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Predicting Drug Promiscuity Using Spherical Harmonic Surface Shape-Based
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Abstract: Polypharmacology is becoming an increasingly important aspect in drug design. Pharmaceutical companies are
discovering more and more cases in which multiple drugs bind to a given target (promiscuous targets) and in which a
given drug binds to more than one target (promiscuous ligands). These phenomena are clearly of great importance when
considering drug side-effects. In the last 4 years, more than 30 drugs have been tested against more than 40 novel
secondary targets based on promiscuity predictions. Current methods for predicting promiscuity typically aim to relate
protein receptors according to their primary sequences, the similarity of their ligands, and more recently, the similarity of
their ligand binding pockets.

Here, we present a spherical harmonic (SH) surface shape-based approach to predict rapidly promiscuous ligands and
targets by comparing sets of SH ligand and protein shapes, respectively. We present details of our approach applied to a
wide range of PDB complexes comprising ligands in a selected subset of the MDL Drug Data Report (MDDR) database
which are distributed over 249 diverse pharmacological targets. The shape similarity of each ligand to each target’s ligand
set is quantified and used to predict promiscuity. We also analyse the correlation between binding pocket and ligand
shapes. We compare our promiscuity predictions with experimental activity values extracted from the BindingDB

database.

Keywords: Consensus shapes, drug promiscuity, ligand shape space, protein pocket space, protein sequence space, shape

similarity, spherical harmonic shapes.

INTRODUCTION

Drug promiscuity may be defined as the specific binding
of a drug-like molecule to more than one target. On the other
hand, if a protein binds different ligands, it can be considered
as a promiscuous receptor [1]. These are notions illustrated
in Fig. (1). The concept of ‘target-hopping,” whereby a
binder for one target can be considered as the basis for leads
for another target has historically been extremely fruitful in
lead discovery [2]. Nowadays, polypharmacology is
becoming an increasingly important aspect in drug design. In
the last 4 years, more than 30 drugs have been tested against
more than 40 novel secondary targets based on promiscuity
predictions [3]. Pharmaceutical companies are discovering
more and more cases in which multiple drugs bind to a given
target (promiscuous targets) and in which a given drug binds
to more than one target (promiscuous ligands). Both of these
phenomena are clearly of great importance when considering
drug side-effects. For example, a common reason for
terminating a drug development program is that the leads are
found to be non-selective or promiscuous [4]. Thus, the in
silico prediction of unwanted side effects caused by the
promiscuous behaviour of drugs and their targets is highly
relevant to the pharmaceutical industry. Considerable effort
is now being put into the computational [5, 6] and
experimental [7, 8] screening of several suspected off-target
proteins in the hope that side effects might be identified
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early, before the cost associated with developing a drug
candidate rises steeply [9]. On the other hand, promiscuity is
not always unwelcome and it can even be exploited for drug
development. The use of old drugs for new targets has been
shown to provide a promising way to reduce both the time
and cost of drug development [10].

Given that it is currently infeasible to screen a drug
against all of the proteins expressed by the human genome,
several computational techniques have been developed to
predict the pharmacological profiles of known drugs. These
range from the well-known docking of compounds into
protein structures to the use of machine learning methods
[11, 12], sequence comparison [13] side-effect similarity [6],
and fingerprint/pharmacophore comparison methods [14,
15]. These in silico methods typically aim to relate protein
receptors to each other quantitatively based on their
similarity in primary sequence space [14], ligand chemical
descriptor space [15], and more recently in their
pharmacophoric pocket descriptor space [16].

The first and most common techniques use e.g. the
BLAST [17, 18] or FASTA [19] sequence alignment tools to
create similarity maps in protein sequence space [20]. Later,
other approaches were developed which compare the
chemistry of the targets’ ligands following the hypothesis
that similar molecules are likely to have similar properties
[21]. For example, Keiser et al., relate receptors to each
other according to the chemical similarity of their ligands. In
their Similarity Ensemble Approach (SEA) [22], the
calculated probability that two molecules might interact with
the same target by chance is expressed using an expectation
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value [23], which is conceptually similar to the E-value used
in sequence alignment software such as BLAST [17].
Mestres et al., relate proteins in ligand space using three in—
house molecular descriptors (PHRAG, FPD, SHED) [24,
25]. With the increase in recent years of approaches for
comparing protein pockets [26] such as four-point
pharmacophoric  descriptors (FLAP [27]), three-point
pharmacophoric descriptors (Cavbase [28], SiteEngine [29],
SuMo [30]), geometric hashing methods (Kinnings and
Jackson [31]), and graph-matching-base algorithms (IsoCleft
[32]), the notion of a binding pocket similarity space has
recently been proposed. This is based on the principal that
protein binding pockets are the place where the interactions
between a protein and a ligand are formed. Hence, they must
have complementary shapes and physicochemical properties
to the small molecules that they accommodate. Therefore,
calculating the similarity of binding pockets allows proteins
with similar function and selectivity for the same binding
partners to be related. For example, Weskamp et al.
compared targets by the similarity of their binding pockets
using the LIGSITE program [14]. Milleti et al., recently
related receptors to each other using pocket-based “shape
context” descriptors [16, 33, 34].

Here, we present a shape-based approach which uses
spherical harmonic (SH) representations [35, 36] to compare
molecular surfaces efficiently. This approach relates
receptors to each other by the SH shape similarity of their
ligands and their binding pockets. Since shape
complementarity is an essential feature for molecular
recognition, using ligand and binding pocket shapes should
provide a good way to characterise their properties. If two
binding pockets of different proteins share a common shape,
it is likely that ligands that bind to part of one binding pocket
will also be recognized in the corresponding part of the other
pocket. On the other hand, if two ligands of different
proteins share a similar shape, it is likely that both of them
will complement the shape of each binding pocket. Hence,
by identifying similar ligands and binding pocket shapes, our
approach aims to provide a shape-based way to predict
promiscuous ligands and targets.

We present the results of applying our approach to a wide
range of ligands which Shuffenhauer et al., [37] previously
selected from the MDL Drug Data Report (MDDR) database
[38], and for which crystallographic protein-ligand
complexes exist in the Protein Data Bank (PDB) [39]. This
gives an annotated list of ligands for 249 protein targets of
pharmacological interest. The shape similarity between
ligands and between binding pockets for these selected
protein targets is quantified and used to predict promiscuity.
We analyse the correlation between binding pocket and
ligand shape spaces. We also compare our promiscuity
predictions with experimental activity values extracted from
the BindingDB database [40].

METHODS
Calculating SH Shapes

We use the PARASURF and PARAFIT modules [41] to
calculate and superpose SH molecular surfaces, and the
MSSH [42] program to calculate the SH shapes of protein
pockets. PARASURF calculates molecular shape and
electronic  properties from semi-empirical quantum
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mechanics theory and encodes these properties as SH
expansions [35, 36]. Surface shapes are represented as radial
distance expansions of the molecular surface, r(6,¢), with
respect to a selected harmonic coordinate origin (CoH),
which is normally set equal to the molecular center of
gravity (CoG). This allows an entire molecular surface shape
to be captured using a Fourier-like polynomial expansion,
such as Equation 1

r(9’¢) = i z,/a/mY/m(91¢)

1=0 m=—1

Equation 1

where 6 and ¢ are the spherical coordinates, yim(6,p) are real
spherical harmonics, aj, are the expansion coefficients, and
L is the order or highest polynomial power of the expansion.
As determined previously, we use L = 6 for shape
comparisons [43]. Mathematically, the SH approach applies
only to “starlike” shapes which have single-valued surfaces
with respect to radial rays projections from the chosen CoH.
Most molecules do not satisfy this requirement. Hence, the
SH surfaces described here should be considered as “surface
envelopes” which enclose the true molecular surface. For
highly non-starlike molecules this surface envelope can be a
rather severe approximation to the true surface. Indeed, in
extreme cases, the CoH can fall outside the molecular
surface, and this can cause the software to fail.

PARAFIT and MSSH calculate shape superpositions by
exploiting the special rotational properties of the SH
functions. For example, rotated SH expansion coefficients
for amolecule B can be calculated as

Z s (0,7 )y

where (oc,ﬁ,ﬁ are zyz Euler rotation angles and R " (o, 8, 7)
is the I'th real Wigner rotation matrix. To calculate a
superposition between a pair of molecules A and B, the
harmonic coordinate origin (CoH) of molecule B is
translated to that of the fixed reference molecule A, and a
rotational search to a resolution of 1 degree in each Euler
rotation angle is then performed to find the rotation which
minimizes the distance, Dag, between the corresponding
pairs of SH expansions (Equation 3).

D = J((0.9)-1(0.9)) a0

Thanks to the orthogonality of the basis functions,
Equation 3 reduces to

Dus= ‘a‘z + ‘dz —-2ab

where a and b represents vectors of expansion coefficients.

Equation 2

Equation 3

Equation 4

In practice, it is often more convenient to compare
molecules using a normalised similarity score such as
Equation 5 [43, 44].

_ ab Equation 5
H +|bf -~ ab)

Using PARAFIT it is also straight-forward to construct
the average or “consensus” shape, }(9 ) of a group of N
molecules by calculating the average of their superposed SH
expansion coefficients, a, , for k=1,.., N, as shown in
Equation 6 [44].
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Fig. (1). Drug Promiscuity. Left: multiple drugs bind to a given target (promiscuous target). Right: a given drug binds to more than one

target (promiscuous ligand).
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However, before computing the average, each molecule
in the consensus must first be rotated to minimize the
distance between it and the remaining N - 1 molecules. In
practice, because these rotations are not known a priori, the
consensus shape is constructed iteratively as described
previously [44]. We have shown that the consensus shape-
based representation can be used to capture the essential 3D
shape features of several known high-affinity ligands and to
encode them in the form of a single representative pseudo-
molecule which can be used as a VS query [45-48].

The SH consensus approach may also be used to
calculate the consensus shapes of both ligand molecules and
protein receptor pockets. Here, the SH coefficients of the
binding pockets are computed using MSSH. Each pocket
surface is calculated around the bound ligand coordinates
using the default MSSH radial cut-off distance of 20 A. It is
worth noting that MSSH can usually calculate a good
representation of closed pockets, but open pockets on the
protein surface are not represented well, and this limits the
quality of the results. Nonetheless, all pockets are analysed.
Once the SH coefficients of the binding pockets are
calculated, the same consensus algorithm is applied as
described above.

Ligand and Target Data Preparation

We applied our approach to those PDB complexes which
contain the ligands in Schuffenhauer’s subset of the MDDR
database (version 2010.2) [38], comprising 65367
compounds distributed over 249 diverse pharmacological
targets for which experimental binding information is
known. In other words, we consider only crystallogra-
phically determined ligand coordinates and we do not

explicitly consider multiple ligand conformations. On the
other hand, calculating SH consensus shapes can take into
account 3D shape features of several conformations to be
used as an averaged pseudo-molecule [48]. Schuffenhauer’s
subset is based on a simple ontology [37] that maps Enzyme
Commission (EC) numbers [49], GPCRs, ion channels, and
nuclear receptors to MDDR activity classes. In this dataset,
all ligands are annotated where possible according to the
MDDR activity class. It should be noted that these ligand
annotations can be rather general text descriptions, such as
“dihydrofolate reductase inhibitor” or “anticancer agent”, for
example. Therefore, an annotation can correspond to
multiple targets. Supplementary Table 1 shows the list of
target annotations used for our promiscuity predictions.

Fig. (2) shows the workflow followed to process the data
for our promiscuity predictions. The MDDR database was
filtered according to Schuffenhauer’s subset to give 8659
ligands with 196 unique annotations. These ligands were
then used to search the PDB hetero-atom dictionary to find
ligands for which crystal structures exist. These structures
were extracted from the PDB using their three-letter PDB
ligand codes to give a total of 957 protein-ligand complexes.
Any structures solved by NMR and those without a CATH
code were removed to give 687 proteins belonging to 76
unique annotations. Only one chain was kept for each
protein.

Predicting Promiscuity Using SH Shape-Based Similarity
Ligand SH Shape Similarity

To predict ligand promiscuity, all the ligands from the
PDB complexes were extracted and transformed into a
canonical orientation using PARAFIT. The SH similarity of
each ligand with each target’s ligand set was calculated to
give an all-vs-all ligand interaction matrix. The matrix was
then analyzed by using three Tanimoto thresholds.
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‘ MDDR 2D SDF: 309 targets |
| Remove duplicates
‘ SHUFFENHAUER DATA: 213 ANNOTATIONS ‘

17 non Activity key correspondences between
Schuffenhauer version and new MDDR version

8659 UNIQUE LIGANDS distributed in 196
UNIQUE ANNOTATIONS

Search in the PDB Heteroatom dictionary the
corresponding ligand 3-letter code names for the
list of ligands in each Schuffenhauer annotation

LIGANDS
Extract all the ligands from the 687 PDBs
687 LIGANDS

Superpose all ligands onto the origin (the
canonical orientation) with PARASURF/PARAFIT

677 LIGANDS

10 compounds fall when calculating PARASURF
(CoG outside molecule). Calculate ligand SH
shape-similarity with PARAFIT

424 UNIQUE LIGANDS corresponding to 93 ALL VS ALL LIGAND
UNIQUE ANNOTATIONS involving at least INTERACTION
one ligand found in the PDB Heteroatom MATRIX

dictionary

Search the PDB to retrieve the pdb files
associated with those 3-letter code ligands

957 PDB codes

Remove NMR structures and structures
without CATH code

687 PDB codes
(kept one chain for each PDB)
belonging to 76 UNIQUE ANNOTATIONS
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BINDING POCKETS
Align complexes into the ligand canonical orientation
677 BINDING POCKETS

Calculate binding pocket SH shape with MSSH.
10 compounds fail when calculating MSSH

670 BINDING POCKETS
Consensus of the pockets belonging to the same
annotation

| 76 CONSENSUS POCKETS ‘
Calculate binding pocket SH shape-similarity of
the consensus pockets
ALL VS ALL BINDING
POCKET INTERACTION
MATRIX

LIGAND VS BINDING
POCKET INTERACTION
MATRIX

Fig. (2). Data processing flowchart. We used a subset of the MDDR database comprising 76 diverse pharmacological targets having at least
one ligand in the PDB heteroatom dictionary. The similarity of each ligand SH shape to each target’s ligand set shape is calculated and
quantified using the Tanimoto coefficient. The similarity between each SH consensus shape pocket to each target’s consensus binding pocket
is calculated in the same way. Finally, the ligand-pocket shape interaction matrix is analyzed to predict promiscuity.

Binding Pocket SH Shape Similarity

For promiscuity prediction in binding pocket space, we
positioned all protein-ligand complexes according to the
canonical orientations of their ligands [50]. This placed all
pockets in a ligand-defined standard orientation in order to
calculate SH binding pocket shapes using MSSH. The
consensus shapes of the pockets belonging to the same
MDDR annotation were calculated with PARAFIT. The SH
similarity between consensus pocket shapes was calculated
to give an all-vs-all binding pocket interaction matrix. As
before, this matrix was analyzed using the same three
Tanimoto thresholds.

Ligand vs Binding Pocket SH Shape Similarity

Finally, a ligand-pocket SH shape interaction matrix was
also analyzed in the same way.

RESULTS
Ligand-Ligand Interaction Matrix

Fig. (3a) shows the form of the 677 ligand-ligand
interaction matrix. A high resolution zoom of a portion of
this figure is shown in Fig. (4). A ligand Tanimoto score
greater than 0.9 is shown in dark blue. Ligands with a
Tanimoto score between 0.7 and 0.9 are shown in blue, and
scores lower than 0.7 are shown in light blue. Both axes are
labelled according to the MDDR annotations to which the
677 ligands belong. It can be observed that each ligand shape
matches itself (diagonal in dark blue). Similarly, ligands
belonging to related targets are found to have similar shapes
(dark blue areas) such as some nuclear hormone receptors
(vitamin d3-like receptors, estrogen, androgen, progesterone)
and serine proteases (coagulation factors Xa and VIlla,
thrombin, trypsin, B-lactamase).

Pocket — Pocket Interaction Matrix

Fig. (3b) (high resolution in Fig. 5) shows the 76
consensus pocket-pocket interaction matrix. It is color coded

and labelled as in Fig. (3a). Each annotation is represented
by a consensus binding pocket shape. The interaction matrix
is clustered by consensus binding pocket shape similarity. It
can be seen that this matrix also groups together related
targets. For example, several distinct groups each with high
shape similarity (Tanimoto > 0.9) are found for the serine
proteases, other proteases, nuclear hormone receptors,
kinases, GPCRs, ion channels, enzymes and metallo
enzymes. More specifically, the serine proteases cluster
includes coagulation factors Xa and VIlla, thrombin, trypsin,
B-lactamase, interleukin-8, and serine type-d ala-d-ala
carboxypeptidase. The main nuclear hormone receptor
cluster includes the vitamin d3-like receptors, estrogen, and
androgen. Similarly, the GPCR cluster includes the B-
adrenoreceptor type 1, [-adrenoreceptor, ETA, and
endothelin. The main enzyme cluster includes the peptidase,
serine endopeptidase, alcohol dehydrogenase, purine
nucleoside  phosphorilase  hydroxymethylglutaryl CoA
reductase, cholestenone 5a-reductase, adenosylhomo-
cysteinase, lanosterol synthase, and guanylate cyclase. It can
also be seen that each consensus binding pocket matches
itself (diagonal in dark blue). Hence, it can be seen that
comparing receptor pocket shapes correctly groups many
protein targets into their expected macromolecular target
family.

Analysis of the pocket-pocket matrix shows some highly
similar binding pockets. Fig. (6) shows four examples of
shape supperpositions between the correlated pockets.
Firstly, the consensus pocket shape of androgen (Fig. 6 top)
shares high shape similarity with those of B-adrenoreceptor,
purine nucleoside phosphorilase, thimidine kinase, hydroxy-
methylglutaryl CoA reductase, and adenosylhomocysteinase.
The promiscuity predicted for androgen is consistent with
several existing MDDR activity classes (e.g. androgen,
aromatase inhibitor, antiandrogen) for the androgen ligands.
Secondly, the consensus pocket of hydroxymethylglutaryl
CoA reductase (Fig. 6 middle) shares high shape similarity
with the consensus binding pockets of lanosterol synthase,
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b) Pocket vs pocket

Tanimoto > 0.9 Dark blue
0.7 < Tanimoto < 0.9 Blue

a) Ligand vs ligand

Tanimoto > 0.9 Dark blue

0.7 < Tanimoto < 0.9 Blue
Tanimoto < 0.7 Light blue

677 Ligands
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677 Ligands

d) In silico vs in vitro interaction matrices
In vitro (IC50/nM)

0 <IC50/nM <1 Dark blue
1 <IC50/nM <10 Blue
IC50/nM > 10 Light blue

In silico

Tanimoto > 0.9 Dark blue
0.7 < Tanimoto < 0.9 Blue
Tanimoto < 0.7 Light blue

127 Ligands
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Fig. (3). Predicting Promiscuity Using SH Shape-Based Similarity. This figure shows illustrative images of a) the ligand-ligand
interaction matrix, b) the binding pocket-binding pocket interaction matrix, c) the ligand-binding pocket interaction matrix, d) the in silico vs

in vitro interaction matrices.

purine nucleotide  phosphorilase, thimidine kinase,
cholestenone 5a-reductase, and adenosylhomocysteinase.
Several MDDR activity classes (e.g. hypolipidemic, HMG-
CoA reductase [ inhibitor) are also related to the
hydroxymethylglutaryl CoA reductase ligands. Thirdly,
GABA-A alpha is predicted to be another highly
promiscuous target. Its pocket shows high shape similarity
with the pockets of [-adrenoreceptor, purine nucleoside
phosphorilase, thimidine kinase, hydroxymethylglutaryl CoA
reductase, cholestenone 5a-reductase, adenosylhomo-
cysteinase, lanosterolsynthase, vitamin d3-like receptors,
estrogen, androgen, adenosindeaminase, acetylcholine-
sterase, and RNA directed DNA polymerase. This predicted
high promiscuity is also supported by the large number of
related MDDR activity classes for this annotation (non
opioid analgesic, GABA-A/benzodiazepine  receptor,
sedative/hypnotic, anxiolytic, agent for sleep disorders,
benzodiazepine agonist, alcohol deterrent, anticonvulsant,
agent for premedication, antimigraine, and intravenous
anesthetic). Finally, the thrombin consensus binding pocket
is found to be similar to the consensus pocket shapes of
coagulation factors Xa and Vllla, B-lactamase, trypsin,
interleukin-8, and serine-type d-ala-d-ala carboxypeptidase.
This also agrees with the activity classes of the thrombin
ligands in MDDR (e.g. anticoagulant, thrombin inhibitor,
factox Xa inhibitor, trypsin inhibitor, protease inhibitor).

Overall, analysis of the pocket interaction matrix in Fig.
5 points to the prediction of several very promiscuous targets
(dark blue rows) such as the aforementioned examples, i.e.
GABA-A alpha subunit, androgen, hydroxymethylglutaryl
CoA reductase, and thrombin, as well as estrogen, vitamin
3d-like, acetylcholinesterase, RNA  directed DNA
polymerase, and purine nucleoside phosphorylase, and also
selective targets such as caspase (light blue row). These
predictions agree with several related activity classes found
in the MDDR for each of these annotations.

Ligand-Pocket Interaction Matrix

Fig. (3c) shows the ligand-consensus binding pocket
interaction matrix using a Tanimoto threshold of 0.7 and a
Tanimoto threshold of 0.9. A high resolution zoom of
portions of these figures is shown in Figs. (7 and 8),
respectively. The x-axis represents the 76 annotation
consensus binding pockets and the y-axis the 677 ligands
distributed in those annotations. Both axes are labelled
according to the MDDR annotations to which the 677
complexes belong. The matrix with the lower threshold
highlights the confirmed interactions according to the
crystallised structures present in the PDB. It can be observed
that each ligand shape matches the annotation-based
consensus pocket that the ligand belongs to (diagonal in dark
blue). A lower and more permissive threshold helps to
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Fig. (4). High resolution zoom of the top right corner (red box) of the ligand-ligand SH shape interaction matrix. The interaction
matrix is color coded using darker blue for a high shape similarity (Tanimoto > 0.9), blue for medium similarity (Tanimoto between 0.7 and
0.9) and light blue for low similarity (Tanimoto < 0.7). Both axes are labelled according to the MDDR annotations in which the ligands are

distributed.

identify the similarities between known ligands for a given
target and some other ligands but it causes quite a lot of false
positives (large blue areas), whereas using a more restrictive
threshold clearly highlights the predicted promiscuous
targets (i.e. a high number of dark blue pixels in a single
column). The 0.9 threshold matrix highlights as blue
columns several predicted promiscuous targets which were
identified previously in the ligand-ligand and pocket-pocket
matrices (e.g. GABA-A alpha subunit, androgen, or
hydroxymethylglutaryl CoA reductase) as well as some
others (procollagen proline dioxygenase, cholestenone 5o

reductase, glutamate receptor kainite subunit, estrogen,
vitamin d3-like receptors, lanosterol synthase, adenosylho-
mocysteinase, acetylcholinesterase, RNA directed DNA
polymerase, thymidine  kinase, purine nucleoside
phosphorylase and ribonucleoside diphosphate reductase).
The fact that there exist in the PDB several complexes with
ligands for different targets confirms these predictions (dark
blue columns highlighted in the 0.7 threshold matrix). It is
interesting to note that the caspase pocket (which appears in
the centre of Fig. 7, 8, and 9) has a completely light blue
column indicating that this is a highly specific target.
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Fig. (5). High resolution pocket-pocket SH shape interaction matrix. The interaction matrix is color coded using darker blue for a high
shape similarity (Tanimoto > 0.9), blue for medium similarity (Tanimoto between 0.7 and 0.9) and light blue for low similarity (Tanimoto <
0.7). Both axes are labelled according to the 76 annotations in which the 677 complexes are distributed. Each annotation is represented by a
consensus binding pocket shape. The interaction matrix is clustered by consensus binding pocket shape similarity. This also groups together

related targets.

This analysis of the ligand-pocket matrix mainly agrees
with the correlations found between binding pockets. Fig.
(10) shows the ligand-pocket superpositions of the same
consensus pockets shown in Fig. (6) with selected examples
of high similarity ligands. For example, the androgen
consensus binding pocket (Fig. 10 top) shares high shape
similarity with the ligands of P-adrenoreceptor, purine
nucleoside phosphorilase, thimidine kinase, hydroxymethyl-
glutaryl CoA reductase, and adenosylhomocysteinase.
Similarly, the hydroxymethylglutaryl CoA reductase

consensus pocket (Fig. 10 middle) shares high shape
similarity with the ligands of lanosterol synthase, purine
nucleotide phosphorilase, thimidine kinase, cholestenone 5o-
reductase, and adenosylhomocysteinase.

Unlike the pocket-pocket matrix, the thrombin consensus
pocket is found to have lower similarity with other serine
protease ligands. The pocket-ligand superpositions look
worse in this case. This is because MSSH does not represent
accurately the shapes of surface pockets. Fig. (10 bottom)
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Fig. (6). Example superpositions of consensus pocket shapes. This figure shows the consensus pocket shapes of four example targets
(androgen, hydroxymethilglutaryl CoA reductase, GABA-A alpha subunit, and thrombin) in lilac, along with the superpositions of the
pockets of several other targets with similar consensus pocket shapes (grey).

shows the thrombin consensus pocket superposed with the
ligands of coagulation factors Xa and VIlla, B-lactamase,
trypsin, interleukin-8, and  serine-type  d-ala-d-ala
carboxypeptidase. As can be seen, the thrombin SH pocket
shape is bigger than the shapes of these ligands. Hence, only
the large trypsin ligands match well this large surface pocket
shape. Nevertheless, it can be observed in Fig. (10) that the

serine protease ligands superpose correctly on the left side of
the thrombin pocket, while the poor quality surface pocket
representation on the right remains unmatched. Finally, in
the pocket-pocket correlation matrix, the GABA-A alpha is
predicted to be a highly promiscuous target. The GABA-A
alpha consensus pocket shows high shape similarity with the
ligands of [-adrenoreceptor, purine nucleoside phosphori-
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Fig. (7). High resolution zoom of the top right corner (red box) of the ligand-pocket SH shape interaction matrix at a Tanimoto
threshold of 0.7. The interaction matrix is colored in dark blue if there is SH similarity between ligand and binding pocket shapes over a
Tanimoto of 0.7 and a PDB complex exists, blue if there is SH similarity between ligand and binding pocket shapes over a Tanimoto of 0.7
and a PDB complex does not exist, and light blue if there is no SH similarity between ligand and binding pocket shapes over a Tanimoto of
0.7. Both axes are labelled according to the MDDR annotations in which the complexes are distributed.
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Fig. (8). High resolution zoom of the top right corner (red box) of the ligand-pocket SH shape interaction matrix at a Tanimoto
threshold of 0.9. The interaction matrix is colored in dark blue if there is SH similarity between ligand and binding pocket shapes over a
Tanimoto of 0.9 and a PDB complex exists, blue if there is SH similarity between ligand and binding pocket shapes over a Tanimoto of 0.9
and a PDB complex does not exist, and light blue if there is no SH similarity between ligand and binding pocket shapes over a Tanimoto of
0.9. Both axes are labelled according to the MDDR annotations in which the complexes are distributed. It can be observed that a high
threshold value highlights targets which are predicted to be promiscuous (i.e. those columns with a high number of dark blue pixels).
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Fig. (9). High resolution in silico promiscuity prediction matrix. The in silico ligand-pocket interaction matrix is shown for the 127
ligands for which biological activities are available in BindingDB. The matrix is color coded using dark blue for a high shape similarity

(Tanimoto > 0.9),
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horizontal axis is labelled according to the 76 annotations in which the 677 complexes are distributed, and the vertical axis shows the 3-letter

code for the ligands used in the promiscuity predictions. The targets with high shape similarity amongst all the ligands (i.e. columns with a

high number of dark pixels) are predicted to be promiscuous.
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Fig. (10). Example superpositions of consensus pocket shapes with selected ligands. This figure shows the same consensus pockets as in
Fig. (6) (lilac), with high similarity ligands shown as multi-coloured surfaces (red/green/blue/yellow).

lase, thimidine kinase, hydroxymethylglutaryl CoA
reductase, cholestenone 5o-reductase, adenosylhomocy-
steinase, lanosterolsynthase, vitamin d3-like receptors,
estrogen, androgen, adenosindeaminase, acetylcholine-
sterase, and RNA directed DNA polymerase. Again, the
promiscuity predicted for all these targets agrees well with
the existing MDDR activity classes for their ligands.

Comparison with Experimental Results

In order to validate our approach, we compared our in
silico interaction matrices with biological activity data
extracted from BindingDB [40]. Fig. (3d) compares our in
silico results with the experimental results for the 127
ligands for which data is available in BindingDB. The in

silico ligand-pocket interaction matrix is color coded as in
Fig. (3a and 3b). Fig. (9) shows this in silico matrix in detail.
As before, a high similarity threshold helps to highlight the
possible promiscuous targets. Hence, we use a Tanimoto
threshold of 0.9 to predict promiscuous targets (dark blue
columns in Fig. 9) and we compare these predictions with
promiscuity evidence from in vitro results. Supplementary
Table 2 lists the predicted promiscuous targets as well as
several MDDR activity classes related to their ligands. The
predicted promiscuous targets agree with the existing
MDDR activity classes for their ligands except for vitamin
d3-like receptors and thimidine kinase, which are only found
to be related to vitamin 3D analog class and thymidine
kinase inhibitor, respectively. Fig. (11) shows in detail the
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Fig. (11). High resolution in vitro promiscuity prediction matrix. The in vitro interaction matrix is color coded according to the biological

activity values, using dark blue for high activity (IC50/nM < 1), blue for medium activity (1 < IC50/nM < 10) and light blue for low activity

(IC50/nM > 10). The horizontal axis is labelled according to the 76 annotations in which the 677 complexes are distributed, and the vertical

axis shows the 3-letter code for the ligands used in the promiscuity predictions.



126 The Open Conference Proceedings Journal, 2011, Volume 2 Pérez-Nueno et al.

in
>
S

[ |
”
2

nn
2

[ |
oz
252

|
|
nn
Bl
{20

eta
interleukin.8

trypsin
adenosine.type.1

thrombin

coagulation factor.xa

tryptase

cathepsin.b
estrogen i]

progesterone

androgen

glutamate.receptor.nmda.subunit

endothelin
glutamate.receptor kainate.subunit

histamine
histamine.type.2

peptidase
coa.reductase..nadph:

aldehyde.reductase
dipeptidyl.peptidase.iv

caspase.1
hiv.1.retropepsin

cathepsin.|
metalloendopeptidase

stromelysin.1
Xanthine.oxidase
beta lactamase

cyclooxygenase.2
adenosine.deaminase
ornithine.decarboxylase
carbonate.dehydratase
adenylate.cyclase
guanylate.cyclase
lanosterol.synthase
tetrahydrofolylpolyglutamate.synthase
beta.adrenoceptor
beta.adrenoceptor.type. 1
vitamin.d3.like

cyclooxygenase.1
ribonucleoside.diphosphate.reductase

serine.endopeptidase
gaba.a.alpha.subunit

cholestenone.5alpha.reductase
monoamine.oxidase.a

peptidyl dipeptidase.a
coagulation.factor.viia
dihydrofolate.reductase

phosphodiesterase.i
rine.type.d.ala.d.ala.

uridine.phosphorylase
X3.5..cyclic.nucleotide.phosphodiesterase

nad.adp.ribosyltransferase

transferring.alkyl.or.aryl.groups..other.than.met
phospholipase.a2
acetylcholinesterase

thymidylate.synthase
phosphoric.diester.hydrolase

adenosylhomocysteinase
alcohol.dehydrogenase
procollagen.proline.dioxygenase

platelet.acti
unspecific.monooxygenase

prostaglandin.endoperoxide.synthase
purine.nucleoside.phosphorylase

X3..5..cyclic.gmp.phosphodi

0 <IC50/nM <1 Dark blue

1 <IC50/nM <10 Blue
IC50/nM > 10 Light blue

High similarity found (In silico

predicted promiscuous targets) Light steel blue bands

Fig. (12). High resolution in silico vs in vitro promiscuity prediction matrix. The in vitro vs in silico matrix is color coded using dark blue
when there is evidence of high biological activity (IC50/nM < 1), blue when there is evidence of medium biological activity (1 < IC50/nM <
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score > 0.9) are highlighted as light blue bands. Analyzing the matches it can be observed that, with the available biological data, in vitro
evidence of promiscuous targets often agrees with in silico predicted promiscuous targets. However, there is no experimental data for some
targets that are predicted to be promiscuous, and there are some targets (mainly proteins with binding pockets on the surface which MSSH
does not represent accurately) which are not predicted to be promiscuous and there is experimental evidence of it.
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in vitro matrix. In both matrices, the horizontal axis is
labelled according to the 76 annotations in which the 677
complexes are distributed and the vertical axis shows the 3-
letter ligand code used in the promiscuity predictions. It can
be seen that the available experimental data from BindingDB
supports the notion that many existing targets are
promiscuous (e.g. thrombin, coagulation factor Xa, dipeptidil
peptidase 1V, aldehyde reductase, dihydrofolate reductase,
steryl sulfatase, cyclooxigenase 2, RNA directed DNA
polymerase, hiv retropepsin). It also shows more general
annotations which are expected to involve multiple targets
(e.g. transferring alkyl groups, peptidase, metalloendo-
peptidase, nitric oxide synthase or unspecific monooxy-
genase).

The experimental evidence of promiscuous targets agrees
well with several MDDR activity classes existent for their
ligands. Supplementary Table 3 shows the promiscuous
targets identified by the experimental data and the various
MDDR activity classes related to their ligands.

Fig. (12) shows the comparison between the in silico and
in vitro promiscuity predictions. The in silico predicted
targets (Tanimoto score > 0.9) are highlighted as light blue
bands over the in vitro experimental data. Comparing the
matches with the available experimental data, in vitro
evidence of promiscuous targets often agrees with in silico
predicted promiscuous targets (e.g. GABA-A alpha subunit,
androgen, estrogen, acetylcholinesterase, RNA directed
DNA polymerase). However, there are cases where
experimental data is not available for some targets that are
predicted to be promiscuous (e.g. procollagen proline
dioxygenase, cholestenone 5o reductase, vitamin d3-like
receptors, ribonucleoside diphosphate reductase), and other
cases where targets are predicted not to be promiscuous but
where there is experimental evidence of promiscuity (e.g.
adenosine  deaminase, metalloendopeptidase, hiv 1
retropepsin, coagulation factor Xa, thrombin, dipeptidil
peptidase 1V, aldehyde reductase, peptidase). This later
group mainly consists of proteins with surface pockets which
are not represented well in MSSH.

DISCUSSION

Previous computational studies to predict pharmaco-
logical profiles have used the similarity of chemical ligand
structures, protein sequences, pharmacophoric binding
pockets, or phenotypic side-effects to infer whether two
drugs share a target. Our novel approach relates targets by
SH shape similarity in both the ligand and binding pocket
spaces. This allows promiscuous ligands and targets to be
predicted using an explicit shape-based representation. Since
3D shape complementarity is essential for molecular
recognition, it is perhaps not surprising that our 3D shape-
based approach can give very good promiscuity predictions.
We have shown some specific examples in which our
method can detect a promiscuous target, such as androgen,
GABA-A alpha subunit, hydroxymethylglutaryl CoA
reductase, and thrombin. The ligands found to be
promiscuous are often small and hydrophobic, as observed
previously [25]. Moreover, the binding pockets for our
predicted promiscuous targets are consistent with the general
requirements for promiscuity (i.e. large hydrophobic binding
sites, evidence of alternative binding modes for the same
ligand at the same site, sensitivity of the exact binding mode
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to small differences in residues surrounding the site, or
existence of a flexible lid to enable the binding site to
accommodate a broad range of ligand sizes with good
potency [52]).

As shown in previous studies [23, 51], there are cases
where targets highly related by sequence are unrelated by
their ligands, and cases where receptors unrelated by
sequence are highly related by their ligands. Our approach
has the advantage to combine information from both the
ligand and binding pocket spaces. By mapping small-
molecule shape space to protein binding pocket shape space,
we are able to identify groups of receptors that can be
unrelated by sequence and structure but which have ligands
with common shapes. In this way, previously unknown
cross-interactions can be detected. We have shown here that
shape clustering can help to identify off-target relationships.
Cross-shape matching can be used as a first approach to
identify promiscuous ligands and targets, and this should
save time and costs compared to using standard functional
assays. This should also facilitate the search for novel targets
of marketed drugs.

The work presented here has focused on a retrospective
study of known MDDR drugs. We are currently working to
determine a better similarity threshold and to calculate a
more rigorous interaction probability.

CONCLUSION

We have presented a 3D shape-based approach for
predicting drug promiscuity by correlating both ligand and
binding pocket SH shapes. The method has been validated
using a subset of the MDDR for which experimental
information is available and has been demonstrated to be
effective in identifying related targets which are known to
have related MDDR activity classes.

When assessing similarity between two targets, the
advantage of examining ligand-pocket shape similarity
compared to protein sequence is the ability to identify targets
which may have different folds but which have unexpectedly
similar  binding sites. Normally, polypharmacology
prediction methods operate in ligand space or protein space.
Comparing ligands with consensus pocket shapes leads to
interesting promiscuity predictions which are often
consistent with known crystallographic examples of
promiscuous ligands and protein targets. Our results show
that the performance in ligand space is comparable to that in
binding pocket space, which provides supporting evidence
for the pocket-based predictions. Moreover, the comparison
of our in silico promiscuity predictions with the available in
vitro results from Binding DB shows a similar agreement.

Overall, we have presented a new protocol to detect
promiscuous ligands and targets and we have validated it
using experimental information. Our results indicate that
promiscuous ligands and targets are more common than
previously assumed. Detecting and quantifying the
similarities between target families will help the
identification and exploitation of possible promiscuous
targets.
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