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Abstract: The emergence and spread of West Nile Virus (WNV) from North through South America during the last 

decade, and the recent outbreaks of disease in both humans and horses in Europe suggest that the epidemiology of this 

infection is evolving. WNV is now considered among the emerging threats for both human and veterinary public health in 

areas like Europe where it was previously regarded to as an exotic agent. Further knowledge has built up from studies 

investigating the characteristics of the virus and its genome evolution capacity, the adaptation to new avian host species, 

the changes in vector competence and biology, and the host-pathogen interactions, including the immune response. Also, 

the new needs for preparedness to future major outbursts of disease have stimulated research on virus detection and 

characterization, filling the gaps in both specialized diagnostic technology and the need for field rapid assays. This review 

will present an overview of WNV virology, remarking the impact of virus diversity and evolution on theoretical and 

practical aspects involved in both risk definition, detection and control of infection. 
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INTRODUCTION 

 West Nile Virus (WNV) is a member of the genus 
Flavivirus, in the family Flaviviridae, transmitted mainly by 
mosquito bites [1]. 

 After its first isolation in 1937 from the blood of a febrile 
patient in the West Nile Province in Uganda [2], WNV has 
not been regarded as a significant pathogen, because most of 
the cases were asymptomatic, and humans and animals were 
considered as accidental dead-end hosts. In the following 
decades, sporadic outbreaks of WNV infection associated 
with encephalitis and death have been reported in Israel 
(1950s) [3], France (1962-1963) [1], South Africa (1974) 
and India (1980/1981) [4], but only after the severe human 
outbreak occurring in Romania in 1996 [5], WNV infection 
has become a major public health and veterinarian concern in 
Europe and in the Mediterranean basin. 

 In contrast with the picture observed in Europe, with 
occasional incursions and localized activity in areas with 
favorable conditions, a very different pattern was seen in the 
Western Hemisphere, where WNV unexpectedly emerged in 
1999 in the district of New York, with encephalitis reported 
in humans and horses [6, 7]. In the following years, the virus 
was actor of a considerable spread across the United States, 
Canada, Central and South America. Until now, WNV 
activity has been reported in humans, birds, animals or 
mosquitoes from all states except Hawaii, Alaska, and 
Oregon, so that WNV can be considered one of the most 
widely distributed of the flaviviruses. 
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 The WNV capability to cause either limited outbreaks or 
wide epidemics seems to be related to the genetic 
characteristics of different viruses. All of the major 
outbreaks of human encephalitis have been associated with 
WNV strains genetically classified as lineage 1, establishing 
an important correlation between viral genetics and disease 
phenotype. The WNV transmission and maintenance are 
strictly related to the presence of competent vectors 
(ornithophilic mosquito species) and avian hosts that 
maintain sufficient viremia for the infection of subsequent 
mosquitoes. Also other animal species show the capability to 
develop sufficient viremia for infection of mosquito vectors, 
but the role that these hosts play in the transmission 
dynamics of WNV is still unclear, albeit of significant 
interest. Humans and equines normally fail to generate 
sufficiently high viremic titers for the infection of mosquito 
hosts and are considered ‘‘dead end’’ hosts. 

 The aim of this review is to discuss virus characteristics, 
virus interaction with vectors and hosts, including the 
immune response, at the light of the potential spread and 
endemicity of WNV in EU. 

THE VIRUS AND ITS GENOME 

 West Nile virus is a mosquito-transmitted Flavivirus. The 
genus Flavivirus consists of nearly 80 different viruses, 
many of which are arthropod-borne human pathogens [8]. 
WNV is a member of the Japanese encephalitis (JE) complex 
that includes St. Louis encephalitis (SLE), Murray Valley 
encephalitis (MVE), and the Kunjin (KUN) viruses [9], in 
the family Flaviviridae. 

 WNV is a spherical particle of approximately 50 nm in 
diameter: the lipid bilayer membrane, derived from the host 
cell, surrounds a nucleocapsid core containing a single 
stranded RNA genome of about 11 kilobases in length 
flanked by 5’- and 3’-untranslated regions, which have 
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secondary structures necessary for the initiation of 
translation and for replication [8]. The genome is packaged 
with the viral capsid protein (C) into a host-derived lipid 
bilayer in which 180 copies of the envelope protein (E) are 
embedded [10]. The RNA genome carries a 5’ cap at the 5’ 
end, and lacks a polyadenylated tail at the 3’ end. The 
genomic RNA corresponds to the messenger RNA for the 
translation of a single long open reading frame into one large 
polyprotein that is processed co- and post-translationally, by 
a virally encoded serine protease and multiple host 
proteinases, into three viral structural proteins (C, pre-M and 
E) and seven non-structural (NS) proteins (NS1, NS2a, 
NS2b, NS3, NS4a, NS4b, NS5). Surrounding the ORF are 5’ 
and 3’ non coding regions (NCRs) of around 100 nucleotides 
(nt) and 400-700 nt respectively [8]. Understanding of the 
viral replication cycle is still far from being complete. 
Virions bind and enter cells via receptor-mediated 
endocytosis specific for viral envelope proteins [8]. A 
structural reorganization of the E protein delivers the 
nucleocapsid and viral RNA into the cytoplasm where the 
genome is translated [11]. Viral proteins are processed from 
the single polyprotein of approximately 3000 amino acids by 
cellular and viral proteases. Following RNA replication 
within the cytoplasmic replication complexes, progeny 
virions assemble by budding through intracellular 
membranes of the rough endoplasmic reticulum. Once 
transported through the host secretory pathway, the mature 
virions are released into the cytoplasm, fused with the 
plasmatic membrane and finally are released by exocytosis 
into the extracellular compartment [8, 11]. 

 Studies of the phylogenetic relatedness on nucleic acid 
sequence data corresponding to a 255-bp region of the E 
glycoprotein gene of WNV strains isolated in different 
geographic regions, demonstrated that WNV isolates fall into 
two major genetic lineages diverging by 25 to 30% 
nucleotide differences [12, 13] and several subclades or 
clusters [7, 12, 14-16]. Lineage 1 is composed of WNV 
strains with a broad geographical distribution ranging from 
West Africa to the Middle East, Eastern Europe, North 
America, and Australia. This latter lineage includes viral 
strains with great nucleotide sequence homology, which 
account for the recent outbreaks in human, horses and birds. 
Lineage 1 can be further subdivided into at least three more 
clades. Clade 1a contains strains from Europe, Middle East, 
Asia, Africa and America, and presents different clusters 
including: (i) the most recent Israeli/American virus strains 
collected between 1997 and 2000; (ii) the strains isolated in 
Europe and Russia between 1996 and 2000 (Romania/1996-
7, Russia 1999, and France/2000) [14], and (iii) the two 
closely related Italian 1998 and 2008 WNV strains [17]. A 
human WNV strain isolated in Italy in 2009 from an 
asymptomatic individual resident in Rovigo province also 
belongs to lineage 1, clade 1a, and is closely related to the 
two WNV strains isolated from magpies in Italy in 2008 
[18]. In addition to those mentioned above, two more 
clusters have been identified, one including the strains 
isolated in the 1980s in Central African Republic, the other 
including the Egyptian strain of 1951 and the Romanian-
1996 human strain. 

 Within clade 1b, highly homologous strains isolated in 
Australia from 1960 to 1994 [16, 19] can be grouped. This 
clade also includes the Australian (Kunjin) strains isolated 

from 1960 to 1994 [16], that can be distinguished from other 
lineage 1 WNV viruses by monoclonal antibody binding and 
cross-neutralization analysis [7, 15]. According to Lanciotti 
et al. [13], clade 1c contains Indian WNV isolates collected 
between 1955 and 1980, but this finding was not confirmed 
in following studies [14]. These viruses can also be 
distinguished from other lineage 1 viruses by serological 
assays [20]. 

 WNV strains from the northeastern United States and 
Israel are closely related, sharing 99.7% nucleotide sequence 
homology and grouping in a unique subclade within clade 
1a. This high degree of sequence identity between US and 
Israel WNV strains support the hypothesis that the US WNV 
strains originated from the Middle East [7]. 

 Lineage 2 contains the B 956 prototype strain and other 
strains isolated exclusively in the sub-Saharan Africa and 
Madagascar [7, 12, 15]. 

 Recently, additional lineages have been proposed for 
viruses that exhibit considerable genetic differences from the 
two already existing [21]: lineage 3 including a virus strain 
(Rabensburg virus) isolated in central Europe (Czech 
Republic), lineage 4 enclosing a unique virus isolated in the 
Caucasus [22]. These last two viruses, however, may also be 
considered independent flaviviruses within the Japanese 
encephalitis group [22]. Finally, a fifth lineage was 
suggested for a West Nile virus strain isolated in India [23]. 
Grouping of isolates based on phylogenetic analysis does not 
correlate with the geographical distribution of the virus, 
demonstrating the fundamental importance of migrating 
birds in viral spread dynamics [12]. 

 The recent outbreaks associated with severe humans and 
avian diseases have all been caused by a subset of strains in 
lineage 1. In contrast, lineage 2 strains appear to be less 
virulent for humans, as they have been isolated from 
asymptomatic or mild cases or even during search for other 
pathogens [13]. 

WNV DETECTION 

 The large epidemics and epizootics occurred in the US 
have considerably contributed to the improvement in WNV 
diagnosis in both humans and animals, focusing in the 
detection of either viruses or anti-WNV antibodies (Ab). 
Owing to the following enhanced surveillance programs, 
large collections of human and animal sera have been 
accumulated. The main difficulties in WN disease diagnosis 
are the requirement for level 3 safety labs, the necessity for a 
multi-species testing and for specific diagnosis that can 
overcome the cross-reactivity with other flaviviruses [24]. 

 The election method for WNV detection in vertebrate, 
mosquito pools and avian samples remains viral isolation 
which can be performed from cerebrospinal fluid (CSF), 
blood or tissues in infected cell cultures, even though this 
technique requires good quality samples [25]. 

 Antibody testing in patients or animal sera is of large 
usefulness for diagnosing WNV infection, both in the course 
of large field studies or screening and when samples are 
taken in absence of or late after symptomatic phase. 
Serological testing is mainly based on detection of anti-E 
protein antibodies, although the cross-reactivity of the 
neutralizing antibodies response against flaviviruses limits 
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the specificity of the tests. This is particularly true in areas 
where other Flaviviridae are concomitantly spread [26, 27]. 
The plaque reduction neutralization test (PRNT) detecting 
WNV specific neutralizing antibodies in CSF and serum 
remains the assay required for confirmation of flavivirus 
infections and identification of the infecting agent [28], 
although paired serum samples are needed to confirm 
seroconversion. 

 Infected cell culture supernatants or preparations from 
WNV infected suckling mouse brains (SMB) are antigens 
classically used for WNV serodiagnosis. Alternatively, 
recombinant antigens such as the envelope glycoprotein E 
[29], virus-like particles (VLP) [30], or the non-structural 
NS1 [31], NS3 and NS5 [32] proteins may presently be 
produced and purified in large scale for use in different assay 
formats in the absence of particular containment facilities. 
The IgM capture enzyme-linked immunosorbent assay 
(ELISA) on serum or CSF is widely used for diagnosis of 
WNV in humans in the United States [33]. In addition, a 
series of immunological tests (from different ELISA formats 
to Western blotting to Solid-phase dot-ELISA technology) is 
in use in several laboratories for both human and animal 
diagnostics worldwide [34-36]. However, these tests are 
laborious, time-consuming, and sometimes need to be 
conducted in level 3 biosafety laboratories [24]. 

 Further exploitation of sensitive and specific assays for 
prompt differential diagnosis of WNV infection in either 
humans and animals in the field is still needed and may take 
advantage of modern knowledge of WNV antigen 
determinants, recombinant DNA and protein technology, and 
methods for production of MAbs with different affinity [37, 
38]. As for other viruses, major expectations are laid in the 
field of genome testing approaches by conventional, nested 
or real-time RT-PCR, which are enormously faster than 
cultivation methods and can be adjusted for use in clinical 
and epidemiological applications [28, 39-41]. 

 Single-tube real-time RT-PCR, which can be performed 
on RNA extracted from a wide variety of tissues in all 
infected animal species, shows many advantages compared 
to end-point RT-PCR because it is more rapid, often more 
sensitive, more specific, and minimizes contamination [28]. 
In addition, together with an automated RNA extraction, 
real-time RT-PCR can be used in large-scale surveillance, 
and allows quantitative measurement of viral nucleic acids 
[42]. In several studies, molecular detection assays based on 
broadly reactive (degenerate) primers may be used for the 
simultaneous detection and quantification of distinct 
flaviviruses using species-specific and group-specific 
primers in a single reaction [40] or targeting the flavivirus 
consensus amplimers located at the RNA-dependent RNA 
polymerase domain of the NS5 protein [43]. 

 Various approaches for screening of WNV and viral 
antibodies in blood, body fluids and other tissues have been 
developed and used as routine screening tools for blood 
donation and cell tissues/organs transplantations over the last 
several years [44]. Despite implementation of nucleic acid 
testing, particularly by real-time RT-PCR, WNV 
transmission through blood transfusion and organ transplant 
still occurs, thus remarking sensitivity limits of the present 
screening assays, particularly on mini-pool samples [45, 46]. 
Individual donation testing for WNV blood screening is 

more sensitive, but presents an unfavourable cost-
effectiveness [47]. 

 Although more advanced than for other arboviruses, 
molecular methods for WNV detection still have wide 
margins for technical implementation to both adapt their use 
to the variety of clinical samples (tissue, blood or CSF) from 
humans and animals, and particularly vector tissue extracts 
[48-50], and to take into account more recent knowledge 
from sequence analysis of strains circulating and evolving in 
various geographical areas and habitats. Problems are also 
related to the very low viral loads that can be expected 
especially in post-mortem tissues or while screening subjects 
in the absence of symptoms. Similar to antigen-antibody 
based detection assays, efforts are also needed for molecular 
approaches to overcome the problems posed by the 
occasionally close similarity of nucleotide sequences 
between different members of Flaviviridae when a genus-
specific diagnosis is required [48, 51, 52]. Although suited 
for a rapid and sensitive diagnosis at the experienced lab 
level, molecular methods are hardly usable for local field 
investigations particularly on outdoor animals or farms, 
where development of user-friendly antigen-based field test 
would be desirable. 

WNV, RESERVOIRS AND VECTORS 

 According to the existing literature, ornithophilic (bird-
feeding species) mosquitoes are commonly considered as the 
principal vectors of West Nile virus [5]. In particular, the 
vector species mainly involved in WNV transmission to 
humans are Culex pipiens Linneus 1758, the widespread 
common mosquito in the northern hemisphere, and its 
vicariant species Cx. quinquefasciatus Say 1823, in the 
southern hemisphere. 

 Nevertheless, little is known about the factors that may 
influence the epidemiological cycle of the disease, that may 
assume different characteristic depending on the type of 
environment (rural, urban, etc.). WNV is taken up by a 
competent ornithophilic mosquito vector, during blood 
feeding on an infected bird [53]. After a short period 
necessary to the replication of the virus, the infected 
mosquito will spread WNV biting the main hosts (migratory 
or indigenous birds, which also act as a reservoir), and/or 
horses or humans, which are “incidental dead-end” hosts 
[54]. 

 Overall, the epidemiological cycle of WNV in temperate 
areas may be divided in two different moments [55, 56]: 

1) A rural/wild cycle, that involves migratory and 
indigenous birds (such as white storks and pigeons, 
respectively), and one or more ornithophilic mosquito 
species such as Culex univittatus (Africa, Middle 
East), Cx. tarsalis (East Europe), Cx. pipiens restuans 
(USA) Cx. Modestus (France, Russia), and that is 
known as “enzootic” (or exoanthropic) cycle. 
Characteristic environments where the wild cycle 
commonly occurs are wetlands, river deltas and 
flooded plains that migratory birds choose for nesting, 
coming in contact with the potential mosquito vectors 
breeding in the same area. 

2) An urban, synanthropic cycle that involves domestic 
birds, such as chicken, house sparrows and pigeons, 
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and a mosquito species that feed on both humans and 
birds, such as Culex pipiens/molestus. This cycle is 
named “epizootic” [57, 58], and may occurs also in 
urban areas when human activities make available a 
number of breeding sites for mosquito populations, as 
happened in Bucharest, Romania, and in the US [5-7]. 

 Depending on the kind of environment, the abundance of 
mosquito species and on their degree of competence for 
WNV transmission, two main hypotheses about competence 
of the vectors have been formulated [59]: (i) in the former, 
the enzootic cycle is sustained by one or more mosquito 
species, mainly ornytophilic, which ensure WNV transfer 
from migratory to indigenous birds, allowing the 
dissemination and amplification of the virus. Different 
species, with a broader range of hosts and anthropophagic, 
will act as a “bridge” vector, between infected birds and 
horses/humans; (ii) alternatively, a single species able to bite 
birds as well as mammals may act as both enzootic and 
epizootic vector. 

 In both hypotheses, the species with a broad range of host 
could in fact be Cx. pipiens. 

 A number of factors are involved in WNV vector 
competence. Firstly the vector must be genetically 
susceptible to become infected with WNV and supportive of 
its replication, and secondly, the vector must be able to 
transmit it to the natural host. For these reasons, the virus 
isolation in a field-collected mosquito does not necessarily 
imply competence to transmit it [60-65]. Under laboratory 
conditions, all of common species of the genus Culex may 
become infected, as well as other species belonging to 
different genera (i.e. Aedes, Ochlerotatus, Culiseta, 
Coquillettidia). Up to date, more than 70 species of 
mosquitoes have been found to be naturally infected with 
WNV worldwide, but their possible involvement in the 
epidemiology of the disease is probably negligible in most 
cases. Some concern is only related to the high competence 
showed by Ae. albopictus and Oc. japonicus, two species 
highly anthropophilic which may sustain and amplify the 
infection in the urban areas [59, 61]. 

 In the last years, WNV has been circulating in various 
European countries. Particularly, in Italy infection has 
quickly spread at least through five neighboring regions in 
2008-2009 [17, 66, 67]. This outbreak followed the earlier 
significant outbreak of 1998, occurred in Tuscany only 
among horses [68]. 

 The entomological inquiries carried out after these 
events, a 3-year longitudinal survey in Tuscany [69] and the 
5-year national surveillance plan, that included 15 wetland 
sites across the country [70], gave univocal results indicating 
that Culex pipiens was the predominant species in all sites, 
representing more than 50% of all samples. 

 It is important to note that, whereas in the tropics WNV 
transmission may occur all year round, in temperate regions 
it appears to be limited to the season favorable to the 
massive development of the vector populations (usually in 
the late summer). In some cases, it is possible that the 
potential mosquito vectors become infected in springtime, 
after biting on migratory birds, and that a few months are 
necessary for the virus to amplify and spread in a limited 
area [68]. However, this cannot explain the simultaneous 

appearance of distinct WNV foci scattered on different 
regions occurred in Italy in 2008 and 2009. Since infected 
mosquito may remain able to transmit WNV to other animals 
even for months after the infected blood meal, it should be 
considered the possibility that WNF may have overwintered 
in these temperate regions throughout vertical transmission. 
This phenomenon has been observed both in the field and in 
the laboratory, but its real relevance in the epidemiology of 
WNV is still to be assessed [71-75]. 

 Altogether, the findings from Italian investigations 
indicate the involvement of Cx. pipiens as a major WNV 
vector both in enzootic and epizootic cycles. Since the late 
1930’s [76, 77], the possibility that Cx. pipiens in the 
Paleartic region consists of a species complex or of different 
biological forms has been and is still debated. The existence 
of at least two forms with different characteristics related to 
different environment adaptation [78], namely Cx. pipiens 
pipiens (the original rural, mainly ornithophilic) and Cx. 
molestus (the urban form, mainly antrhopophilic), is in fact 
currently accepted [78-82]. Nevertheless the possible 
existence of further forms, and their role in the transmission 
of the WNV still need to be deeply investigated. 

HOST-PATHOGEN RELATIONSHIP IN WNV 
INFECTION 

Infection and Clinical Presentation 

 WNV infection is a mosquito-borne zoonosis maintained 
in natural cycles by the involvement of at least 3 different 
organisms, the virus, an invertebrate vector and a vertebrate 
host/reservoir [54]. 

 The most common route of WNV transmission to 
vertebrates is through the bite of an infected mosquito, and a 
broad range of mammals and non-mammals species like 
reptiles and amphibians are susceptible to natural or 
experimental infection with WNV. Some mammals (rodents, 
rabbits, squirrels) and reptiles (alligators) have been found to 
develop a sufficient viremia to allow transmission to feeding 
mosquitoes [83]. Other routes of WNV transmission among 
humans can be direct blood product contact, organ 
transplant, transplacentally or via milk ingestion by the 
newborn. Oral transmission has been experimentally 
demonstrated in birds, mice and hamsters [84-86]. 

 At a variable time after infection, arguably in temporal 
association with subsequent viremia, virus gains entry to the 
central nervous system (CNS). Entry into the CNS represents 
an extremely important event in both the pathogenesis of 
disease and the clinical outcome of the host, and is 
temporally secondary to the spread of virus in the periphery. 
However, the mechanisms by which WNV enter the CNS are 
as yet unclear. There is evidence for three major routes: entry 
via leukocytes, direct entry across the blood brain barrier 
(BBB) or entry by retrograde axonal transport via the 
peripheral nervous system [87]. 

 In humans, WNV infections are generally asymptomatic. 
Most symptomatic patients present a mild flu-like illness 
(West Nile fever), described in early reports as a self-limited 
febrile illness characterized by fever, headache, back pain, 
myalgia and anorexia, sometimes associated with other 
symptoms like nausea vomiting and diarrhea, and rarely with 
neurological symptoms [88]. Patients with WNV fever, 
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generally recover within a period of 7-10 days. Less than 1% 
of documented human infections result in severe 
neuroinvasive disease, which can be primarily classified into 
three clinical syndromes: meningitis, encephalitis or acute 
flaccid paralysis [89]. Clinical features of these syndromes 
may be present at the same time in the same patient. 
Additional neurological syndromes include hepatitis [90], 
myocarditis [91], pancreatitis [92] and hemorragic fever 
[93]. Advanced age is the main risk factor for the 
development of encephalitic syndromes [94, 95]. 

 Patients with encephalitis have a higher mortality rate 
and more severe complications than patients with meningitis 
[96]. Over the past fifteen years, WNV has shown an 
increasing tendency to significant, severe and fatal 
neurological disease in humans, birds and/or horses [89, 97]. 
Viruses isolated from these recent epidemics and epizootics 
show high sequence homology (> 98%) with each other and 
belong to the same clade represented by the New York 1999 
isolate, thus suggesting that they all have a common ancestor 
[98]. 

 Differences in pathogenicity may be related with 
nucleotide changes in specific regions coding for the pre-
membrane, envelope or nonstructural proteins of the virus 
[99, 100] but no unequivocal association has so far been 
established with virulence. Recently, a human WNV isolate 
was obtained, from an asymptomatic blood donor in Italy, 
and its full genome sequence was compared with earlier 
WNV strains from horses and humans from Italy and other 
countries [67]. Interestingly, the Italian isolate showed the 
Thr249Pro mutation in the helicase domain of the NS3 
protein, a trait associated with avian virulence [101]. This 
mutation has been previously associated with human disease 
outbreaks [101], although in the Spanish 2007 isolates, it 
was not associated with increased pathogenicity in mice 
[102]. The role of this and other mutations in virulence for 
avian and mammalian species should be further investigated. 

 WNV has also been shown to establish a persistent 
infection. In experimentally infected monkeys and hamsters, 
WNV or viral RNA was find in brain tissues for as long as 5 
month [103, 104], and hamsters developed chronic renal 
infection with WNV shedding in the urine up to 8 months 
[105, 106]. Very recently, Murray and colleagues provided 
evidence that WNV can persist for several years in infected 
humans, particularly in the presence of chronic clinical 
symptoms [107]. Consistently with the hamster laboratory 
model, viral RNA was detected in human urine for at least 6 
years after infection, implying a long-term replication of the 
virus in the kidneys. 

 As underlined by Gould [108], the findings of WNV 
persistence for years in the kidneys of convalescent patients 
could also raise important issues concerning the potential for 
WNV and other related flaviviruses to be transmitted to 
mosquitoes by apparently healthy humans or animals, and thus 
potentially initiate epidemics in new regions of the world. 

Innate Immunity 

 The integrity of the host immune system is required to 
prevent severe WNV infection, and in fact neurological 
disease is remarkably frequent both among the elderly and 
the immunocompromised subjects, who can exhibit mortality 
rates higher than 10% [109]. 

 Overall, humoral immune responses control viral load in 
the periphery preventing dissemination, whereas T-cell 
responses are required for the clearance of WNV within the 
CNS [110]. Several studies remark that both innate and 
adaptive immunity mechanisms act together in contrasting 
WNV replication and diffusion [111], and immunity can also 
be responsible for severe clinical symptoms [87]. As shown 
in a murine model of infection, WNV reaches the local 
lymphnodes via infected dendritic cells (DC) and activates 
events whose balance can lead to either asymptomatic 
infection or neuroinvasion [112]. If the production of 
interferon  or  (type I IFNs) by infected DCs 
predominates, local viral replication will be inhibited and 
adaptive immune response follows WNV contact with 
antigen-presenting cells [113, 114]. Conversely, the 
production of cytokines such as MIF (macrophage migration 
inhibiting factor) and TNF-  (tumour necrosis factor) may 
favor viral invasion of the nervous tissues by enhancing the 
permeability of the blood-brain barrier [115, 116]. At the 
same time, MIF inhibition was shown to correlate with 
reduced viral load, inflammation and damage in the brain of 
WNV infected mice [116], depicting the complexity of 
phenomena involving the innate immunity regulation. 

 From studies in blood donors, a strong immune response, 
primarily associated with expression of IFN-  and IFN-  and 
high levels of IFN-stimulated chemokines including CCL2 
and CXCL10, was found to be involved in the initial control 
of WNV replication during early infection. Particularly, 
CXCL10 may be an important host response mediator in the 
temporal development of innate and adaptive immunity in 
concert with IFNs [117]. Mice with genetic defects in the 
cascade of innate immunity components, from IFN to 
STAT1 through Toll-like receptors 3 and 7, show enhanced 
tissue viral loads, and are rapidly killed by WNV [118]. 
However, WNV has evolved countermeasures to limit the 
efficacy of IFN-mediated immunity, acting largely via non-
structural proteins NS1 and NS2 [119-121]. WNV exhibits 
resistance to the antiviral effects of IFN in cell culture once 
infection is established, and this may be the reason for the 
relatively narrow therapeutic window useful for IFN 
administration in animal models or humans infected with 
WNV [114]. 

 Although the cellular immune response in the CNS can 
itself result in severe injuries to glial cells and neurons, 
causing irreversible damage, the role of T-cells is essential 
for the clearance of WNV, and patients with T cell 
deficiency are at high risk of neuroinvasive infection and 
death [122]. Using a mouse infection model [123], age-
related defects in the CD4 and CD8 T cell response have 
been proposed to be a key factor for the severity of 
neurological symptoms and mortality associated with WNV 
infection in humans older than 50-60 years [124]. The 
occurrence of both quantitative and qualitative alterations in 
T cell immunity suggests possible specific actions in either 
immunomodulation or treatment for controlling severe WNV 
infection in elderly. 

 Much remains however to be understood to modulate the 
immune response in favor of the host, taking into account the 
diverse virulence characteristics of different viruses. 
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Humoral Immune Response 

 The humoral response to any flavivirus infection is 
important for control of viral infection and dissemination. 
The role of humoral response in WNV infection is 
highlighted in mice lacking functional B cells, where WNV-
induced disease incidence and severity are increased, but can 
be prevented by the passive transfer of antibodies from 
immune wild-type mice [125, 126]. 

 Similar to other flaviviruses, also in WNV infection the 
majority of neutralizing antibodies recognize the structural E 
protein, although a subset bind to the preM/M protein. 
Interestingly, antibodies to the NS1 protein are also 
protective against WNV in vivo. This protein is a secreted 
protein that is highly conserved among the flaviviruses. The 
mechanism(s) of protection are through FCgRs and/or 
complement, and may depend on the region of NS1 toward 
which a particular antibody is reactive [127]. Antibody 
responses to the intracellular proteins NS3 and NS5 have 
also been observed during WNV infection, although their 
functional significance remains uncertain [32]. 

 The immunodominant flavivirus protein E has three 
structural domains DI, DII and DIII. At least 12 epitopes 
have been defined and are associated with distinct functions 
including cell attachment, dimerization, trimerization, and 
acid-catalyzed fusion. In vitro, the strongest neutralizing 
activity is exhibited by antibodies against the upper lateral 
surface of the DIII residue of the protein, that protrudes off 
the surface of the virion, and protection studies in vivo 
confirmed this finding [128]. In WNV-infected humans, only 
8% of WNV-specific B-cell clones produced antibodies 
specific to DIII, whereas almost half of them produced 
antibody that bound determinants in DII, particularly the 
fusion loop. Studies of the polyclonal response of WNV-
infected horses and humans indicate that the neutralization 
activity of sera is not dependent upon antibodies directed 
against the DIII-lateral ridge (lr) epitope [129]. 
Neutralization of WNV by antibodies is a ‘multiple’ hit 
phenomenon requiring engagement by more than a single 
antibody. For enveloped flaviviruses including WNV, 
antibody-mediated virus neutralization can occur at several 
steps in the viral lifecycle, including attachment to receptors 
on the cell surface, internalization, or fusion within the 
endosome. Antibodies that coat the virion surface could 
neutralize directly by blocking receptor engagement or 
indirectly by inhibiting one of the conformational changes 
required for virus uncoating and nucleocapsid penetration 
into the cytoplasm [130]. 

 The amplification of early IgM-dependent neutralizing 
antibody is critical for the control of severe WNV infections, 
as demonstrated in experimental studies on C57BL/6 mice. 
Mice with immune deficiencies that impair antibody priming 
(lacking C3 or C4 complement components, complement 
receptors 1 and 2, CD41 T cells, class II MHC expression, or 
CD40 signaling) also predispose to WNV susceptibility, to 
decreased antibody responses and survival rates upon WNV 
infection, and this condition can be prevented with passive 
transfer of antibodies from immune wild-type mice [125, 
126]. 

 The humoral response may conversely lead to antibody 
dependent enhancement (ADE) of infection. ADE occurs 

when antibody-virus complexes are internalized into cells 
via FcgRs and replicate to higher extent. This mechanism 
which has been hypothesized to contribute to the 
pathogenesis of dengue hemorrhagic fever (DHF) has been 
observed in WNV infected mice only in experimental 
settings, but without any significant change in disease 
phenotype or survival [129]. The conditions that permit the 
occurrence of ADE in vivo are very restricted and are 
modulated in part by complement opsonin C1q binding to 
individual IgG subclasses [131]. 

 Despite much progress, many questions about the 
mechanisms of neutralization and the role of the different 
epitopes of the structural and non-structural proteins of 
WNV remain unanswered. 

VACCINES 

 Experimental DNA vaccines have been developed 
expressing genes encoding the WNV membrane (M) and 
envelope (E) proteins in eukaryotic expression vectors, and 
successfully tested in animals and avian species [132-134]. 

 Recombinant WNV proteins have been used in 
immunization experiments, and recombinant E protein can 
be a candidate vaccine to prevent WN virus infection in 
animals and humans, as the positive result in mice [135] and 
non human primates suggest [136]. 

 Attenuated, inactivated and killed viruses are also 
protective against infection. Inactivated virus immunization 
can induce stronger humoral responses compared to the 
DNA plasmid vaccine, but they can present some limitations. 
In particular, the attenuated vaccines are economic to 
produce and potent in elicit immune response, but are not 
suitable for use in the immunocompromised, while the 
inactivated vaccines, although safer, are rather expensive to 
produce and less potent. 

 Recently, a novel class of vaccines against flaviviruses 
started are under evaluation. They are based on the 
production of defective viral particles that are unable to 
spread between normal cells, and are unable to cause disease 
in vaccinated animals. A proposed single-cycle, 
encapsidation defective flavivirus vaccine appears to be 
reasonably cheap to produce, potent, and safe in the 
immuno-compromised subjects [137]. 

 However, the suitability of vaccine implementation for 
either human or animal use remains questionable due to the 
relatively low number and severity of cases worldwide, and 
the extreme difficulties envisaged in controlling virus spread 
through the large animal reservoir represented by susceptible 
avian species. 

CONCLUSIONS 

 As the other RNA viruses, WNV has a great potential to 
evolve and mutate in order to exploit environmental 
opportunities and become more efficient in spreading into 
new areas. Indeed, in the last decade, WNV has dramatically 
increased geographic range and has demonstrated a greater 
pathogenicity to birds and mammalian hosts, including 
humans. Virological factors have included genetic adaptation 
for both increased replication in avian hosts and wider range 
of competent mosquito vectors. Moreover, emergence of 
WNV strains capable to disseminate more rapidly and with 
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greater efficiency at elevated temperatures pointed out the 
potential importance of temperature as a selective criteria for 
the emergence of WNV genotypes with increased vectorial 
capacity. 

 The pathogenicity in avian host of WNV has been related 
to the higher virus replication and capability of spreading, 
and mutations that can affect this character increase the 
fitness of the virus in a new environment. 

 The ongoing epidemic that since August 2008 is 
affecting Northern Italy is an event that can be considered as 
case study for the better understanding of the mechanism on 
WNV persistence in an environmental niche. 

 During this epidemic, some important evidences have 
been collected: i) virus spreading across a wide area and 
involvement of human and animal hosts; ii) overwintering of 
WNV and recrudescence of the outbreak in the following 
summer season and iii) mutation of the virus towards a 
higher pathogenicity in the avian species. 

 With regard to overwintering of the virus, this 
phenomenon is poorly known. WNV infection in 
overwintering mosquitoes is rare in nature, and the detection 
of viremic birds in winter season raises the question of the 
possibility of persistently infected hosts like bird species or 
other animals. 

 Many other questions on the potential persistence and 
spread of WNV in EU are still unsolved, but data so far 
support the idea that further knowledge on the immune 
response of the avian hosts, vector fitness and development 
of control strategies including vaccination can provide better 
understanding of the kinetics of WNV infection. 
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