RESEARCH ARTICLE


Experiment Research on the Inverse Presumption Method to Evaluate Peak Temperature for Post-fire Spatial Structure



Jing Cui1, Lingfeng Yin1, *, Xiaoming Guo1, Gan Tang2
1 School of Civil Engineering, Southeast University, Nanjing 210096, China
2 Department of Civil Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China


Article Metrics

CrossRef Citations:
0
Total Statistics:

Full-Text HTML Views: 411
Abstract HTML Views: 309
PDF Downloads: 159
ePub Downloads: 161
Total Views/Downloads: 1040
Unique Statistics:

Full-Text HTML Views: 286
Abstract HTML Views: 241
PDF Downloads: 143
ePub Downloads: 145
Total Views/Downloads: 815



Creative Commons License
© 2017 Cui et al.

open-access license: This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public License (CC-BY 4.0), a copy of which is available at: https://creativecommons.org/licenses/by/4.0/legalcode. This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

* Address correspondence to this author at the School of Civil Engineering, Southeast University, Nanjing 210096, China; Tel: (+86)13951917218; E-mail: eking@seu.edu.cn


Abstract

Introduction:

The peak temperature is one of the most important factors to evaluate the structural damage. Due to the reduction in the tensile strength of the steel, the structural stress is redistributed and the bearing capacity is decreased at the elevated temperature.

Methods:

This paper presents an inverse method to evaluate the peak temperature for the steel structures subjected to fire. An initial temperature field is assumed based on the post-fire structural residual displacement, and a temperature iteration function is developed to approach the peak temperature of the structure in fire by minimizing the difference between the measured and numerical results. An experimental study was conducted to investigate the structural behavior of a spatial structure subjected to fire. The temperature and displacement data were recorded.

Result and Conclusion:

Results show that the measured results have a good agreement with the predicted results, demonstrating that the proposed method in this paper is available for evaluate the peak temperature with a desirable accuracy. The inverse method of the temperature field can provide a theoretical basis for scientifically evaluating the residual displacements of the post-fire structure and formulating reliable repair and reinforcement schemes.

Keywords: Post Fire, Spatial Structure, Residual Deformations, Temperature Fields, Fire Experiment, Inverse presumption.