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Abstract: In view of local optimization in particle swarm optimization algorithm (PSO algorithm), chaos theory was 
introduced to PSO algorithm in this paper. Plenty of populations were generated by using the ergodicity of chaotic motion. 
The uniformly distributed initial particles of the particle swarms were extracted from the populations according to the 
Euclidean distance between particles, so that the particles could uniformly distribute in the solution space. Local search 
was carried out on the optimal position of the particles during evolution, so as to improve the development capability of 
PSO algorithm and prevent its prematurity, thus enhancing its global optimizing capability. Then the improved PSO 
algorithm was applied to mechanical design optimization. With optimization design for two-stage gear reducer as the 
study object, objective function and constraint conditions were determined by building a mathematical model of 
optimization design, thus realizing optimization design. Simulation and comparison between the improved algorithm and 
unimproved algorithm show that improved PSO algorithm can optimize the optimization results of PSO algorithm at a 
faster convergence rate. 

Keywords: Chaos theory, mathematical model, optimization design, particle swarm optimization algorithm (pso algorithm), 
reducer. 

1. INTRODUCTION 

 PSO algorithm which is visual, easily understood and 
practicable is featured by simple optimizing strategies, few 
debugging parameters and fast convergence rate. Therefore, 
it is widely applied to optimization design problems. 
However, this algorithm also has some limitations. It can 
quickly close up to the optimal value during early 
optimization stage, but it converges slowly near the optimal 
value. Its defect is local optimum. In this paper, based on the 
advantages of chaos theory, it is introduced to the 
implementation algorithm of PSO algorithm. Moreover, it is 
applied to mechanical design optimization. Reducer is 
widely applied to heavy machineries such as mining 
machinery, construction machinery and transportation 
machinery, etc. Therefore, mechanical optimization design 
on reducer is of great theoretical value and practical value. 

2. PARTICLE SWARM OPTIMIZATION ALGORITHM 

2.1. Principles of Algorithm 

 PSO algorithm was originally proposed by kennedy et al. 
[1-3]. It is mainly used for simulating bird flock’s flying and 
foraging. The optimal result is realized by means of 
cooperation and competition among populations. In PSO 
algorithm, each candidate solution is referred to as a 
“particle”. Firstly, the initial population is generated, and 
each particle is deemed as a feasible solution. The fitness is 
determined by the objective function. Each particle moves in  
 

the solution space, with its moving orientation and distance 
determined by a speed. 

 Generally, the particles follow the currently optimized 
particle, and the optimal solution will be finally obtained by 
searching generation by generation. The particles will trace 
two extremes values during each iteration process. One is the 
currently found optimal solution ; the other is the 
currently found optimal solution for the entire population

. 

2.2. Mathematical Model 

 For optimization problem [4, 5]: 

  (1) 

 Then the set of multiple feasible solutions to problem  
is referred to as a population. A feasible solution to the 
population is referred to as a particle, and the number of 
particles is referred to as population size. 

 The position of the ith particle is represented by n-

dimensional vector , and the speed of 

the ith particle is represented by . The 
optimal position that a particle goes through is 

 during its flying in the search space. 
The optimal positions that all particles go through are 

indicated by index number , i.e., . Therefore, the speed 
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of the particles as well as the positions of the evaluation 
function of the calculation function in each generation can be 
transformed according to Formula (2) and Formula (3) [6]: 

  (2) 

 

  (3) 

where: ; ; rand1 and rand2 are 
random numbers which are distributed subject to  U(0,1); 

learning factors and are nonnegative constants, 

; , is the upper 
limit of the speed defined by user. 
 The iteration process of the algorithm is as follow [7]: 

 Initialize population: random  

repeat: 

for each particle  

if  

 
end 

if  

 
end 
update the position and velocity of particle using equation 
(2) and equation (3) 
end 
until termination criterion is satisfied 

3. IMPROVED PSO ALGORITHM 

 In view of local optimization in PSO algorithm, chaos 
theory was introduced to PSO algorithm in this paper to 
improve the algorithm. The algorithm flow is as follow [8-
10]: 

 Step1: chaos initialization. Assume that the variable to be 
optimized is a D-dimensional one. A D-dimensional vector 

will be randomly generated , each 
component is in the scope . Then M components are 

generated according to Logistic equation [8], : 

  (4) 

 The chaos interval is mapped to the value range of the 
variables according to Formula (5) 

  (5) 

where represent the upper and lower limits of the 
optimized variables respectively. 
 Step2: calculate the fitness values of each particle 
according to the objective function. Select N particle swarms 
with good performance from M initial particle swarms, the 
speeds of the particles are generated randomly. 

 Step3: set the initial individual extreme values and the 
global extreme values for the particles. Define the current 

position of each particle as individual extreme values , 

calculate the fitness values corresponding to (the 

individual extreme values) according to the objective 
function, select the positions of the particles with the best 

values to define the global extreme values . 

 Step 4: update the flying speed and positions of the 
particles according to the updating formulas of speed and 
position. 

Step 5: carry out chaos optimization for the optimal position 

. Firstly, map the optimal positions to the definitional 

domain [0,1] of Logistic equation [11], i.e., using Formula 
(6). Then iterate according to Logistic equation to generate m 
chaos variable sequences. Finally, map the chaos variable 
sequences generated to the value interval of the optimized 
variables to generate m particles. Calculate the fitness values 
of each particle to acquire optimal solution p’. 

  (6)  

 Step 6: replace with the position of any particle in the 
current population. 
 Step 7: return to Step4, stop calculation until the ending 
condition for the particle swarm is met, put out the 
calculation results. 

4. MODEL FOR REDUCER OPTIMIZATION DESIGN 

 Take a two-stage gear reducer as the study object, its 
organization diagram is as shown in Fig. (1) [12]. 

 This design optimization problem consists of 7 design 

variables, width of the gear surface, ; gear die, ; 

number of pinions, ; bearing spacing of axle 1, ; 

bearing spacing of axle 2, ; diameter of axle 1, ; 

diameter of axle 2, . The value range of the design 

variables is: 
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 The objective of the objective function is the minimum 
volume of the reducer: 

 
Fig. (1). Organization diagram of the reducer. 

  (9) 

  (10) 

  (11) 

  (12) 

 Constraint conditions include 11 constraint conditions of 
bending stress and contact stress of the gear, lateral deviation 
of the axle as well as design dimension, etc. [13, 14]: 

 

 

 

 

 

 

 

 

 

 

 

5. SIMULATION EXPERIMENT 

 To verify the effectiveness of the algorithm in this paper, 
the aforesaid mathematical model is optimized and solved by 
using the methods proposed in this paper. The maximum 
number of iterations is 50, the population size is 20, 
popmin=-5.12, popmax=5.12, vmax=1, vmin=-1, the 
simulation result is as shown in Fig. (2): 
 The optimization results of the improved PSO 
algorithm are as follows: design variable (3.5,0.7,17,7.30, 
7.7153,3.3502,5.2867), its convergence graph is as shown in 
Fig. (2). 
 

 To compare the differences between improved PSO 
algorithm and PSO algorithm, the parameters are set as 
follows: maximum number of iterations is 100, population 
size is 20, popmin=-5.12, popmax=5.12, vmax=1, vmin=-1. 
The comparison diagram of the convergences before and 
after improvement is as shown in Fig. (3): 
 According to Fig. (3), the convergence rate of the 
improved PSO algorithm is remarkably faster and more 
stable than that of PSO algorithm, which can verify the 
stability and effectiveness of the algorithm in this paper. 

CONCLUSION 

 The study object in this paper is design optimization of 
reducer. In view of local optimization in PSO algorithm, 
chaos theory is introduced to PSO algorithm. A chaos PSO 
algorithm is proposed to carry out the optimization design. 
The algorithm flow of chaos PSO algorithm is expounded in 
details, then optimization and simulation design are carried 
out based on specific cases of optimization design for gear 
reducer. The results show that the algorithm in this paper has 
certain theoretical value and practical value as its 
convergence rate is superior to that of PSO algorithm; 
therefore, it can be promoted for engineering application. 
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(a) First Computational Results 

 
(b) Second Computational Results 

 
(c) Third Computational Results 

 
Fig. (2). The solving results of the improved PSO. 
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Fig. (3). The comparison diagram of the convergences of the improved PSO algorithm and PSO algorithm. 


