RESEARCH ARTICLE


Identification of Klebsiella Variicola T29A Genes Involved In Tolerance To Desiccation



Osvaldo Rodríguez-Andrade1, Andrés Corral-Lugo2, Yolanda E. Morales-García1, 3, 4, Verónica Quintero-Hernández5, América P. Rivera-Urbalejo1, 4, Dalia Molina-Romero1, 3, Rebeca D. Martínez-Contreras6, Patricia Bernal7, Jesús Muñoz-Rojas1, *
1 Ecology and Survival of Microorganisms Research Group (ESMRG), Laboratorio de Ecología Molecular Microbiana (LEMM), Centro de Investigaciones en Ciencias Microbiológicas (CICM), Instituto de Ciencias (IC), Benemérita Universidad Autónoma de Puebla (BUAP), Puebla, Mexico
2 Department of Virology, Institut de Biologie Intégrative de la Cellule (I2BC), CNRS, Gif-Sur-Yvette, France
3 Licenciatura en Biotecnología, Facultad de Ciencias Biológicas, BUAP, Puebla, Mexico.
4 Facultad de Estomatología, BUAP, Puebla, Mexico
5 CONACYT, ESMRG, LEMM, CICM, IC, BUAP, Puebla, México
6 LEMM, CICM, IC, BUAP, Puebla, Mexico
7 Imperial College London, MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, South Kensington Campus, London, United Kingdom


Article Metrics

CrossRef Citations:
3
Total Statistics:

Full-Text HTML Views: 5689
Abstract HTML Views: 1980
PDF Downloads: 958
ePub Downloads: 696
Total Views/Downloads: 9323
Unique Statistics:

Full-Text HTML Views: 2400
Abstract HTML Views: 994
PDF Downloads: 660
ePub Downloads: 436
Total Views/Downloads: 4490



Creative Commons License
© 2019 Rodríguez-Andrade et al.

open-access license: This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public License (CC-BY 4.0), a copy of which is available at: (https://creativecommons.org/licenses/by/4.0/legalcode). This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

* Address correspondence to this author at the Ecology and Survival of Microorganisms Research Group (ESMRG), Laboratorio de Ecología Molecular Microbiana (LEMM), Centro de Investigaciones en Ciencias Microbiológicas (CICM), Instituto de Ciencias (IC), Benemérita Universidad Autónoma de Puebla (BUAP), Puebla, Mexico; Tel: +52 222 2295500;
E-mail: joymerre@yahoo.com.mx


Abstract

Introduction:

Several plant-beneficial bacteria have the capability to promote the growth of plants through different mechanisms. The survival of such bacteria could be affected by environmental abiotic factors compromising their capabilities of phytostimulation. One of the limiting abiotic factors is low water availability.

Materials and Methods:

In extreme cases, bacterial cells can suffer desiccation, which triggers harmful effects on cells. Bacteria tolerant to desiccation have developed different strategies to cope with these conditions; however, the genes involved in these processes have not been sufficiently explored. Klebsiella variicola T29A is a beneficial bacterial strain that promotes the growth of corn plants and is highly tolerant to desiccation. In the present work, we investigated genes involved in desiccation tolerance.

Results & Discussion:

As a result, a library of 8974 mutants of this bacterial strain was generated by random mutagenesis with mini-Tn5 transposon, and mutants that lost the capability to tolerate desiccation were selected. We found 14 sensitive mutants; those with the lowest bacterial survival rate contained mini-Tn5 transposon inserted into genes encoding a protein domain related to BetR, putative secretion ATPase and dihydroorotase. The mutant in the betR gene had the lowest survival; therefore, the mutagenized gene was validated using specific amplification and sequencing.

Conclusion:

Trans complementation with the wild-type gene improved the survival of the mutant under desiccation conditions, showing that this gene is a determinant for the survival of K. variicola T29A under desiccation conditions.

Keywords: Desiccation, Klebsiella variicola T29A, Bacterial survival, BSR, Stress, Rhizobacteria, betR.