RESEARCH ARTICLE


Workability, Setting Time and Strength of High-Strength Concrete Containing High Volume of Palm Oil Fuel Ash



A.M. Zeyad1, Bassam A. Tayeh2, *, Abdalla M. Saba3, M.A. Megat Johari4
1 Department of Civil Engineering, Jazan University, Jazan, Saudi Arabia
2 Civil Engineering Department, Islamic University of Gaza, Gaza, Palestine
3 Department of materials Engineering, Zagazig University, Zagazig, Egypt
4 School of Civil Engineering, Universiti Sains Malaysia, Penang, Malaysia


Article Metrics

CrossRef Citations:
66
Total Statistics:

Full-Text HTML Views: 2119
Abstract HTML Views: 1202
PDF Downloads: 432
ePub Downloads: 281
Total Views/Downloads: 4034
Unique Statistics:

Full-Text HTML Views: 1160
Abstract HTML Views: 678
PDF Downloads: 316
ePub Downloads: 207
Total Views/Downloads: 2361



Creative Commons License
© 2018 Zeyad et al.

open-access license: This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public License (CC-BY 4.0), a copy of which is available at: https://creativecommons.org/licenses/by/4.0/legalcode. This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

* Address correspondence to this author at the Civil Engineering Department, Islamic University of Gaza, Gaza, Palestine; Tel: +972-82644400; Fax: +972-82644800; E-mail: btayeh@iugaza.edu.ps


Abstract

Introduction:

Palm oil fuel ash in two various forms-ground (GPOFA) by heat-treated carbon-free ultrafine of a median particle size of 2 μm (UPOFA) were utilized to produce high strength concretes (HSC-GPOFA (HSCgx), HSC-UPOFA (HSCux), and HSC-OPC) at different levels ordinary Portland cement (OPC) partial replacements (x) of 20, 40 and 60%.

Methods:

The workability (slump, slump loss, and compacting factor), initial and final setting times and strength in both forms of concrete were investigated.

Results and Conclusion:

The results showed that HSCu had improved physical properties and chemical compositions, extended setting times, enhanced workability, better strength, and enhanced workability retention compared to HSCg and HSC-OPC. Further, POFA carbon content negatively influenced the workability and setting time, while its specific gravity had a positive influence due to the enhancement of paste volume and particles lubrication effects. However, carbon content and surface areas of POFA did not significantly influence the compressive strength of HSC at the level of partial OPC substitution not exceeding 40%.

Keywords: Compressive Strength, Fresh Concrete Properties, Heat treatment, High Strength Concrete, Palm Oil Fuel Ash, Workability.