RESEARCH ARTICLE


Wearable Biomonitoring Platform for the Assessment of Stress and its Impact on Cognitive Performance of Firefighters: An Experimental Study



Susana Rodrigues1, 2, *, Joana S. Paiva1, 2, 3, Duarte Dias1, 2, Gonçalo Pimentel1, 2, Mariana Kaiseler4, João Paulo S. Cunha1, 2
1 Institute for Systems Engineering and Computers – Technology and Science (INESC TEC), Porto, Portugal
2 Faculty of Engineering (FEUP), University of Porto, Porto, Portugal
3 Astronomy and Physics Department, Sciences Faculty, University of Porto, Porto, Portugal
4 Institute for Sport, Physical Activity and Leisure, Leeds Beckett University, Leeds, UK


Article Metrics

CrossRef Citations:
26
Total Statistics:

Full-Text HTML Views: 1100
Abstract HTML Views: 522
PDF Downloads: 351
ePub Downloads: 234
Total Views/Downloads: 2207
Unique Statistics:

Full-Text HTML Views: 675
Abstract HTML Views: 346
PDF Downloads: 280
ePub Downloads: 195
Total Views/Downloads: 1496



Creative Commons License
© 2018 Rodrigues et al.

open-access license: This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public License (CC-BY 4.0), a copy of which is available at: https://creativecommons.org/licenses/by/4.0/legalcode. This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

* Address correspondence to this author at the Institute for Systems Engineering and Computers – Technology and Science INESC TEC - Rua Dr. Roberto Frias s/n Edifício 1, 4200-465 Porto, Portugal; Tel: 22 209 4000; E-mail: scpr@inescporto.pt


Abstract

Background:

Stress is a complex process with an impact on health and performance. The use of wearable sensor-based monitoring systems offers interesting opportunities for advanced health care solutions for stress analysis. Considering the stressful nature of firefighting and its importance for the community’s safety, this study was conducted for firefighters.

Objectives:

A biomonitoring platform was designed, integrating different biomedical systems to enable the acquisition of real time Electrocardiogram (ECG), computation of linear Heart Rate Variability (HRV) features and collection of perceived stress levels. This platform was tested using an experimental protocol, designed to understand the effect of stress on firefighter’s cognitive performance, and whether this effect is related to the autonomic response to stress.

Method:

The Trier Social Stress Test (TSST) was used as a testing platform along with a 2-Choice Reaction Time Task. Linear HRV features from the participants were acquired using an wearable ECG. Self-reports were used to assess perceived stress levels.

Results:

The TSST produced significant changes in some HRV parameters (AVNN, SDNN and LF/HF) and subjective measures of stress, which recovered after the stress task. Although these short-term changes in HRV showed a tendency to normalize, an impairment on cognitive performance was found after performing the stress event.

Conclusion:

Current findings suggested that stress compromised cognitive performance and caused a measurable change in autonomic balance. Our wearable biomonitoring platform proved to be a useful tool for stress assessment and quantification. Future studies will implement this biomonitoring platform for the analysis of stress in ecological settings.

Keywords: Biomonitoring platform, Stress, Heart rate variability, Firefighters, Cognitive performance, Firefighter.