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Abstract: Fault detection approach based on principal component analysis (PCA) may perform not well when the process 
is time-varying, because it can cause unfavorable influence on feature extraction. To solve this problem, a modified PCA 
which considering variance maximization is proposed, referred to as weighted PCA (WPCA). WPCA can obtain the slow 
features information of observed data in time-varying system. The monitoring statistical indices are based on WPCA 
model and their confidence limits are computed by kernel density estimation (KDE). A simulation example on continuous 
stirred tank reactor (CSTR) show that the proposed method achieves better performance from the perspective of both fault 
detection rate and fault detection time than conventional PCA model. 
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1. INTRODUCTION 

 With the development of modern process control 
techniques in production, fault detection has been playing an 
important role in ensuring long-term and efficient operation 
in chemical process. It is difficult to build mathematical 
models in the domain of model-based monitoring techniques. 
Data-based methods are often employed to build statistical 
models, in which only historical operating data is considered 
without any mathematical models. Multivariate statistical 
process monitoring (MSPM) methods are also data-based 
fault detection methods used widely. There have been some 
standard successfully designed models during the past 
several decades. High-dimensional data often include some 
redundant information, such as noises, thus the key point of  
MSPM is to monitor main extracted features of observed 
data [1-3]. 
 Among MSPM methods, principal component analysis 
(PCA), canonical variate analysis (CVA), and independent 
component analysis (ICA) have been widely used for fault 
detection in chemical process in [4-6]. For example, PCA 
can deal with high-dimensional data that are highly linear 
correlated. Process monitoring is then performed in the 
principal component (PC) subspace and residual subspace 
separately to detect the data changes inside and outside the 
PC subspace. Extended methods have been reported for 
better monitoring performance [7-9]. Ku [10] proposed 
dynamic PCA (DPCA) in which serial correlation of data is 
considered. A multi-fault diagnosis method for sensor 
systems based on PCA was presented in [11]. An image 
reconstruction method for electrical capacitance tomography 
based on robust PCA was given in [12]. To address the  
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nonlinear behavior of a process, some nonlinear extensions 
of traditional PCA method have already been proposed such 
as auto associative neural network, principle curves and the 
other methods [13-14]. A nonlinear process monitoring 
method based on kernel function was proposed in [15]. Luna 
[16] proposed generalized principal component analysis 
(GPCA) method applied to the time-of-flight values. Kernel 
PCA (KPCA) can map the input space into a linear feature 
space via a nonlinear mapping, and an improved multi-scale 
KPCA was presented in [17]. Lee [18] proposed multiway 
principal component analysis (MPCA) to extract the 
information in the multivariable data to monitor batch 
process. Aiming to tackle the problem of multiscale and 
nonlinear, multiscale KPCA [19] was applied to capture 
correlations of process variables at every possible scale. For 
large-scale chemical process, a fault detection approach was 
proposed based on multiblock KPCA, and the proposed 
decentralized nonlinear approach effectively captured the 
nonlinear relationship in the block process variables and 
showed superior fault diagnosis ability compared with other 
methods in [20]. However, in these methods the local 
manifold structure of high-dimensional data was considered. 
Deng [21] proposed sparse kernel locality preserving 
projection method in nonlinear process fault detection. The 
findings suggest that PCA may extract useful information for 
feature extraction, and it is a promising method for data-
based fault detection in chemical process. However, the 
conventional PCA method fails to handle the time-varying 
process. To some extent, it may not extract much useful 
information, which limits its application. 
 Slow feature analysis (SFA), which emerged as a new 
dimension reduction method in recent years, was proposed in 
[22]. SFA aims for extracting invariant features from high-
dimensional measurements. It can extract the slowly varying 
features from input signals, which is useful for classification 
and identification. SFA had been applied in many kinds of 
fields [23-25]. For example, Ma proposed kernel-based 
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method to solve the nonlinear expansion problem of SFA 
using an algorithm evaluation criterion [26]. 
 However, all the above mentioned method may perform 
not well when the process is time-varying, because it can 
cause unfavorable influence on feature extraction for 
conventional PCA. To solve this problem, a modified PCA is 
proposed considering slow features extraction of time-
varying signals, referred to as weighted PCA (WPCA) in this 
paper. 

2. WEIGHTED PRINCIPAL COMPONENT 
ANALYSIS 

2.1. Principal Component Analysis 

 PCA is a kind of linear dimension reduction technique 
which can preserve meaningful information hidden between 
the original variables. In PCA method, the high-dimensional 
data can be projected onto a low-dimensional space by 
orthogonal transformation, so that low-dimensional and 
uncorrelated principal components can be obtained. By 
extracting the main features of observed data, it removes 
linear correlations between the variables in the high-
dimensional space. 

 Let  X = (x1, x2,...xn )  be the high-dimensional data 
matrix with n samples of process vector  xi ∈Rm . Let 

 Y = ( y1, y2,...yn ) be the low dimensional outputs with n 
samples of vector yi ∈Rd .  W = (w1,w2,...wd ) is defined as 
transformation matrix, and the vector yi can be obtained by 
PCA transformation as follows: 

T , 1,2,...i i i n= =y W x   (1) 

which is also called PC vectors or score vectors. Here 

 wi ∈Rm  are the projection vectors and it projects original 
data into score space. Usually, the first d eigenvectors are 
selected to build PCA fault detection model. 

  X = WY + E = WW T X + E   (2) 
 The matrix E is residual matrix. 
 In the dimension reduction process of PCA, sum of 
squared reconstruction errors between high-dimensional and 
low-dimensional space is to be minimized, as follows [24]: 

 
minE = min xi − (xi ⋅w j )w j

j=1

d

∑
2

i=1

n

∑   (3) 

 Solving the problem of the objective function we can 
derive transformation vectors. Besides, the formula (4) 
should satisfy the condition of T 1j j =w w . 

  
max (xi ⋅w j )w j

j=1

d

∑
2

i=1

n

∑   (4) 

 Equation (4) can be further written as: 

  

max  wT XX Tw
s.t wTw = 1

  (5) 

 Therefore, the vectors w can be obtained by solving the 
eigenvalue equation described as follows: 

  XX Tw = λw   (6) 

 For a new sample  xnew , the corresponding score vector 

  ynew and residual vector   enew can be calculated as: 

  ynew =W T xnew   (7) 

  enew = xnew −Wynew   (8) 

 Finally, the Hotelling’s T 2  index and the SPE (or Q 
statistic) index are used to monitor the difference both the 
normal variation information and residual space information. 

2.2. Slow Feature Analysis 

2.2.1. Problem Statement 

 SFA is a new emerged method for extracting temporally 
coherent features out of high-dimensional data. SFA focuses 
on finding common slower variation components of the input 
signals, i.e. the higher-order statistics of input data. Besides, 
the obtained feature components are mutually unrelated and 
independent. 

 Let   x(t) = [x1(t), x2 (t),..., xm (t)]
T  be an m-dimensional 

input signals. Let   y(t) = [ y1(t), y2 (t),...yd (t)]
T  be d 

dimensional output signals. SFA can find out a set of real-
valued functions   f (x) = ( f1(x),..., fd (x))

T  in a function space 
F, so that  y(t)  can be generated with   yi (t) = fi (x(t))  which 
varies as slowly as possible. The objective is to minimize the 
squared mean of this derivative under the strong limitation as 
follows: 

 minΔyj (t) =< yj
2 >t   (9) 

 Under the constraints of 

< yj >t= 0  (10) 

< yj
2 >t= 1   (11) 

and 

∀i < j,< yiyj >t= 0   (12) 

where  y  is the first order derivative of y, and < .>t  is the 
sample mean over all the available time. In the paper, the 
first order derivative of y is obtained from the discrete 

temporal derivative as    yj (t) = f j (x(t))− f j (x(t −1)) . 
Equation (9) introduces the temporal variation measures of 
the output signals, which is equal to the means of the squared 
first order derivative of the signals. The value is larger for 
signals quickly varying and close to zero for lower varying 
signals. The zero mean constraint (10) is introduced only for 
convenience. Constraint (11) means for transformed output 
signals should carry some information and ensure constant 
signals yj (t) = const of emerging. Constraint (12) forces that 
different output components carry different information, 
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which are uncorrelated and reflect different characteristics of 
input data. 

2.2.2. The Calculation of Slow Feature 

 Let us consider the linear case first for the input vector x 
and weight vector w j . 

  fi (x) = w j
T x   (13) 

 In the following, we assume x to have zero mean without 
loss of generality. Equations (9), (11) and (12) can be 
rewritten as 

!   

Δyj (t) =< yj
2 >t = < (w j

T x)2 >t =

w j
T < x xT >t w j = w j

T Aw j

  (14) 

where   A =< x xT >t  is the expectation of the covariance 
matrix of the temporal first order derivative of the input 
vectors. With SFA algorithm, Δy1 ≤ Δy2...≤ Δyd , the most 
slowly varying outputs can be introduced. So it induces an 
order, the first output signal being the slowest one, the 
second being the second slowest, and so on. 

2.3. Fault Detection Based on WPCA 

2.3.1. WPCA Algorithm 

 The essence of those dimensional-reduction methods 
such as PCA, is to project the observed data from a high-
dimensional space into a low-dimensional space by certain 
transformations. Fewer latent variables can be acquired by 
some criteria which represent the main information of 
original data. We believe that using a weighted criterion in 
dimension reduction methods would extract more thorough 
feature information. 
 The time-varying information always exists in the 
variables along with the progression of time. In PCA 
algorithm, it cannot consider the time-varying characteristics 
of the observed data. As mentioned earlier, SFA succeeds in 
finding optimal slowly varying features hidden in the input 
signals. This conclusion motivates us to integrate SFA with 
PCA into a new multivariable statistical monitoring method. 
We take into account the slow features extraction from the 
input information. The optimization function of PCA is 
fused with SFA. It is converted to a maximization problem 
under the constraints by solving the joint objective function. 
 For PCA, the optimization function refers as follows: 

   J1  = max  wT XX Tw   (15) 

 Let  Δx(t) = x(t)− x(t −1) , and  ΔX = [Δx1,Δx2...Δxn ]  be 
the incremental matrices. Be similar as SFA, the 
corresponding objective function can be as follows: 

!   J2  =min  wTΔXΔX Tw   (16) 

 As analyzed previously, there are some similarities 
between the two objective functions, J2 and J1, so we can 
introduce J2 to J1 to achieve integration. Therefore, WPCA 
proposed in the paper can solve the problem brought by 

time-varying input signals. The objective function can be 
reformulated further as J. 

  J = max  αwT XX Tw − (1−α )wTΔXΔX Tw   (17) 

where α  is a balancing factor ranging [0,1]. Equation (17) 
can be rewritten as follows. 

  

J = max  wT(αXX T − (1−α )(ΔXΔX T ))w
   = max  wT X 'w
s.t wTw = 1

  (18) 

where !  X
'=!αXX T − (1−α )(ΔXΔX T ) . We can solve the 

problem to obtain the optimal projection vectors and 
corresponding eigenvalues. 

 X
'w = λw   (19) 

 The majority information can be retained in the projected 
data when the high-dimensional data space is reduced into a 
low-dimensional space. The cumulative contribution rate can 
be used to calculate dimensionality d. 

 Therefore, the low-dimensional linear features are 
extracted by transformation projection vectors once we 
obtain projection vectors  w1,w2,wd . 

  yi =W T xi ,  i = 1,  2…n   (20) 

 The output principal vectors Y is an orthonormal set of 
vectors representing the eigenvectors of the sample 
covariance matrix associated with d < m  of the PCs. 

 For a new sample  xnew , the corresponding output vector 

  ynew and residual vector   enew can be obtained as follows: 

  ynew =W T xnew   (21) 

  enew = xnew −Wynew   (22) 

 WPCA takes into account the time-varying data features 
information and data variability simultaneously. It considers 
incremental covariance matrix when executing covariance 
matrix decomposition in PCA, so that the data collected can 
be considered more thoroughly from different perspectives. 
Besides, we can infer correlations between WPCA and 
DPCA from the view of dynamic data. 

2.3.2. Monitoring Statistics Based on WPCA 

 Based on WPCA model, the monitoring statistics T 2  and 
Q are built in the PC subspace and residual space for fault 
detection. T 2  monitoring index is used to measure the 
feature data variation in the PC subspace, which is defined as 

  T
2 = yTΛ y = yT[(YY T + β I ) / (n −1)]−1 y   (23) 

where β>0 is regularization parameters, and Y is output 
matrix of the normal condition in the training procedure. 
 Q statistic is a measure of error between deviation trend 
and statistical model for every sample. It can also be used to 
estimate the external data variation in the residual space. 

   Q  SPE = eTe = (x −Wy)T(x −Wy)   (24) 
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 After the monitoring statistic is obtained, the upper 
control limits should be calculated to determine whether the 
monitored process is in control. Given that the output signals 
are not strictly Gaussian distribution, the upper control limits 
of T 2  and Q can be calculated by kernel density estimate 
(KDE) method. 

2.3.3. Fault Detection Based on WPCA 

 The monitoring method based on WPCA algorithm 
includes two stages: offline modeling stage and online fault 
detection stage. The detailed procedure is demonstrated in 
the following text. The normal operating model is set up by 
WPCA in the offline modeling procedure, and the 
confidence limits of T 2  and Q monitoring indexes are 
obtained by KDE. The offline modeling procedure is 
summarized as follows: 
1) Acquire data sets X under normal condition, calculate 

mean and variance of normal operating data, and 
acquire its corresponding incremental matrices. 

2) Apply WPCA model by solving generalized 
eigenvalues problem in (17) to get the projection 
vectors w. 

3) Project the data matrix X into the WPCA subspace to 
obtain the transformation feature components, and 
reconstruct the corresponding residual matrix E. 

4) Calculate the two monitoring statistics T 2 , Q  
respectively. 

5) Determine the control limits of T 2  and Q  statistics 
by KDE. 

 At the end of office, T 2  and Q  have been obtained from 
the model built above. In the online stage, statistics T 2  and 
Q  of new data collected are to be calculated, hence to 
determine whether process at present is under normal 
operation state. 
1) Standardize new data to normal distribution with 

mean and variance from the offline modeling stage. 

2) Calculate statisticsT 2 andQ for the standardized data 
based on WPCA model with Eq. (21-24). 

3) Determine whether T 2 and Q respectively exceed 
their control limits obtained in off line stage, and give 
an alarm if either statistic exceeds its corresponding 
limit. 

3. ANALYSIS OF CSTR PROCESS 

 In this section, the process monitoring method based on 
WPCA is evaluated for comparison with PCA-based fault 
detection in the continuous stirred tank reactor (CSTR) 
benchmark process. The proposed fault detection method 
based on WPCA is tested in a simulated chemical process, 
CSTR system (Fig. 1). CSTR system is commonly used as a 
basic unit in chemical process, and it is also the core of many 
large and complex processes. Research on CSTR system for 
fault detection provides universal interest. In the simulation, 

there are ten process variables collected under normal 
condition and common faults condition. The sampled data 
are collected every 12 seconds and 2000 samples are 
obtained. A fault is introduced after every 300 samples. 
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Fig. (1). CSTR system. 

 Both methods PCA and WPCA are applied to fault 
detection for performance comparison. Two monitoring 
statistics T 2 and Q are plotted as solid line and the 
corresponding confidence limits are plotted as dashed line 
(Fig. 2). The confidence limit for fault detection is set to 
95% for convenience of methods comparison. There are 
1000 samples under normal condition used for model 
establishing, and another 2000 normal samples are used to 
calculate confidence limits for the monitoring statistics. 
Weighted parameter α determines the difference for features 
extraction, and its value influences fault detection 
performance directly. Catalyst deactivation is a kind of 
common fault, which is applied to analyze the fault detection 
results with different α . Reference for experience and 
simulation results of different parameters, 0.85 is favorable 
to have a better fault detection result. And, 6 PCs are 
selected to explain about 91.39% of the all the variance 
information using WPCA fault detection method, which can 
be seen from Fig. (2). 

 
Fig. (2). Cumulative variance contribution rate of variable (CCR). 

 After the WPCA fault detection model is established, the 
monitoring performance is evaluated using samples under 
normal condition. The fault detection result is shown in Fig. 
(3). We can see that the proposed method has the better 
process monitoring performance. It illustrated further that 
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WPCA can acquire more information from the high-
dimensional data which is helpful for fault detection. 

(a) 

 
(b) 

 
Fig. (3). Monitoring charts under normal condition based on (a) 
WPCA (T2), (b) WPCA (Q). 

 Two typical faults are illustrated to show the 
effectiveness of WPCA method. The first fault is associated 
with a small step change of inlet stream. As shown in Fig. 
(4), the T2 and Q monitoring charts of PCA method are 
plotted for this fault and the fault detection rates by the T2 
and Q chart are 57.82% and 47.24%. When the proposed 
WPCA is applied, fault detection rates of T2 and Q chart are 
83.29% and 73.21%, respectively. The result indicates the 
proposed method has a superior capability in detecting faults. 
It can reduce the information loss problem and improve 
detection rates of the statistics. 
 Another fault is that coolant feed temperature ramps down. 
The monitoring results are also illustrated (Fig. 5) to show the 
effectiveness of WPCA. T2 and Q monitoring charts of PCA can 
detect the fault at samples 561 and 580 respectively. However, 
T2 monitoring chart of WPCA fault detection method can find 
the process abnormality at the 544th sample while Q monitoring 
chart of WPCA discovers the fault at the 498th sample. With 17 
and 82 sampling time earlier the proposed method demonstrates 
that improved the monitoring performance. In addition, the two 
methods have different fault alarming rates. Fault missing rates 
of PCA are 17.53% and 19.24% for T2 and Q statistics, and 
WPCA performs better whose fault missing rates are 15.16% 
and 12.18%. WPCA can detect the fault more effectively than 
PCA. 

(a) 

 
(b) 

 
(c) 

 
(d) 

 
Fig. (4). Comparison of monitoring charts of (a) PCA(T2), (b) 
PCA(Q), (c) WPCA(T2), (d) WPCA(Q). 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
Fig. (5). Comparison of monitoring charts of (a) PCA(T2), (b) 
PCA(Q), (c) WPCA(T2), (d) WPCA(Q). 

CONCLUSION 

 In this paper, we present a method for fault detection 
based on weighted PCA (WPCA). Slow feature information 
is important for fault detection in practical processes. SFA 

can extract the characteristics of linear correlated and 
changing slowly data hiding in the time-varying process. The 
original PCA is modified by introducing SFA to establish 
WPCA. It is converted to a maximization problem which can 
be solved in a joint objective function. WPCA can acquire 
more complete information and diminish noise for 
implementing fault detection. Two monitoring statistics are 
constructed based on WPCA model in the principal 
component subspace and residual subspace separately. 
Simulation results on a numerical case, and CSTR process 
are used to compare the monitoring performance of PCA and 
WPCA. It demonstrates that the proposed method performs 
better in fault detection than PCA method. WPCA can also 
extract linear features of process variables. Further study is 
still required for the nonlinear processes, and much work 
could be done in the future. 
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