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Abstract:

Background:

Pain  is  a  multidimensional  experience  that  motivates  organisms  to  engage  in  behavioral  repertoire  to  deal  with  potential  life-
threatening situations that are a threat to homeostatic function. The aim of this mini-review was to highlight the nature of pain, the
role  that  pain  has  as  a  motivational  drive  to  impact  higher-order  cognitive  processes,  such  as  decision  making,  and  how these
processes are intimately integrated with homeostatic mechanisms.

Conclusion:

Both conceptual and neurobiological overlap suggest a close interaction of decision-making, pain, and homeostasis. Pain, decision-
making and homeostasis are interconnected through a common denominator of survival and must be considered when assessing pain-
related issues and treatments.
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1. INTRODUCTION

Homeostasis  is  an  ongoing  auto-regulatory  process  in  the  body  that  maintains  a  relatively  steady  internal
psychological and physiological equilibrium despite acting external forces and is exclusively for survival [1]. A stable
state is required for optimal functioning of an organism and is dependent on autonomic, neuroendocrine, and behavioral
regulatory mechanisms that are tightly interconnected. Each of these regulatory mechanisms buffers changes in the
environment or within the body through cascading responses from each of these systems to restore imbalances [2 - 4].
Thus, these mechanisms are biological and unconscious in nature, working in an organized and hierarchical manner to
revert  to  a  balanced  state.  Yet,  the  homeostatic  activity  can  also  be  a  function  of  tangible  behavior,  motivating  an
organism to relieve distress and promote survival. Typical homeostatic motivational drives such as hunger and thirst are
often used as classic examples. In recent years, however, the importance of ongoing auto-regulatory processes related to
the motivational drive of pain is also being recognized [5 - 8]. Therefore, the purpose of this paper is to highlight the
importance  of  pain  as  a  motivational  drive  that  directs  behavior  and  ultimately  impacts  higher-order  cognitive
processes,  such  as  decision  making,  via  interrelated  homeostatic  processes.

1.1. Multidimensionality of Pain

Similar to other motivational drives that have a multidimensional experience, pain is often regarded as a subjective
and  universal  phenomenon  that  has  biological,  psychological,  and  social  implications  [9  -  12].  The  International
Association for the Study of Pain defines pain as an “unpleasant sensory and emotional experience associated with
actual or potential tissue damage or described in such terms” [13]. This definition  highlights  the importance  of not
 only the  sensory and  emotional aspects  but also  the potential for pain, suggesting cognitive processes associated with
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previous or future tissue damage. Thus, this definition presents pain not as a unimodal experience, but as a multifaceted
phenomenon.

Melzack and Casey (1968) described this multidimensionality and divided pain into three components: the sensory-
discriminative, the affective-motivational, and the cognitive-evaluative (Fig. 1). Through sensory neurons, the sensory-
discriminative component provides information detailing the size, location, and intensity of pain, therefore encoding the
physical, qualitative disruption of pain [5, 8, 10, 14 - 17]. The second component, affective-motivational, provides the
emotional  response of how  unpleasant or  aversive pain  is perceived,  along with  the motivation  to relieve  the pain
[5, 11, 18]. Somatic and autonomic reflexes and neurobiological and endocrine changes are also associated with this
dimension in response to pain input. These together produce an emotional and motivational quality that drives the need
for survival. The cognitive component involves the attitudes, beliefs, and expectations of pain to determine how noxious
stimulus information is processed and conveyed into a response or output [19 - 22]. Consequently, an important aspect
of  cognition  in  pain  processing  is  related  to  higher  order  cognitive  functioning,  such  as  decision  making,  and  the
interaction of decision-making processing during pain. Each of the components of pain provides a critical aspect of the
pain experience and functioning together, produce a holistic perceptual experience of pain.

In addition to this multidimensionality perspective, pain has also been described as a homeostatic emotion [5]. Like
homeostatic  drives,  homeostatic  emotions  evoke  behavior  in  response  to  changes  in  homeostasis.  This  “primordial
feeling” is defined by two key components, sensory and affective/motivational, that are necessary for promoting this
equilibrium [23]. Pain, of course, is adaptive and motivational in nature especially when acute [12, 24, 25]. Acute pain
is  short  in  duration,  self-limited,  and  deficient  in  psychosocial  or  biological  changes  disproportionate  to  the  pain
intensity [26, 27]. Due to these qualities, acute pain also contains sensory qualities that alert changes to the ideal state.
While chronic pain may no longer retain this quality since this pain persists longer than the removal of the noxious
stimulus or  beyond tissue damage repair,  chronic pain may still  preserve its  unpleasantness and motivation despite
sensory, emotional,  and behavioral alterations [27 - 29].  It  is  the affective and unpleasant qualia of pain that is  the
strongest  contender  in  promoting  behavior  by  providing  a  negative  motivational  state  [5,  30].  Thus,  within  these
qualifications,  pain  can  be  considered  a  driving  force  in  homeostasis  and  plays  an  essential  role  in  motivating  an
organism through emotional, attentional, and sensory mechanisms.

Fig.  (1).  Multidimensionality  of  pain  [10].  Pain  is  divided  into  sensory-discriminative,  affective-motivational,  and  cognitive-
evaluative components. Each provide a critical characteristic to the perception of pain.

The importance of pain and its quality as a homeostatic emotion can be further explained through drive-reduction
theory (Fig. 2) [31]. Pain creates an imbalanced state and an unpleasant affect needing to be resolved. This, in turn,
motivates  an  organism to  maintain  internal  stability  by reacting in  favor  of  survival.  In  other  words,  the  affective-
motivational component of pain is directly associated with the homeostatic and adaptive nature of pain. When pain (i.e.
drive) is experienced by the organism, it disrupts homeostasis (i.e. need) and creates an unpleasant state. As a result,
pain demands attention and requires a response that drives the organism to resolve, maintain, or revert to homeostasis
by means of either escape or avoidance of the painful situation [5, 16, 31 - 35]. Therefore, we propose that pain drives
homeostatic behavior through emotional/motivational processes and cognitive processes, including elements associated
with decision-making.
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Fig.  (2).  Drive-reduction  theory  [24].  Drive-reduction  theory  posits  all  organisms  contain  needs  primarily  revolving  around
homeostasis. Drives change the balance of these needs promoting behavioral responses to reduce the drive and therefore fulfil needs.
Essentially, motivation to survive is produced from an innate drive that ensures a constant need.

1.2. Components of Decision-Making

Decision-making is regarded as the cognitive process that involves identifying and assessing possible alternatives in
order to solve a problem or achieve some objective [36]. Good decision-making processing is especially advantageous
and  is  critical  for  survival.  Under  normal  circumstances,  decision-making  involves  evaluating  an  almost  unlimited
number of alternatives to a current situation to assess the best outcome of long-term behavioral consequences [37 - 39].
When  decisions  are  suitable,  cognition  ensures  that  the  ratio  of  benefits,  costs,  and  consequences  are  favorable  to
current needs and optimizing utility at small costs [40 - 42]. Information regarding homeostatic status, sensory input,
and  prediction  of  future  threats  or  benefits  are  required  for  decision  processes.  This  is  essential  in  ensuring  the
maximum number of ongoing, and possibly competing for homeostatic needs are met. Emotional or somatic processes
also  aid  in  guiding  behavior  and  decisions.  This  occurs  in  a  biased  manner  even  in  situations  where  there  are  no
definitive right or wrong answers and instead cause intuitions that lead to a more perceived correct choice [43 - 45].
Therefore, like pain, decision-making is also influenced by cognitive and emotional processes along with homeostatic
information.  Such  overlap  strongly  suggests  a  strong  association  among  homeostasis,  pain,  and  decision-making
processing (Fig. 3).

Fig. (3). Dimensions of decision-making. Decisions are influenced by cognition, emotions, and homeostatic information to assess the
best ratio of benefits to costs.

1.3. Conceptual and Neurobiological Overlap

As seen above, pain and decision-making share very similar qualities. Decision-making directly reflects two of the
three modalities that comprise pain - both containing aspects of emotional and cognitive processes. Pain is associated
with the affective-motivational component that mirrors the emotional processing that occurs within decision-making,
and general cognitive processes that are required for decision-making reflects the cognitive-evaluative component of
pain. Furthermore, decision-making utilizes input from homeostatic processes, while pain disrupts homeostasis and in
light of sensory and/or affective input, provides the drive needed for an organism to make decisions and react in favor
of restoring homeostasis. Emotional and cognitive processes are also key players that may modulate pain experiences
and behavioral outcomes. In fact, emotions and mood influence both pain and decisions where negative emotional states
may increase the unpleasantness of pain even though intensity is maintained [23, 46, 47] or increase the likelihood for
risky decisions [17, 48 - 50]. These negative states, however, do signal homeostatic imbalances that are most likely
related to survival so these outcomes may not be unreasonable considering the imperfect state. To further complicate
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this interrelated relationship, changes in cognitive functions are also associated with pain, particularly with chronic pain
and these cognitive alterations may either be a direct result of pain or pain may indirectly cause effects on cognitive
function [48].  It  is  possible  to  suggest  that  alterations  in  cognitive  functioning in  response  to  chronic  pain  such as
deficits in decision-making [48, 51], attention [30, 52, 53], and memory [54, 55] may be the result of the body’s means
at coping and reflect the act of achieving equilibrium in response to constant pain. This may be driven in part to a purely
emotional  response,  lacking  in  rational  choice,  utilization  of  limited  resources,  the  interaction  of  neuromodulators,
neuroplasticity, or a combination of all these factors [56]. Therefore, although the behavioral outcomes may not always
be  immediately  beneficial  to  the  individual,  changes  to  morphology,  concentration  of  neurotransmitters  and  other
cellular activity are sanctioned in hopes to aid and modulate pain. Furthermore, reorganization and plasticity resulting
from incoming stimuli have also been implicated in acute pain suggesting that modulation of the pain experience may
be critical to survival [57, 58]. It is understood however that processes have optimal thresholds and if pain remains
despite cortical changes as with chronic pain, these alternations may disrupt other homeostatic states causing more harm
than good causing a positive feedback loop to address new homeostatic disturbances. Nonetheless, it should be apparent
that pain and decision-making are interconnected and are greatly involved in increasing our fitness and survival through
homeostatic processes especially in regard to acute pain. As one would predict, this relationship should be reflected
through  common  neurobiological  substrates,  where  a  host  of  neural  correlates  that  aid  in  pain  processing  is  also
involved in decision-making processes (Table 1) [59 - 64].

Since decision-making and pain have the common goal to engage behavior to maintain homeostasis, and imbalances
of homeostasis impact decision-making and pain processes, various cortical and subcortical areas that subserve basic
needs, somatic and autonomic responses, and behavioral expressions must be involved [50, 65, 66]. For example, the
hypothalamus and autonomic brainstem nuclei (basal forebrain, ventral striatum, Periaqueductal Gray (PAG), and other
brain-stem nuclei) are responsible for generating the corresponding somatic responses from stimuli in the presence of a
decision  [67].  The  amygdala  provides  the  negative  or  positive  valence  of  the  stimuli,  promotes  exploration,  and
demands attention towards a particular stimulus. Since the amygdala encodes the somatic valence or importance of the
stimuli, it also serves as a convergence-divergence zone where the stimulus (primary inducer) or thought of the stimulus
(secondary inducer) is coupled with a response [68, 69]. This processing is important to help guide future decisions
since previous associations and outcomes play a major role in directing future decisions.

Table 1. Common neural correlates of pain and decision-making.

Cortical and
Subcortical Areas Involvement in Pain Involvement in Decision-Making

Amygdala           Affective/motivational component of pain; emotional
significance; attention; pain modulation [44]

          Impulsive emotional responses; emotional
salience; attention; emotions for learned

associations [30]

Anterior Cingulate
Cortex (ACC)

          Affective/motivational component of pain; emotional
significance; pain modulation; error [18]

          Cognition; motor control; motivation
salience; error detection; conflict; anticipation;

reward assessment [41]

Cerebellum           Affective/motivational and cognitive/evaluative component of
pain; emotion; cognition; motor control [45]

          Attention; working memory; reasoning;
problem solving under uncertainty [46]

Hypothalamus           Sensory/discrimative, affective/motivational component of pain;
relay station/ascending pain pathway; coding pain; attention [47]           Motivation; emotional salience (48)

Insula           Affective/motivational and sensory/discrimative component of
pain; pain modulation [49]

          Awareness; memory, executive
functioning; association cues; motivation [40]

Nucleus Accumbens           Affective/motivational component of pain; emotional valence;
pain modulation [50]

          Learning associations; emotional
salience/valence of reward or punishment;

motivation [51]
Orbitofrontal Cortex

(OFC)
          Affective/motivational and cognitive/evaluative component of

pain; pain valuation; cognitive [52]
          Reward/pain processing; working memory;

associations of emotion and stimuli [53]
Parabrachial Nucleus

(PBN)
          Affective/motivational and sensory/discrimative component of

pain; arousal; target in ascending nociceptive pathway [54]
          Not directly but plays a role in pleasure and

pain; arousal

Periaqueductal Gray
(PAG)

          Affective/motivational and cognitive/evaluative component of
pain; arousal; attention; control center of pain modulation; errors in

prediction [55, 56]
          Impulsive unconscious behaviors [57]
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Cortical and
Subcortical Areas Involvement in Pain Involvement in Decision-Making

Prefrontal Cortex
(PFC)

          Affective/motivational and cognitive/evaluative component of
pain; pain modulation; attention [58]

          Social/moral reasoning [35]; Attention;
Learning; adaptive decision-making; integration

of associative information [59]

          Ventromedial: working-memory;
impulsivity; future consquences; emotional

salience of reward or punishment [60]
Primary

Somatosensory (S1)
          Sensory/discrimative and cognitive/evaluative component of

pain; attention; previous experience; pain intensity [13, 61]           ?

Secondary
Somatosensory (S2)

          Sensory/discrimative and cognitive/evaluative component of
pain; attention; pain valuation; pain intensity [62]           Past and present information (39)

Thalamus
          Sensory/discrimative, affective/motivational, and

cognitive/evaluative component of pain; relay station; coding pain;
attention [63]

          Works in conjunction with PFC for
learning; adaptive decision-making; integration of

associative information [59]

Additional  areas  of  the  prefrontal  cortex,  including  the  anterior  cingulate,  ventromedial  prefrontal,  lateral  and
dorsolateral prefrontal, and orbitofrontal cortex are also responsible for higher processing in regards to decision-making
[69]. As a whole, the prefrontal cortex is proposed to be responsible for executive functions of cognition, especially
regarding making decisions and controlling attention [70, 71]. Within the prefrontal cortex, the anterior cingulate cortex
is critical for detecting an error, conflict, or task difficulty. The anterior cingulate cortex is also involved in calculating
benefits and costs associated with stimuli outcomes [20, 62, 72] and has been shown to play a role in processing the
affective/motivational dimension of pain [21, 33, 62, 73]. Thus, the anterior cingulate cortex plays a critical role in pain
affect and evaluating our decisions by assessing multiple factors.

The ventromedial prefrontal cortex also plays a role in decision-making [74, 75] and is involved in the integration of
emotion  and  cognition.  The  ventromedial  prefrontal  cortex  is  responsible  for  the  “gut  feeling”  potentiated  by  the
emotion of  a  good or  bad decision in presence of  a  moral  dilemma [43,  44,  76].  Regardless  if  there are  no correct
answers  on  moral  tasks,  emotions  ultimately  provide  a  decision  that  feels  more  correct.  Though  this  heuristic  can
enhance decisions, emotions can also reduce the efficacy of rational decisions.

The lateral prefrontal cortex is critical for executive control and, along with the anterior cingulate cortex and the
parietal cortex, is partly responsible for control of attention [70]. Although the lateral prefrontal cortex and especially
the dorsolateral prefrontal cortex is thought to be primarily involved in purely cognitive functioning, recent studies have
revealed evidence for the integration of cognition and emotion in this area [77, 78]. In fact, emotional valence photos
could modulate activity in these areas where pleasant photos increased activity and unpleasant photos decreased activity
compared to control photos [79].

The orbitofrontal cortex, like the amygdala, can discriminate positive and negative values of stimuli by integrating
sensory  and affective  information.  This  stimulus  evaluation  provided by  the  amygdala  and the  orbitofrontal  cortex
appears to also be responsible for action strategies for current and also future anticipatory occurrences [53, 80 - 82]. As
a result, both regions refer to critical associations with previous decisions and consequences such that current decisions
will be better suited to the wanted outcome.

2. DISCUSSION

Homeostasis,  pain,  and  cognition  can  individually  impact  behavior  through  powerful  biological  mechanisms.
However, these systems do not act in isolation. Indeed, there is considerable conceptual and neurobiological overlap
that highlights the close interaction of decision-making, pain, and homeostasis. Reductively, this relationship is founded
upon pain requiring and eliciting a decision. Certainly, when pain is presented, an organism must ultimately choose
whether  to  escape/avoid  or  approach/allow  it.  Yet  this  interplay  becomes  more  profound  when  the  rationale  for
similarity is extended further to include the shared characteristics of homeostasis and emotional and cognitive qualities.
Ultimately then, the decision to either escape or allow pain entirely depends on the current homeostatic information
which includes current affective, attentional, motivational influences. Under this idea, it is no wonder that pain is a
multidimensional phenomenon that directly impacts homeostasis through its three modalities. To summarize entirely,
the sensory component of pain allows an organism to be aware of where and how the homeostatic disturbance occurs,
while the affective-motivational component demands attention and motivates an organism to resolve the pain, and the

(Table 1) contd.....
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cognitive-evaluative  component  provides  the  organism with  a  solution-  a  behavioral  choice  based  on  previous  and
current pain situations and what outcomes that are associated with those choices. Thus, pain disturbs the ideal state
homeostasis requires and as a result, drives a decision. This positive feedback loop is necessary for survival.

Even more, under this same notion, decision-making is considered the aiding force of homeostasis. Decisions utilize
homeostatic information to cognitively and emotionally assess which alternatives provide a more ideal state determined
by cost versus benefit. As a result, decisions promote homeostasis and aid in reverting to the ideal state. Pain, in this
case,  is  a  stressor  and  changes  the  ideal  state,  whereas  the  decision  to  escape  or  avoid  pain  returns  homeostatic
equilibrium.  Additionally,  because  homeostasis  can  be  reduced  to  a  mechanism  of  maintenance,  resistance,  and
survival, pain and decision-making are necessary for completing that loop [1, 5, 32, 83]. This then could suggest that
these entities may not be truly separate systems, but rather interconnected.

Evolutionarily, this concept makes sense. By design, each of these biological mechanisms plays a role in increasing
the odds of survival. Functionally, it is anatomically and behaviorally efficient to combine similar like mechanisms
along parallel, if not overlapping biological pathways especially when each component revolves around a central goal
of survival. Thus, the link between homeostasis, pain, and cognition can be further expounded through the perspective
of survival through three means: an alerting system through pain, a mechanism of checks and balances provided by
homeostasis, and requirement of action driven by decision-making.

CONCLUSION

The undeniable overlap in both neural signatures and a conceptual understanding of these phenomenon suggests the
importance of survival. However, the numerous factors that can individually influence pain, decisions, and homeostasis,
may  also  play  a  role  in  modulating  survival.  Thus,  it  may  be  imperative  to  consider  this  complex  and  integrated
relationship when attempting to understand the multi-dimensionality of pain and may provide further insight into how
pain and pain treatments may differ across individuals.
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