and improved nearness 
equation by using the following five diagnosis data samples: 

Sample1: Wear
, 

Sample2: Pitting 
, 

Sample3: Spalling 
, 

Sample4: Broken 
, 

Sample5: Crack 
 

 Nearness 1 means the closeness to the wear diagnosis, 
nearness 2 means the closeness to the pitting diagnosis, and 
so on. The diagnosis results calculated by traditional and 
improved nearness equation are shown in Tables 2 and 3, 
respectively. 
 As can be seen from the above results, it is not able to 
diagnose the actual gear fault by using traditional nearness 
method, which may easily get the results beyond the range of 
nearness and is limited to filter the data which is not 
undulate. However, the improved nearness model diagnoses 
the gear faults accurately and shows the superiority of 
solving this problem. 

 The comparison between triditional and improved 
nearness method in different gear fault types: In actual 
gear fault diagnosis, it is often to encounter the situation that 
needs to identify with different gear faults. We use two sets 
of feature values of different gear fault to identify the 
nearness, wear  

A= , 
spalling  

B= . 
The nearness calculated by Eq. (1) is  and 
unable to diagnose accurately. However, the nearness 
calculated by Eq. (4) is and can diagnose 
accurately. 

 The comparison between traditional and improved 
nearness method in a same gear fault type: Another 
condition is to identify the same gear fault with two different 
sample data, wear  

WSR

X(WE1,WE2,WE3,WS1,WS2,WS3,WEE ,WSE ,WER,WSR )

(1,0.432,-0.896,0.483,0.234,0.272,-0.341,0.432,-0.235,0.887)

(1,-0.569,0.231,0.856,-0.754,-0.242,0.137,0.563,-0.873,−0.573)

(−0.429,0.561,0.871,0.746,0.472,−0.371,-1,-0.863,0.742,0.768)

(1,-0.463,0.765,0.121,−0.273,−0.398,0.431,1,−0.298,−0.336)

(0.231,0.327,−0.834,−0.311,0.836,−1,−0.133,1,0.122,-0.653)

(1,0.219,-1,0.764,0.423,0.111,-0.234,0.283,-0.386,1)

(−0.529,0.937,0.947,0.857,0.763,−0.856,-1,-1,0.765,0.957)
δ A = −6.4247

δ B = 0.465281

Table 1. Faults and features extracted from its corresponding signal. 
 

Fault Type 
Extracted Feature Values 

          

Wear 1 0.219 -1 0.764 0.423 0.111 -0.234 0.283 -0.386 1 

Pitting 1 -0.632 0.333 0.463 -0.937 -0.754 0.284 0.388 -1 -0.587 

Spalling -0.529 0.937 0.947 0.857 0.763 -0.856 -1 -1 0.765 0.957 

Broken 1 -0.645 0.129 0.376 -0.206 -0.778 0.265 0.385 -1 -0.476 

Crack 0.339 0.475 -0.752 -0.385 0.956 -1 -0.484 1 0.385 -0.749 

WE1 WE2 WE3 WS1 WS2 WS3 WEE WSE WER WSR
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A= , spalling  

B= . 
The nearness results calculated by Eq.(1) and Eq.(4) are 

 and , respectively, which indicates 
the improved method can identify more accurately. 
 The validation of proposed nearness method: The 
improved nearness equation can not only identify the analog 
data but also distinguish the different types of data. We 
implement the proposed algorithm in Labview, and select a 
large number of samples to validate the algorithm. Three 
reprehensive sets of data of each gear fault are selected and 
the results are showed in Table 4. It is obvious that the 
diagnosis results are identical with the actual gear faults. 

Thus, the improved fuzzy nearness algorithm avoid the 
requirement of large number of priori fault samples in neural 
net algorithm. 

CONCLUSION 

 This study proposed a new fuzzy nearness-based approach, 
which is an improvement of the traditional fuzzy nearness 
method and applied it into a fault diagnosis on gear system. It 
can make an accurate recognition on the fuzzy modes of the 
collected faults samples. At the same time, it is easy to be 
implemented on the virtual platform Labview and presents 
many advantages in analyzing a large number of data. It is 
proven to be valuable in diagnosing practical faults. 

(1,0.219,-1,0.764,0.423,0.111,-0.234,0.283,-0.386,1)

(−0.529,0.937,0.947,0.857,0.763,−0.856,-1,-1,0.765,0.957)

δ A = 0.659 δ B = 0.884

Table 2. The results calculated by traditional nearness method. 
 

Samples Nearness 1 Nearness 2 Nearness 3 Nearness 4 Nearness 5 

1 8.858 -8.514 -1.184 -5.794 -8.584 

2 -5.680 11.045 -8.362 14.538 -11.837 

3 -2.053 -8.159 10.479 -2.341 4.892 

4 -7.077 13.556 -7.248 11.935 -14.936 

5 -1.392 -5.150 2.137 -1.241 11.694 

 
Table 3. The results calculated by improved nearness method. 
 

Samples Nearness 1 Nearness 2 Nearness 3 Nearness 4 Nearness 5 

1 0.456292 0.896876 0.129876 0.429876 0.728376 

2 0.719386 0.298756 0.829565 0.110987 0.828936 

3 0.398375 0.489175 0.729847 0.209764 0.209764 

4 0.829487 0.728936 0.197343 0.624976 0.520974 

5 0.280937 0.389763 0.928375 0.324897 0.326733 

Table 4. Sample results of improved nearness method. 
 

Sample No. 
Extracted Feature Values 

Nearness Diagnosed Results 
          

A 

1 1 1 -0.876 0.897 0.111 0.8 -1 0.528 -0.432 0.981 0.834821 

Wear 2 1 1 -0.022 0.346 0.238 0.875 -0.235 0.381 -0.291 0.765 0.913432 

3 1 0.876 -0.672 0.245 0.463 0.234 -0.384 0.874 -0.391 0.896 0.967531 

B 

1 1 -0.485 0.258 0.367 -0.235 -0.127 0.761 0.481 -0.358 -0.892 0.886254 

Pitting 2 1 -0.245 0.178 0.971 -0.762 -0.834 0.962 0.926 -0.962 -0.553 0.978762 

3 1 -0.567 0.562 0.392 -0.123 -0.187 0.259 0.629 -0.665 -0.487 0.943268 

C 

1 -0.451 0.758 0.751 0.746 0.254 -0.174 -0.449 -1 0.385 0.365 0.823145 

Spalling 2 -0.886 0.836 0.836 0.462 0.428 -0.481 -0.375 -1 0.349 0.471 0.992862 

3 -0.986 0.226 0.485 0.881 0.367 -0.559 -0.971 - 1 0.665 0.579 0.972384 

D 

1 0.543 -0.347 0.347 0.476 -0.265 -0.586 0.448 0.375 -0.472 -0.247 0.937462 

Broken 2 0.271 -0.961 0.428 0.995 -0.371 -0.552 0.925 0.432 -0.264 -0.822 0.942475 

3 0.348 -0.476 0.862 0.466 -0.683 -0.971 0.538 0.227 -0.365 -0.285 0.923644 

E 

1 1 1 -0.364 -0.374 0.751 -0.476 -0.472 0.831 0.772 -0.362 0.826482 

Crack 2 0.735 0.823 -0.237 -0.836 0.375 -0.554 -0.481 0.638 0.937 -0.889 0.923871 

3 1 1 -0.972 -0.775 0.475 -0.486 -0.835 0.782 0.572 -0.264 0.946462 

WE1 WE2 WE3 WS1 WS2 WS3 WEE WSE WER WSR
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